1
|
Kohantorabi M, Ugolotti A, Sochor B, Roessler J, Wagstaffe M, Meinhardt A, Beck EE, Dolling DS, Garcia MB, Creutzburg M, Keller TF, Schwartzkopf M, Vayalil SK, Thuenauer R, Guédez G, Löw C, Ebert G, Protzer U, Hammerschmidt W, Zeidler R, Roth SV, Di Valentin C, Stierle A, Noei H. Light-Induced Transformation of Virus-Like Particles on TiO 2. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37275-37287. [PMID: 38959130 PMCID: PMC11261565 DOI: 10.1021/acsami.4c07151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024]
Abstract
Titanium dioxide (TiO2) shows significant potential as a self-cleaning material to inactivate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and prevent virus transmission. This study provides insights into the impact of UV-A light on the photocatalytic inactivation of adsorbed SARS-CoV-2 virus-like particles (VLPs) on a TiO2 surface at the molecular and atomic levels. X-ray photoelectron spectroscopy, combined with density functional theory calculations, reveals that spike proteins can adsorb on TiO2 predominantly via their amine and amide functional groups in their amino acids blocks. We employ atomic force microscopy and grazing-incidence small-angle X-ray scattering (GISAXS) to investigate the molecular-scale morphological changes during the inactivation of VLPs on TiO2 under light irradiation. Notably, in situ measurements reveal photoinduced morphological changes of VLPs, resulting in increased particle diameters. These results suggest that the denaturation of structural proteins induced by UV irradiation and oxidation of the virus structure through photocatalytic reactions can take place on the TiO2 surface. The in situ GISAXS measurements under an N2 atmosphere reveal that the virus morphology remains intact under UV light. This provides evidence that the presence of both oxygen and UV light is necessary to initiate photocatalytic reactions on the surface and subsequently inactivate the adsorbed viruses. The chemical insights into the virus inactivation process obtained in this study contribute significantly to the development of solid materials for the inactivation of enveloped viruses.
Collapse
Affiliation(s)
- Mona Kohantorabi
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Aldo Ugolotti
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, Via Cozzi 55, 20125 Milano, Italy
| | - Benedikt Sochor
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Advanced
Light Source, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Johannes Roessler
- Helmholtz
Zentrum München, German Research
Center for Environmental Health, 81377 Munich, Germany
- German Center
for Infection Research (DZIF), Partner Site Munich, 81377 Munich, Germany
| | - Michael Wagstaffe
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Alexander Meinhardt
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- University
of Hamburg, Notkestraße
9-11, 22607 Hamburg, Germany
| | - E. Erik Beck
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- University
of Hamburg, Notkestraße
9-11, 22607 Hamburg, Germany
| | - Daniel Silvan Dolling
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- University
of Hamburg, Notkestraße
9-11, 22607 Hamburg, Germany
| | - Miguel Blanco Garcia
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- University
of Hamburg, Notkestraße
9-11, 22607 Hamburg, Germany
| | - Marcus Creutzburg
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Thomas F. Keller
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Department
of Physics, University of Hamburg, Notkestraße 9-11, 22607 Hamburg, Germany
| | | | - Sarathlal Koyiloth Vayalil
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Applied
Science Cluster, UPES, 248007 Dehradun, India
| | - Roland Thuenauer
- Technology
Platform Light Microscopy (TPLM), Universität
Hamburg (UHH), 22607 Hamburg, Germany
- Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany
- Technology
Platform Light Microscopy and Image Analysis (TP MIA), Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany
| | - Gabriela Guédez
- Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany
| | - Gregor Ebert
- Institute
of Virology, Technical University of Munich/Helmholtz
Munich, 81675 Munich, Germany
| | - Ulrike Protzer
- Institute
of Virology, Technical University of Munich/Helmholtz
Munich, 81675 Munich, Germany
| | - Wolfgang Hammerschmidt
- Helmholtz
Zentrum München, German Research
Center for Environmental Health, 81377 Munich, Germany
- German Center
for Infection Research (DZIF), Partner Site Munich, 81377 Munich, Germany
| | - Reinhard Zeidler
- Helmholtz
Zentrum München, German Research
Center for Environmental Health, 81377 Munich, Germany
- German Center
for Infection Research (DZIF), Partner Site Munich, 81377 Munich, Germany
- Department
of Otorhinolaryngology, LMU University Hospital, LMU München, 81377 Munich, Germany
| | - Stephan V. Roth
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- KTH
Royal Institute of Technology, Teknikringen 56-58, 10044 Stockholm, Sweden
| | - Cristiana Di Valentin
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, Via Cozzi 55, 20125 Milano, Italy
| | - Andreas Stierle
