1
|
Wong W, Wang L, Schaffner SS, Li X, Cheeseman I, Anderson TJC, Vaughan A, Ferdig M, Volkman SK, Hartl DL, Wirth DF. MalKinID: A Likelihood-Based Model for Identifying Malaria Parasite Genealogical Relationships Using Identity-by-Descent. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603328. [PMID: 39071294 PMCID: PMC11275886 DOI: 10.1101/2024.07.12.603328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Pathogen genomics is a powerful tool for tracking infectious disease transmission. In malaria, identity-by-descent (IBD) is used to assess the genetic relatedness between parasites and has been used to study transmission and importation. In theory, IBD can be used to distinguish genealogical relationships to reconstruct transmission history or identify parasites for genotype-to-phenotype quantitative-trait-locus experiments. MalKinID (Malaria Kinship Identifier) is a new likelihood-based classification model designed to identify genealogical relationships among malaria parasites based on genome-wide IBD proportions and IBD segment distributions. MalKinID was calibrated to the genomic data from three laboratory-based genetic crosses (yielding 440 parent-child and 9060 full-sibling comparisons). MalKinID identified lab generated F1 progeny with >80% sensitivity and showed that 0.39 (95% CI 0.28, 0.49) of the second-generation progeny of a NF54 and NHP4026 cross were F1s and 0.56 (0.45, 0.67) were backcrosses of an F1 with the parental NF54 strain. In simulated outcrossed importations, MalKinID accurately reconstructs genealogy history with high precision and sensitivity, with F1-scores exceeding 0.84. However, when importation involves inbreeding, such as during serial co-transmission, the precision and sensitivity of MalKinID declined, with F1-scores of 0.76 (0.56, 0.92) and 0.23 (0.0, 0.4) for PC and FS and <0.05 for second-degree and third-degree relatives. Genealogical inference is most powered 1) when outcrossing is the norm or 2) when multi-sample comparisons based on a predefined pedigree are used. MalKinID lays the foundations for using IBD to track parasite transmission history and for separating progeny for quantitative-trait-locus experiments.
Collapse
Affiliation(s)
- Wesley Wong
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Lea Wang
- Harvard College, Harvard University, Cambridge, MA, USA
| | - Stephen S Schaffner
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | - Xue Li
- Program in Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Ian Cheeseman
- Program in Host Pathogen Interactions, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Timothy J C Anderson
- Program in Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Ashley Vaughan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Michael Ferdig
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Sarah K Volkman
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- School of Nursing, Simmons University, Boston MA USA
| | - Daniel L Hartl
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge MA USA
| | - Dyann F Wirth
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
2
|
Freidel MR, Armen RS. Research Progress on Spike-Dependent SARS-CoV-2 Fusion Inhibitors and Small Molecules Targeting the S2 Subunit of Spike. Viruses 2024; 16:712. [PMID: 38793593 PMCID: PMC11125925 DOI: 10.3390/v16050712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/07/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Since the beginning of the COVID-19 pandemic, extensive drug repurposing efforts have sought to identify small-molecule antivirals with various mechanisms of action. Here, we aim to review research progress on small-molecule viral entry and fusion inhibitors that directly bind to the SARS-CoV-2 Spike protein. Early in the pandemic, numerous small molecules were identified in drug repurposing screens and reported to be effective in in vitro SARS-CoV-2 viral entry or fusion inhibitors. However, given minimal experimental information regarding the exact location of small-molecule binding sites on Spike, it was unclear what the specific mechanism of action was or where the exact binding sites were on Spike for some inhibitor candidates. The work of countless researchers has yielded great progress, with the identification of many viral entry inhibitors that target elements on the S1 receptor-binding domain (RBD) or N-terminal domain (NTD) and disrupt the S1 receptor-binding function. In this review, we will also focus on highlighting fusion inhibitors that target inhibition of the S2 fusion function, either by disrupting the formation of the postfusion S2 conformation or alternatively by stabilizing structural elements of the prefusion S2 conformation to prevent conformational changes associated with S2 function. We highlight experimentally validated binding sites on the S1/S2 interface and on the S2 subunit. While most substitutions to the Spike protein to date in variants of concern (VOCs) have been localized to the S1 subunit, the S2 subunit sequence is more conserved, with only a few observed substitutions in proximity to S2 binding sites. Several recent small molecules targeting S2 have been shown to have robust activity over recent VOC mutant strains and/or greater broad-spectrum antiviral activity for other more distantly related coronaviruses.
