1
|
Pozzi C, Lopresti L, Tassone G, Mangani S. Targeting Methyltransferases in Human Pathogenic Bacteria: Insights into Thymidylate Synthase (TS) and Flavin-Dependent TS (FDTS). Molecules 2019; 24:molecules24081638. [PMID: 31027295 PMCID: PMC6514825 DOI: 10.3390/molecules24081638] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/18/2019] [Accepted: 04/25/2019] [Indexed: 01/10/2023] Open
Abstract
In cells, thymidylate synthases provide the only de novo source of 2′-deoxythymidine-5′-monophosphate (dTMP), required for DNA synthesis. The activity of these enzymes is pivotal for cell survival and proliferation. Two main families of thymidylate synthases have been identified in bacteria, folate-dependent thymidylate synthase (TS) and flavin-dependent TS (FDTS). TS and FDTS are highly divergent enzymes, characterized by exclusive catalytic mechanisms, involving different sets of cofactors. TS and FDTS mechanisms of action have been recently revised, providing new perspectives for the development of antibacterial drugs targeting these enzymes. Nonetheless, some catalytic details still remain elusive. For bacterial TSs, half-site reactivity is still an open debate and the recent evidences are somehow controversial. Furthermore, different behaviors have been identified among bacterial TSs, compromising the definition of common mechanisms. Moreover, the redox reaction responsible for the regeneration of reduced flavin in FDTSs is not completely clarified. This review describes the recent advances in the structural and functional characterization of bacterial TSs and FDTSs and the current understanding of their mechanisms of action. Furthermore, the recent progresses in the development of inhibitors targeting TS and FDTS in human pathogenic bacteria are summarized.
Collapse
Affiliation(s)
- Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy⁻Department of Excellence 2018-2020, University of Siena, via Aldo Moro 2, 53100 Siena, Italy.
| | - Ludovica Lopresti
- Department of Biotechnology, Chemistry and Pharmacy⁻Department of Excellence 2018-2020, University of Siena, via Aldo Moro 2, 53100 Siena, Italy.
| | - Giusy Tassone
- Department of Biotechnology, Chemistry and Pharmacy⁻Department of Excellence 2018-2020, University of Siena, via Aldo Moro 2, 53100 Siena, Italy.
| | - Stefano Mangani
- Department of Biotechnology, Chemistry and Pharmacy⁻Department of Excellence 2018-2020, University of Siena, via Aldo Moro 2, 53100 Siena, Italy.
| |
Collapse
|
2
|
Lopez-Zavala AA, Guevara-Hernandez E, Vazquez-Lujan LH, Sanchez-Paz A, Garcia-Orozco KD, Contreras-Vergara CA, Lopez-Leal G, Arvizu-Flores AA, Ochoa-Leyva A, Sotelo-Mundo RR. A novel thymidylate synthase from the Vibrionales, Alteromonadales, Aeromonadales, and Pasteurellales (VAAP) clade with altered nucleotide and folate binding sites. PeerJ 2018; 6:e5023. [PMID: 29922516 PMCID: PMC6005164 DOI: 10.7717/peerj.5023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/23/2018] [Indexed: 12/21/2022] Open
Abstract
Thymidylate synthase (TS, E.C. 2.1.1.45) is a crucial enzyme for de novo deoxythymidine monophosphate (dTMP) biosynthesis. The gene for this enzyme is thyA, which encodes the folate-dependent TS that converts deoxyuridine monophosphate group (dUMP) into (dTMP) using the cofactor 5,10-methylenetetrahydrofolate (mTHF) as a carbon donor. We identified the thyA gene in the genome of the Vibrio parahaemolyticus strain FIM-S1708+ that is innocuous to humans but pathogenic to crustaceans. Surprisingly, we found changes in the residues that bind the substrate dUMP and mTHF, previously postulated as invariant among all TSs known (Finer-Moore, Santi & Stroud, 2003). Interestingly, those amino acid changes were also found in a clade of microorganisms that contains Vibrionales, Alteromonadales, Aeromonadales, and Pasteurellales (VAAP) from the Gammaproteobacteria class. In this work, we studied the biochemical properties of recombinant TS from V. parahemolyticus FIM-S1708+ (VpTS) to address the natural changes in the TS amino acid sequence of the VAAP clade. Interestingly, the Km for dUMP was 27.3 ± 4.3 µM, about one-fold larger compared to other TSs. The Km for mTHF was 96.3 ± 18 µM, about three- to five-fold larger compared to other species, suggesting also loss of affinity. Thus, the catalytic efficiency was between one or two orders of magnitude smaller for both substrates. We used trimethoprim, a common antibiotic that targets both TS and DHFR for inhibition studies. The IC50 values obtained were high compared to other results in the literature. Nonetheless, this molecule could be a lead for the design antibiotics towards pathogens from the VAAP clade. Overall, the experimental results also suggest that in the VAAP clade the nucleotide salvage pathway is important and should be investigated, since the de novo dTMP synthesis appears to be compromised by a less efficient thymidylate synthase.