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Department
of Physics, University of Hamburg, Notkestraße 9-11, 22607 Hamburg, Germany
| | - Heshmat Noei
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- The
Hamburg Centre for Ultrafast Imaging, Universität
Hamburg, Luruper Chaussee
149, 22761 Hamburg, Germany
| |
Collapse
|
2
|
Elfayres G, Paswan RR, Sika L, Girard MP, Khalfi S, Letanneur C, Milette K, Singh A, Kobinger G, Berthoux L. Mammalian cells-based platforms for the generation of SARS-CoV-2 virus-like particles. J Virol Methods 2023; 322:114835. [PMID: 37871706 DOI: 10.1016/j.jviromet.2023.114835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19. Though many COVID-19 vaccines have been developed, most of them are delivered via intramuscular injection and thus confer relatively weak mucosal immunity against the natural infection. Virus-Like Particles (VLPs) are self-assembled nanostructures composed of key viral structural proteins, that mimic the wild-type virus structure but are non-infectious and non-replicating due to the lack of viral genetic material. In this study, we efficiently generated SARS-CoV-2 VLPs by co-expressing the four SARS-CoV-2 structural proteins, specifically the membrane (M), small envelope (E), spike (S) and nucleocapsid (N) proteins. We show that these proteins are essential and sufficient for the efficient formation and release of SARS-CoV-2 VLPs. Moreover, we used lentiviral vectors to generate human cell lines that stably produce VLPs. Because VLPs can bind to the virus natural receptors, hence leading to entry into cells and viral antigen presentation, this platform could be used to develop novel vaccine candidates that are delivered intranasally.
Collapse
Affiliation(s)
- Ghada Elfayres
- Department of Medical Biology and FRQS SIDA/MI Network, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Ricky Raj Paswan
- Department of Medical Biology and FRQS SIDA/MI Network, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Laura Sika
- Department of Medical Biology and FRQS SIDA/MI Network, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Marie-Pierre Girard
- Department of Medical Biology and FRQS SIDA/MI Network, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Soumia Khalfi
- Department of Medical Biology and FRQS SIDA/MI Network, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Claire Letanneur
- Department of Medical Biology and FRQS SIDA/MI Network, Université du Québec à Trois-Rivières, Trois-Rivières, Canada; Department of Biochemistry, Chemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Kéziah Milette
- Institute of Innovations in Eco-materials, Eco-products and Eco-energies, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Amita Singh
- Department of Medical Biology and FRQS SIDA/MI Network, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Gary Kobinger
- University Hospital Research Center and Department of Microbiology and Infectiology, Université Laval, Québec, Canada
| | - Lionel Berthoux
- Department of Medical Biology and FRQS SIDA/MI Network, Université du Québec à Trois-Rivières, Trois-Rivières, Canada.
| |
Collapse
|
3
|
Roessler J, Pich D, Krähling V, Becker S, Keppler OT, Zeidler R, Hammerschmidt W. SARS-CoV-2 and Epstein-Barr Virus-like Particles Associate and Fuse with Extracellular Vesicles in Virus Neutralization Tests. Biomedicines 2023; 11:2892. [PMID: 38001893 PMCID: PMC10669694 DOI: 10.3390/biomedicines11112892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
The successful development of effective viral vaccines depends on well-known correlates of protection, high immunogenicity, acceptable safety criteria, low reactogenicity, and well-designed immune monitoring and serology. Virus-neutralizing antibodies are often a good correlate of protective immunity, and their serum concentration is a key parameter during the pre-clinical and clinical testing of vaccine candidates. Viruses are inherently infectious and potentially harmful, but we and others developed replication-defective SARS-CoV-2 virus-like-particles (VLPs) as surrogates for infection to quantitate neutralizing antibodies with appropriate target cells using a split enzyme-based approach. Here, we show that SARS-CoV-2 and Epstein-Barr virus (EBV)-derived VLPs associate and fuse with extracellular vesicles in a highly specific manner, mediated by the respective viral fusion proteins and their corresponding host receptors. We highlight the capacity of virus-neutralizing antibodies to interfere with this interaction and demonstrate a potent application using this technology. To overcome the common limitations of most virus neutralization tests, we developed a quick in vitro diagnostic assay based on the fusion of SARS-CoV-2 VLPs with susceptible vesicles to quantitate neutralizing antibodies without the need for infectious viruses or living cells. We validated this method by testing a set of COVID-19 patient serum samples, correlated the results with those of a conventional test, and found good sensitivity and specificity. Furthermore, we demonstrate that this serological assay can be adapted to a human herpesvirus, EBV, and possibly other enveloped viruses.