Collapse
Affiliation(s)
| | - Roger S. Armen
- Department of Pharmaceutical Sciences, College of Pharmacy, Thomas Jefferson University, 901 Walnut St. Suite 918, Philadelphia, PA 19170, USA;
| |
Collapse
|
3
|
Bayat F, Dadashzadeh S, Aboofazeli R, Torshabi M, Baghi AH, Tamiji Z, Haeri A. Oral delivery of posaconazole-loaded phospholipid-based nanoformulation: Preparation and optimization using design of experiments, machine learning, and TOPSIS. Int J Pharm 2024; 653:123879. [PMID: 38320676 DOI: 10.1016/j.ijpharm.2024.123879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/07/2024] [Accepted: 02/02/2024] [Indexed: 02/08/2024]
Abstract
Phospholipid-based nanosystems show promising potentials for oral administration of hydrophobic drugs. The study introduced a novel approach to optimize posaconazole-loaded phospholipid-based nanoformulation using the design of experiments, machine learning, and Technique for Order of Preference by Similarity to the Ideal Solution. These approaches were used to investigate the impact of various variables on the encapsulation efficiency (EE), particle size, and polydispersity index (PDI). The optimized formulation, with %EE of ∼ 74 %, demonstrated a particle size and PDI of 107.7 nm and 0.174, respectively. The oral pharmacokinetic profiles of the posaconazole suspension, empty nanoformulation + drug suspension, and drug-loaded nanoformulation were evaluated. The nanoformulation significantly increased maximum plasma concentration and the area under the drug plasma concentration-time curve (∼3.9- and 6.2-fold, respectively) and could be administered without regard to meals. MTT and histopathological examinations were carried out to evaluate the safety of the nanoformulation and results exhibited no significant toxicity. Lymphatic transport was found to be the main mechanism of oral delivery. Caco-2 cell studies demonstrated that the mechanism of delivery was not based on an increase in cellular uptake. Our study represents a promising strategy for the development of phospholipid-based nanoformulations as efficient and safe oral delivery systems.
Collapse
Affiliation(s)
- Fereshteh Bayat
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simin Dadashzadeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Aboofazeli
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Torshabi
- Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Hashemi Baghi
- Department of Industrial Engineering and Management Systems, Amirkabir University of Technology, Tehran, Iran
| | - Zahra Tamiji
- Department of Chemometrics, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Ali H, Naseem A, Siddiqui ZI. SARS-CoV-2 Syncytium under the Radar: Molecular Insights of the Spike-Induced Syncytia and Potential Strategies to Limit SARS-CoV-2 Replication. J Clin Med 2023; 12:6079. [PMID: 37763019 PMCID: PMC10531702 DOI: 10.3390/jcm12186079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
SARS-CoV-2 infection induces non-physiological syncytia when its spike fusogenic protein on the surface of the host cells interacts with the ACE2 receptor on adjacent cells. Spike-induced syncytia are beneficial for virus replication, transmission, and immune evasion, and contribute to the progression of COVID-19. In this review, we highlight the properties of viral fusion proteins, mainly the SARS-CoV-2 spike, and the involvement of the host factors in the fusion process. We also highlight the possible use of anti-fusogenic factors as an antiviral for the development of therapeutics against newly emerging SARS-CoV-2 variants and how the fusogenic property of the spike could be exploited for biomedical applications.
Collapse
Affiliation(s)
- Hashim Ali
- Department of Pathology, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0QQ, UK
| | - Asma Naseem
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1DZ, UK
| | - Zaheenul Islam Siddiqui
- Diabetes and Obesity Research Center, NYU Grossman Long Island School of Medicine, New York, NY 11501, USA
| |
Collapse
|
5
|
Halder S, Thakur A, Keshry SS, Jana P, Karothia D, Das Jana I, Acevedo O, Swain RK, Mondal A, Chattopadhyay S, Jayaprakash V, Dev A. SELEX based aptamers with diagnostic and entry inhibitor therapeutic potential for SARS-CoV-2. Sci Rep 2023; 13:14560. [PMID: 37666993 PMCID: PMC10477244 DOI: 10.1038/s41598-023-41885-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023] Open
Abstract
Frequent mutation and variable immunological protection against vaccination is a common feature for COVID-19 pandemic. Early detection and confinement remain key to controlling further spread of infection. In response, we have developed an aptamer-based system that possesses both diagnostic and therapeutic potential towards the virus. A random aptamer library (~ 1017 molecules) was screened using systematic evolution of ligands by exponential enrichment (SELEX) and aptamer R was identified as a potent binder for the SARS-CoV-2 spike receptor binding domain (RBD) using in vitro binding assay. Using a pseudotyped viral entry assay we have shown that aptamer R specifically inhibited the entry of a SARS-CoV-2 pseudotyped virus in HEK293T-ACE2 cells but did not inhibit the entry of a Vesicular Stomatitis Virus (VSV) glycoprotein (G) pseudotyped virus, hence establishing its specificity towards SARS-CoV-2 spike protein. The antiviral potential of aptamers R and J (same central sequence as R but lacking flanked primer regions) was tested and showed 95.4% and 82.5% inhibition, respectively, against the SARS-CoV-2 virus. Finally, intermolecular interactions between the aptamers and the RBD domain were analyzed using in silico docking and molecular dynamics simulations that provided additional insight into the binding and inhibitory action of aptamers R and J.