Collapse
Affiliation(s)
- Alonso A Lopez-Zavala
- Biomolecular Structure Laboratory, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo, Sonora, Mexico.,Departamento de Ciencias Quimico Biologicas, Universidad de Sonora, Hermosillo, Sonora, Mexico
| | - Eduardo Guevara-Hernandez
- Biomolecular Structure Laboratory, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo, Sonora, Mexico
| | - Luz H Vazquez-Lujan
- Biomolecular Structure Laboratory, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo, Sonora, Mexico
| | - Arturo Sanchez-Paz
- Laboratorio de Referencia, Análisis y Diagnóstico en Sanidad Acuícola, Centro de Investigaciones Biologicas del Noroeste, Hermosillo, Sonora, Mexico
| | - Karina D Garcia-Orozco
- Biomolecular Structure Laboratory, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo, Sonora, Mexico
| | - Carmen A Contreras-Vergara
- Laboratorio de Genetica de Plantas, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo, Sonora, Mexico
| | - Gamaliel Lopez-Leal
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Aldo A Arvizu-Flores
- Departamento de Ciencias Quimico Biologicas, Universidad de Sonora, Hermosillo, Sonora, Mexico
| | - Adrian Ochoa-Leyva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Rogerio R Sotelo-Mundo
- Biomolecular Structure Laboratory, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo, Sonora, Mexico
| |
Collapse
|
3
|
Salo-Ahen OMH, Tochowicz A, Pozzi C, Cardinale D, Ferrari S, Boum Y, Mangani S, Stroud RM, Saxena P, Myllykallio H, Costi MP, Ponterini G, Wade RC. Hotspots in an obligate homodimeric anticancer target. Structural and functional effects of interfacial mutations in human thymidylate synthase. J Med Chem 2015; 58:3572-81. [PMID: 25798950 DOI: 10.1021/acs.jmedchem.5b00137] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Human thymidylate synthase (hTS), a target for antiproliferative drugs, is an obligate homodimer. Single-point mutations to alanine at the monomer-monomer interface may enable the identification of specific residues that delineate sites for drugs aimed at perturbing the protein-protein interactions critical for activity. We computationally identified putative hotspot residues at the interface and designed mutants to perturb the intersubunit interaction. Dimer dissociation constants measured by a FRET-based assay range from 60 nM for wild-type hTS up to about 1 mM for single-point mutants and agree with computational predictions of the effects of these mutations. Mutations that are remote from the active site retain full or partial activity, although the substrate KM values were generally higher and the dimer was less stable. The lower dimer stability of the mutants can facilitate access to the dimer interface by small molecules and thereby aid the design of inhibitors that bind at the dimer interface.