Collapse
Affiliation(s)
- Johannes Roessler
- Department of Otorhinolaryngology, University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany; (J.R.); (R.Z.)
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, 81377 Munich, Germany;
- German Centre for Infection Research (DZIF), Partner Site Munich, 81377 Munich, Germany;
| | - Dagmar Pich
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, 81377 Munich, Germany;
- German Centre for Infection Research (DZIF), Partner Site Munich, 81377 Munich, Germany;
| | - Verena Krähling
- Institute of Virology, Faculty of Medicine, Philipps University Marburg, 35043 Marburg, Germany; (V.K.); (S.B.)
- German Centre for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Stephan Becker
- Institute of Virology, Faculty of Medicine, Philipps University Marburg, 35043 Marburg, Germany; (V.K.); (S.B.)
- German Centre for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Oliver T. Keppler
- German Centre for Infection Research (DZIF), Partner Site Munich, 81377 Munich, Germany;
- COVID-19 Registry of the LMU Munich (CORKUM), LMU University Hospital, 81377 Munich, Germany
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Reinhard Zeidler
- Department of Otorhinolaryngology, University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany; (J.R.); (R.Z.)
- German Centre for Infection Research (DZIF), Partner Site Munich, 81377 Munich, Germany;
- Institute of Structural Biology, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, 81377 Munich, Germany;
- German Centre for Infection Research (DZIF), Partner Site Munich, 81377 Munich, Germany;
| |
Collapse
|
4
|
Zak AJ, Hoang T, Yee CM, Rizvi SM, Prabhu P, Wen F. Pseudotyping Improves the Yield of Functional SARS-CoV-2 Virus-like Particles (VLPs) as Tools for Vaccine and Therapeutic Development. Int J Mol Sci 2023; 24:14622. [PMID: 37834067 PMCID: PMC10572262 DOI: 10.3390/ijms241914622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/08/2023] [Accepted: 09/16/2023] [Indexed: 10/15/2023] Open
Abstract
Virus-like particles (VLPs) have been proposed as an attractive tool in SARS-CoV-2 vaccine development, both as (1) a vaccine candidate with high immunogenicity and low reactogenicity and (2) a substitute for live virus in functional and neutralization assays. Though multiple SARS-CoV-2 VLP designs have already been explored in Sf9 insect cells, a key parameter ensuring VLPs are a viable platform is the VLP spike yield (i.e., spike protein content in VLP), which has largely been unreported. In this study, we show that the common strategy of producing SARS-CoV-2 VLPs by expressing spike protein in combination with the native coronavirus membrane and/or envelope protein forms VLPs, but at a critically low spike yield (~0.04-0.08 mg/L). In contrast, fusing the spike ectodomain to the influenza HA transmembrane domain and cytoplasmic tail and co-expressing M1 increased VLP spike yield to ~0.4 mg/L. More importantly, this increased yield translated to a greater VLP spike antigen density (~96 spike monomers/VLP) that more closely resembles that of native SARS-CoV-2 virus (~72-144 Spike monomers/virion). Pseudotyping further allowed for production of functional alpha (B.1.1.7), beta (B.1.351), delta (B.1.617.2), and omicron (B.1.1.529) SARS-CoV-2 VLPs that bound to the target ACE2 receptor. Finally, we demonstrated the utility of pseudotyped VLPs to test neutralizing antibody activity using a simple, acellular ELISA-based assay performed at biosafety level 1 (BSL-1). Taken together, this study highlights the advantage of pseudotyping over native SARS-CoV-2 VLP designs in achieving higher VLP spike yield and demonstrates the usefulness of pseudotyped VLPs as a surrogate for live virus in vaccine and therapeutic development against SARS-CoV-2 variants.
Collapse
Affiliation(s)
| | | | | | | | | | - Fei Wen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA (P.P.)
| |
Collapse
|
5
|
Emslander Q, Krey K, Hamad S, Maidl S, Oubraham L, Hesse J, Henrici A, Austen K, Mergner J, Grass V, Pichlmair A. MDM2 Influences ACE2 Stability and SARS-CoV-2 Uptake. Viruses 2023; 15:1763. [PMID: 37632105 PMCID: PMC10459000 DOI: 10.3390/v15081763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is the central entry receptor for SARS-CoV-2. However, surprisingly little is known about the effects of host regulators on ACE2 localization, expression, and the associated influence on SARS-CoV-2 infection. Here we identify that ACE2 expression levels are regulated by the E3 ligase MDM2 and that MDM2 levels indirectly influence infection with SARS-CoV-2. Genetic depletion of MDM2 elevated ACE2 expression levels, which strongly promoted infection with all SARS-CoV-2 isolates tested. SARS-CoV-2 spike-pseudotyped viruses and the uptake of non-replication-competent virus-like particles showed that MDM2 affects the viral uptake process. MDM2 ubiquitinates Lysine 788 of ACE2 to induce proteasomal degradation, and degradation of this residue led to higher ACE2 expression levels and superior virus particle uptake. Our study illustrates that cellular regulators of ACE2 stability, such as MDM2, play an important role in defining the infection capabilities of SARS-CoV-2.