Collapse
Affiliation(s)
- Sayanti Halder
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Abhishek Thakur
- Department of Chemistry, University of Miami, Coral Gables, FL, 33146, USA
| | - Supriya Suman Keshry
- Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha, India
| | - Pradip Jana
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | | | - Indrani Das Jana
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Orlando Acevedo
- Department of Chemistry, University of Miami, Coral Gables, FL, 33146, USA
| | - Rajeeb K Swain
- Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India
| | - Arindam Mondal
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | | | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Abhimanyu Dev
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
6
|
Liu M, Wang J, Shi S, Gao Y, Zhang Y, Yuan Z, Huang E, Li S, Liu S, Song G. Optimization, and biological evaluation of 3-O-β-chacotriosyl betulinic acid amide derivatives as novel small-molecule Omicron. Eur J Med Chem 2023; 256:115463. [PMID: 37209612 DOI: 10.1016/j.ejmech.2023.115463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/22/2023]
Abstract
SARS-CoV-2 Omicron viruses possess a high antigenic shift, and the approved anti-SARS-CoV-2 drugs are extremely limited, which makes the development of new antiviral drugs for the clinical treatment and prevention of SARS-CoV-2 outbreaks imperative. We have previously discovered a new series of markedly potent small-molecule inhibitors of SARS-CoV-2 virus entry, exampled by the hit compound 2. Here, we report a further study of bioisosteric replacement of the eater linker at the C-17 position of 2 with a variety of aromatic amine moieties, followed by a focused structure-activity relationship study, leading to the discovery of a series of novel 3-O-β-chacotriosyl BA amide derivatives as small-molecule Omicron fusion inhibitors with improved potency and selectivity index. Particularly, our medicinal chemistry efforts have resulted in a potent, and efficacious lead compound S-10 with appreciable pharmacokinetic properties, which exhibited broad-spectrum potency against Omicron and other variants with EC50 values ranging from 0.82 to 5.45 μM. Mutagenesis studies confirmed that inhibition of Omicron viral entry was mediated by the direct interaction with S in the prefusion state. These results reveal that S-10 is suitable for further optimization as Omicron fusion inhibitors, with the potential to be developed as therapeutic agents for the treatment and control of SARS-CoV-2 ant its variants infections.
Collapse
Affiliation(s)
- Mingjian Liu
- National Key Laboratory of Green Pesticide, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Jinshen Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shanshan Shi
- Department of Microbiology and Immunology, College of Basic Medicine and Public Hygiene, Jinan University, Guangzhou, 510632, China
| | - Yongfeng Gao
- National Key Laboratory of Green Pesticide, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Yixiao Zhang
- National Key Laboratory of Green Pesticide, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Ziying Yuan
- National Key Laboratory of Green Pesticide, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Enlin Huang
- National Key Laboratory of Green Pesticide, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Sumei Li
- Department of Human Anatomy, College of Basic Medicine and Public Hygiene, Jinan University, Guangzhou, 510632, China.
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, 510515, China.
| | - Gaopeng Song
- National Key Laboratory of Green Pesticide, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
7
|
Guo L, Lin S, Chen Z, Cao Y, He B, Lu G. Targetable elements in SARS-CoV-2 S2 subunit for the design of pan-coronavirus fusion inhibitors and vaccines. Signal Transduct Target Ther 2023; 8:197. [PMID: 37164987 PMCID: PMC10170451 DOI: 10.1038/s41392-023-01472-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/04/2023] [Accepted: 04/23/2023] [Indexed: 05/12/2023] Open
Abstract
The ongoing global pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused devastating impacts on the public health and the global economy. Rapid viral antigenic evolution has led to the continual generation of new variants. Of special note is the recently expanding Omicron subvariants that are capable of immune evasion from most of the existing neutralizing antibodies (nAbs). This has posed new challenges for the prevention and treatment of COVID-19. Therefore, exploring broad-spectrum antiviral agents to combat the emerging variants is imperative. In sharp contrast to the massive accumulation of mutations within the SARS-CoV-2 receptor-binding domain (RBD), the S2 fusion subunit has remained highly conserved among variants. Hence, S2-based therapeutics may provide effective cross-protection against new SARS-CoV-2 variants. Here, we summarize the most recently developed broad-spectrum fusion inhibitors (e.g., nAbs, peptides, proteins, and small-molecule compounds) and candidate vaccines targeting the conserved elements in SARS-CoV-2 S2 subunit. The main focus includes all the targetable S2 elements, namely, the fusion peptide, stem helix, and heptad repeats 1 and 2 (HR1-HR2) bundle. Moreover, we provide a detailed summary of the characteristics and action-mechanisms for each class of cross-reactive fusion inhibitors, which should guide and promote future design of S2-based inhibitors and vaccines against new coronaviruses.
Collapse
Affiliation(s)
- Liyan Guo
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Sheng Lin
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zimin Chen
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yu Cao
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Disaster Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Bin He
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Guangwen Lu
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|