Collapse
Affiliation(s)
- Outi M H Salo-Ahen
- †Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, 69118 Heidelberg, Germany
| | - Anna Tochowicz
- ‡Department of Biochemistry and Biophysics, University of California-San Francisco, San Francisco, California 94158, United States
| | - Cecilia Pozzi
- §Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Daniela Cardinale
- ∥Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Stefania Ferrari
- ∥Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Yap Boum
- ⊥Ecole Polytechnique, CNRS UMR7645, INSERM U696, 91128 Palaiseau, France
| | - Stefano Mangani
- §Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Robert M Stroud
- ‡Department of Biochemistry and Biophysics, University of California-San Francisco, San Francisco, California 94158, United States
| | - Puneet Saxena
- ∥Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Hannu Myllykallio
- ⊥Ecole Polytechnique, CNRS UMR7645, INSERM U696, 91128 Palaiseau, France
| | - Maria Paola Costi
- ∥Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Glauco Ponterini
- ∥Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Rebecca C Wade
- †Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, 69118 Heidelberg, Germany.,#Center for Molecular Biology, DKFZ-ZMBH Alliance, and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Islam Z, Strutzenberg TS, Gurevic I, Kohen A. Concerted versus stepwise mechanism in thymidylate synthase. J Am Chem Soc 2014; 136:9850-3. [PMID: 24949852 PMCID: PMC4105062 DOI: 10.1021/ja504341g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thymidylate synthase (TSase) catalyzes the intracellular de novo formation of thymidylate (a DNA building block) in most living organisms, making it a common target for chemotherapeutic and antibiotic drugs. Two mechanisms have been proposed for the rate-limiting hydride transfer step in TSase catalysis: a stepwise mechanism in which the hydride transfer precedes the cleavage of the covalent bond between the enzymatic cysteine and the product and a mechanism where both happen concertedly. Striking similarities between the enzyme-bound enolate intermediates formed in the initial and final step of the reaction supported the first mechanism, while QM/MM calculations favored the concerted mechanism. Here, we experimentally test these two possibilities using secondary kinetic isotope effect (KIE), mutagenesis study, and primary KIEs. The findings support the concerted mechanism and demonstrate the critical role of an active site arginine in substrate binding, activation of enzymatic nucleophile, and the hydride transfer studied here. The elucidation of this reduction/substitution sheds light on the critical catalytic step in TSase and may aid future drug or biomimetic catalyst design.
Collapse
Affiliation(s)
- Zahidul Islam
- Department of Chemistry, The University of Iowa , Iowa City, Iowa 52242-1727, United States
| | | | | | | |
Collapse
|
5
|
Sharma H, Landau MJ, Sullivan TJ, Kumar VP, Dahlgren MK, Jorgensen WL, Anderson KS. Virtual screening reveals allosteric inhibitors of the Toxoplasma gondii thymidylate synthase-dihydrofolate reductase. Bioorg Med Chem Lett 2013; 24:1232-5. [PMID: 24440298 DOI: 10.1016/j.bmcl.2013.12.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 12/02/2013] [Accepted: 12/04/2013] [Indexed: 11/28/2022]
Abstract
The parasite Toxoplasma gondii can lead to toxoplasmosis in those who are immunocompromised. To combat the infection, the enzyme responsible for nucleotide synthesis thymidylate synthase-dihydrofolate reductase (TS-DHFR) is a suitable drug target. We have used virtual screening to determine novel allosteric inhibitors at the interface between the two TS domains. Selected compounds from virtual screening inhibited TS activity. Thus, these results show that allosteric inhibition by small drug-like molecules can occur in T. gondii TS-DHFR and pave the way for new and potent species-specific inhibitors.
Collapse
Affiliation(s)
- Hitesh Sharma
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Mark J Landau
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Todd J Sullivan
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520, USA
| | - Vidya P Kumar
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Markus K Dahlgren
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520, USA
| | - William L Jorgensen
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520, USA
| | - Karen S Anderson
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
6
|
Hamelberg D, Shen T, McCammon JA. A proposed signaling motif for nuclear import in mRNA processing via the formation of arginine claw. Proc Natl Acad Sci U S A 2007; 104:14947-51. [PMID: 17823247 PMCID: PMC1968059 DOI: 10.1073/pnas.0703151104] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Phosphorylation of proteins by kinases is the most commonly studied class of posttranslational modification, yet its structural consequences are not well understood. The human SR (serine-arginine) protein ASF/SF2 relies on the processive phosphorylation of the serine residues of eight consecutive arginine-serine (RS) dipeptide repeats at the C terminus by SRPK1 before it can be transported into the nucleus. This SR protein plays critical roles in spliceosome assembly, pre-mRNA splicing, and mRNA export, and the phosphorylation process of the RS repeats has been extensively studied experimentally. However, knowledge of the conformational changes associated with the phosphorylation of this simple sequence and how it triggers the importation of the SR protein is lacking. Here, we have carried out extensive molecular dynamics simulations to show that phosphorylation of the eight RS repeats significantly alters the peptide's conformation and leads to the formation of very stable structures that are likely to be involved in the recognition, binding, and transport of the SR protein. Specifically, we found an unusual symmetry-broken phase of conformations of the repetitive and quasi-symmetric phosphorylated peptide sequence. One of the main characteristics of these conformations is the exposed phosphate groups on the periphery, which possibly could serve as the recognition platform for the transport protein transportin-SR2.