Collapse
Affiliation(s)
- Quirin Emslander
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany (S.H.)
| | - Karsten Krey
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany (S.H.)
| | - Sabri Hamad
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany (S.H.)
| | - Susanne Maidl
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany (S.H.)
| | - Lila Oubraham
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany (S.H.)
| | - Joshua Hesse
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany (S.H.)
| | - Alexander Henrici
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany (S.H.)
| | - Katharina Austen
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany (S.H.)
| | - Julia Mergner
- BayBioMS@MRI—Bavarian Center for Biomolecular Mass Spectrometry at Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Vincent Grass
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany (S.H.)
| | - Andreas Pichlmair
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany (S.H.)
- German Centre for Infection Research (DZIF), Partner site Munich, 81675 Munich, Germany
- Center of Immunology of Viral Infection (CiViA), Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
6
|
Kumar D, Roy SS, Rastogi R, Arora K, Undale A, Gupta R, Arora NM, Kundu PK. VLP-ELISA for the Detection of IgG Antibodies against Spike, Envelope, and Membrane Antigens of SARS-CoV-2 in Indian Population. Vaccines (Basel) 2023; 11:vaccines11040743. [PMID: 37112655 PMCID: PMC10145915 DOI: 10.3390/vaccines11040743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Background: Serological methods to conduct epidemiological survey are often directed only against the spike protein. To overcome this limitation, we have designed PRAK-03202, a virus-like particle (VLP), by inserting three antigens (Spike, envelope and membrane) of SARS-CoV-2 into a highly characterized S. cerevisiae-based D-Crypt™ platform. Methods: Dot blot analysis was performed to confirm the presence of S, E, and M proteins in PRAK-03202. The number of particles in PRAK-03202 was measured using nanoparticle tracking analysis (NTA). The sensitivity of VLP-ELISA was evaluated in 100 COVID positive. PRAK-03202 was produced at a 5 L scale using fed-batch fermentation. Results: Dot blot confirmed the presence of S, E, and M proteins in PRAK-03202. The number of particles in PRAK-03202 was 1.21 × 109 mL−1. In samples collected >14 days after symptom onset, the sensitivity, specificity, and accuracy of VLP-ELISA were 96%. We did not observe any significant differences in sensitivity, specificity, and accuracy when post-COVID-19 samples were used as negative controls compared to pre-COVID-samples. At a scale of 5 L, the total yield of PRAK-03202 was 100–120 mg/L. Conclusion: In conclusion, we have successfully developed an in-house VLP-ELISA to detect IgG antibodies against three antigens of SARS-CoV-2 as a simple and affordable alternative test.
Collapse
Affiliation(s)
- Dilip Kumar
- Research and Developmental Laboratory, Premas Biotech Private Limited, Sector 4, IMT Manesar, Gurgaon 122050, India (R.G.)
| | - Sourav Singha Roy
- Research and Developmental Laboratory, Premas Biotech Private Limited, Sector 4, IMT Manesar, Gurgaon 122050, India (R.G.)
| | - Ruchir Rastogi
- Research and Developmental Laboratory, Premas Biotech Private Limited, Sector 4, IMT Manesar, Gurgaon 122050, India (R.G.)
| | - Kajal Arora
- Research and Developmental Laboratory, Premas Biotech Private Limited, Sector 4, IMT Manesar, Gurgaon 122050, India (R.G.)
| | - Avinash Undale
- Research and Developmental Laboratory, Premas Biotech Private Limited, Sector 4, IMT Manesar, Gurgaon 122050, India (R.G.)
| | - Reeshu Gupta
- Research and Developmental Laboratory, Premas Biotech Private Limited, Sector 4, IMT Manesar, Gurgaon 122050, India (R.G.)
- Centre of Research for Development, Parul University, Vadodara 391760, India
| | - Nupur Mehrotra Arora
- Research and Developmental Laboratory, Premas Biotech Private Limited, Sector 4, IMT Manesar, Gurgaon 122050, India (R.G.)
| | - Prabuddha K. Kundu
- Research and Developmental Laboratory, Premas Biotech Private Limited, Sector 4, IMT Manesar, Gurgaon 122050, India (R.G.)
- Correspondence: or
| |
Collapse
|