Collapse
Affiliation(s)
- Donald Hamelberg
- Howard Hughes Medical Institute, Center for Theoretical Biological Physics, Department of Chemistry and Biochemistry, Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093-0365, USA.
| | | | | |
Collapse
|
7
|
Newby Z, Lee TT, Morse RJ, Liu Y, Liu L, Venkatraman P, Santi DV, Finer-Moore JS, Stroud RM. The role of protein dynamics in thymidylate synthase catalysis: variants of conserved 2'-deoxyuridine 5'-monophosphate (dUMP)-binding Tyr-261. Biochemistry 2006; 45:7415-28. [PMID: 16768437 PMCID: PMC2556892 DOI: 10.1021/bi060152s] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The enzyme thymidylate synthase (TS) catalyzes the reductive methylation of 2'-deoxyuridine 5'-monophosphate (dUMP) to 2'-deoxythymidine 5'-monophosphate. Using kinetic and X-ray crystallography experiments, we have examined the role of the highly conserved Tyr-261 in the catalytic mechanism of TS. While Tyr-261 is distant from the site of methyl transfer, mutants at this position show a marked decrease in enzymatic activity. Given that Tyr-261 forms a hydrogen bond with the dUMP 3'-O, we hypothesized that this interaction would be important for substrate binding, orientation, and specificity. Our results, surprisingly, show that Tyr-261 contributes little to these features of the mechanism of TS. However, the residue is part of the structural core of closed ternary complexes of TS, and conservation of the size and shape of the Tyr side chain is essential for maintaining wild-type values of kcat/Km. Moderate increases in Km values for both the substrate and cofactor upon mutation of Tyr-261 arise mainly from destabilization of the active conformation of a loop containing a dUMP-binding arginine. Besides binding dUMP, this loop has a key role in stabilizing the closed conformation of the enzyme and in shielding the active site from the bulk solvent during catalysis. Changes to atomic vibrations in crystals of a ternary complex of Escherichia coli Tyr261Trp are associated with a greater than 2000-fold drop in kcat/Km. These results underline the important contribution of dynamics to catalysis in TS.
Collapse
Affiliation(s)
- Zachary Newby
- University of California at San Francisco, San Francisco, California 94143-0448, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Sotelo-Mundo RR, Changchien L, Maley F, Montfort WR. Crystal structures of thymidylate synthase mutant R166Q: structural basis for the nearly complete loss of catalytic activity. J Biochem Mol Toxicol 2006; 20:88-92. [PMID: 16615077 DOI: 10.1002/jbt.20122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Thymidylate synthase (TS) catalyzes the folate-dependent methylation of deoxyuridine monophosphate (dUMP) to form thymidine monophosphate (dTMP). We have investigated the role of invariant arginine 166, one of four arginines that contact the dUMP phosphate, using site-directed mutagenesis, X-ray crystallography, and TS from Escherichia coli. The R166Q mutant was crystallized in the presence of dUMP and a structure determined to 2.9 A resolution, but neither the ligand nor the sulfate from the crystallization buffer was found in the active site. A second structure determined with crystals prepared in the presence of dUMP and the antifolate 10-propargyl-5,8-dideazafolate revealed that the inhibitor was bound in an extended, nonproductive conformation, partially occupying the nucleotide-binding site. A sulfate ion, rather than dUMP, was found in the nucleotide phosphate-binding site. Previous studies have shown that the substitution at three of the four arginines of the dUMP phosphate-binding site is permissive; however; for Arg166, all the mutations lead to a near-inactive mutant. The present structures of TS R166Q reveal that the phosphate-binding site is largely intact, but with a substantially reduced affinity for phosphate, despite the presence of the three remaining arginines. The position of Cys146, which initiates catalysis, is shifted in the mutant and resides in a position that interferes with the binding of the dUMP pyrimidine moiety.
Collapse
Affiliation(s)
- Rogerio R Sotelo-Mundo
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA.
| | | | | | | |
Collapse
|
9
|
Green ME. A possible role for phosphate in complexing the arginines of S4 in voltage gated channels. J Theor Biol 2004; 233:337-41. [PMID: 15652143 DOI: 10.1016/j.jtbi.2004.10.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Revised: 09/24/2004] [Accepted: 10/08/2004] [Indexed: 11/19/2022]
Abstract
Phosphate ions are known to complex guanidinium groups, which are the side chains of arginine. Voltage gated channels that allow passage of ions through cell membranes, producing, for example the nerve impulse, are in many cases composed of four domains, each with six transmembrane segments. The S4 transmembrane segments of these channels have arginines placed in such a way that they would be expected to complex phosphate. Known phosphate-arginine complexes are reasonably strong. Here, an ab initio calculation reinforces the expectation that a strong complex could form. As a consequence, if the S4 moved, it would carry either no charge, or at most half of what is expected from fully charged arginines. This suggests that it may be necessary to rethink voltage gating models in which the gating current is produced by physical motion of the S4 transmembrane segments.
Collapse
Affiliation(s)
- Michael E Green
- Department of Chemistry, City College of the City University of New York, New York, NY 10031, USA.
| |
Collapse
|
10
|
Mathews II, Deacon AM, Canaves JM, McMullan D, Lesley SA, Agarwalla S, Kuhn P. Functional analysis of substrate and cofactor complex structures of a thymidylate synthase-complementing protein. Structure 2003; 11:677-90. [PMID: 12791256 DOI: 10.1016/s0969-2126(03)00097-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Like thymidylate synthase (TS) in eukaryotes, the thymidylate synthase-complementing proteins (TSCPs) are mandatory for cell survival of many prokaryotes in the absence of external sources of thymidylate. Details of the mechanism of this novel family of enzymes are unknown. Here, we report the structural and functional analysis of a TSCP from Thermotoga maritima and its complexes with substrate, analogs, and cofactor. The structures presented here provide a basis for rationalizing the TSCP catalysis and reveal the possibility of the design of an inhibitor. We have identified a new helix-loop-strand FAD binding motif characteristic of the enzymes in the TSCP family. The presence of a hydrophobic core with residues conserved among the TSCP family suggests a common overall fold.
Collapse
Affiliation(s)
- Irimpan I Mathews
- Stanford Synchrotron Radiation Laboratory, Stanford University, 2575 Sand Hill Road, SSRL MS 69, Menlo Park, CA 94025, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Harris MN, Bertolucci CM, Ming LJ. Paramagnetic cobalt(II) as a probe for kinetic and NMR relaxation studies of phosphate binding and the catalytic mechanism of Streptomyces dinuclear aminopeptidase. Inorg Chem 2002; 41:5582-8. [PMID: 12377057 DOI: 10.1021/ic025584f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphate was proposed to be a bridging ligand in the structure 1xjo.pdb of Streptomyces dizinc aminopeptidase (sAP), which prompted further studies of phosphate binding to this enzyme. Phosphate inhibits sAP and its Co(2+)-substituted derivatives in a noncompetitive manner from pH 6.0 to 9.0, with strongest inhibition observed at lower pHs (K(i) = 0.6, 8.2, and 9.1 mM for ZnZn-, CoCo-, and CoZn-sAP, respectively, at pH 6.0), which indicates that phosphate does not compete with substrate binding to the dinuclear active site and that monobasic phosphate has a higher binding affinity. The inhibition K(i)-pH profiles for phosphate inhibition of both the native and the Co(2+)-substituted derivatives reveal a similar pK(a) around 7.0, reflecting that phosphate binding is not affected by the metal centers of different Lewis acidities. Modification of ZnZn- and CoCo-sAP with the arginine-specific reagent phenylglyoxal reveals a significant weakening in phosphate and substrate binding by showing approximately a 10-fold increase in the dissociation constant K(i) for phosphate binding and approximately 4-8-fold increase in K(m). The catalysis is also influenced by the modification as reflected by a significant decrease in k(cat) in both cases. Furthermore, phosphate and the transition-state inhibitor 1-aminobutyl phosphonate can protect arginine from the modification, strongly suggesting that Arg202 near the active site is involved in phosphate binding and in stabilizing the transition state. The effect on (31)P NMR relaxation of phosphate caused by the paramagnetic metal center in Co(2+)-substituted derivatives of sAP has been measured, which reveals that only one phosphate is bound to sAP with the Co(2+)-(31)P distance in the range of 4.1-4.3 A. The (1)H NMR relaxation of the bulk water signal in the CoCo-sAP sample remains unchanged in the presence of phosphate, further indicating that phosphate may not bind to the active-site metals to displace any metal-bound water/hydroxide. These results strongly support that the phosphate binding site is Arg202 and that this residue plays an important role in the action of sAP.
Collapse
Affiliation(s)
- Michael N Harris
- Department of Chemistry and Institute for Biomolecular Science, University of South Florida, 4202 Fowler Avenue, Tampa, FL 33620-5250, USA
| | | | | |
Collapse
|
12
|
Sayre PH, Finer-Moore JS, Fritz TA, Biermann D, Gates SB, MacKellar WC, Patel VF, Stroud RM. Multi-targeted antifolates aimed at avoiding drug resistance form covalent closed inhibitory complexes with human and Escherichia coli thymidylate synthases. J Mol Biol 2001; 313:813-29. [PMID: 11697906 DOI: 10.1006/jmbi.2001.5074] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Crystal structures of four pyrrolo(2,3-d)pyrimidine-based antifolate compounds, developed as inhibitors of thymidylate synthase (TS) in a strategy to circumvent drug-resistance, have been determined in complexes with their in vivo target, human thymidylate synthase, and with the structurally best-characterized Escherichia coli enzyme, to resolutions of 2.2-3.0 A. The 2.9 A crystal structure of a complex of human TS with one of the inhibitors, the multi-targeted antifolate LY231514, demonstrates that this compound induces a "closed" enzyme conformation and leads to formation of a covalent bond between enzyme and substrate. This structure is one of the first liganded human TS structures, and its solution was aided by mutation to facilitate crystallization. Structures of three other pyrrolo(2,3-d)pyrimidine-based antifolates in complex with Escherichia coli TS confirm the orientation of this class of inhibitors in the active site. Specific interactions between the polyglutamyl moiety and a positively charged groove on the enzyme surface explain the marked increase in affinity of the pyrrolo(2,3-d)pyrimidine inhibitors once they are polyglutamylated, as mediated in vivo by the cellular enzyme folyl polyglutamate synthetase.
Collapse
Affiliation(s)
- P H Sayre
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143-0448, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Gołos B, Dzik JM, Kazimierczuk Z, Cieśla J, Zieliński Z, Jankowska J, Kraszewski A, Stawiński J, Rode W, Shugar D. Interaction of thymidylate synthase with the 5'-thiophosphates, 5'-dithiophosphates, 5'-H-phosphonates and 5'-S-thiosulfates of 2'-deoxyuridine, thymidine and 5-fluoro-2'-deoxyuridine. Biol Chem 2001; 382:1439-45. [PMID: 11727827 DOI: 10.1515/bc.2001.177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
New analogs of dUMP, dTMP and 5-fluoro-dUMP, including the corresponding 5'-thiophosphates (dUMPS, dTMPS and FdUMPS), 5'-dithiophosphates (dUMPS2, dTMPS2 and FdUMPS2), 5'-H-phosphonates (dUMP-H, dTMP-H and FdUMP-H) and 5'-S-thiosulfates (dUSSO3, dTSSO3 and FdUSSO3), have been synthesized and their interactions studied with highly purified mammalian thymidylate synthase. dUMPS and dUMPS2 proved to be good substrates, and dTMPS and dTMPS2 classic competitive inhibitors, only slightly weaker than dTMP. Their 5-fluoro congeners behaved as potent, slow-binding inhibitors. By contrast, the corresponding 5'-H-phosphonates and 5'-S-thiosulfates displayed weak activities, only FdUMP-H and FdUSSO3 exhibiting significant interactions with the enzyme, as weak competitive slow-binding inhibitors versus dUMR The pH-dependence of enzyme time-independent inhibition by FdUMP and FdUMPS was found to correlate with the difference in pKa values of the phosphate and thiophosphate groups, the profile of FdUMPS being shifted (approximately 1 pH unit) toward lower pH values, so that binding of dUMP and its analogs is limited by the phosphate secondary hydroxyl ionization. Hence, together with the effects of 5'-H-phosphonate and 5'-S-thiosulfate substituents, the much weaker interactions of the nucleotide analogs (3-5 orders of magnitude lower than for the parent 5'-phosphates) with the enzyme is further evidence that the enzyme's active center prefers the dianionic phosphate group for optimum binding.
Collapse
Affiliation(s)
- B Gołos
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa
| | | | | | | | | | | | | | | | | | | |
Collapse
|