1
|
Ryu S, Liu X, Guo T, Guo Z, Zhang J, Cao YQ. Peripheral CCL2-CCR2 signalling contributes to chronic headache-related sensitization. Brain 2023; 146:4274-4291. [PMID: 37284790 PMCID: PMC10545624 DOI: 10.1093/brain/awad191] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/19/2023] [Accepted: 05/01/2023] [Indexed: 06/08/2023] Open
Abstract
Migraine, especially chronic migraine, is highly debilitating and still lacks effective treatment. The persistent headache arises from activation and sensitization of primary afferent neurons in the trigeminovascular pathway, but the underlying mechanisms remain incompletely understood. Animal studies indicate that signalling through chemokine C-C motif ligand 2 (CCL2) and C-C motif chemokine receptor 2 (CCR2) mediates the development of chronic pain after tissue or nerve injury. Some migraine patients had elevated CCL2 levels in CSF or cranial periosteum. However, whether the CCL2-CCR2 signalling pathway contributes to chronic migraine is not clear. Here, we modelled chronic headache with repeated administration of nitroglycerin (NTG, a reliable migraine trigger in migraineurs) and found that both Ccl2 and Ccr2 mRNA were upregulated in dura and trigeminal ganglion (TG) tissues that are implicated in migraine pathophysiology. In Ccl2 and Ccr2 global knockout mice, repeated NTG administration did not evoke acute or persistent facial skin hypersensitivity as in wild-type mice. Intraperitoneal injection of CCL2 neutralizing antibodies inhibited chronic headache-related behaviours induced by repeated NTG administration and repetitive restraint stress, suggesting that the peripheral CCL2-CCR2 signalling mediates headache chronification. We found that CCL2 was mainly expressed in TG neurons and cells associated with dura blood vessels, whereas CCR2 was expressed in subsets of macrophages and T cells in TG and dura but not in TG neurons under both control and disease states. Deletion of Ccr2 gene in primary afferent neurons did not alter NTG-induced sensitization, but eliminating CCR2 expression in either T cells or myeloid cells abolished NTG-induced behaviours, indicating that both CCL2-CCR2 signalling in T cells and macrophages are required to establish chronic headache-related sensitization. At cellular level, repeated NTG administration increased the number of TG neurons that responded to calcitonin-gene-related peptide (CGRP) and pituitary adenylate cyclase activating polypeptide (PACAP) as well as the production of CGRP in wild-type but not Ccr2 global knockout mice. Lastly, co-administration of CCL2 and CGRP neutralizing antibodies was more effective in reversing NTG-induced behaviours than individual antibodies. Taken together, these results suggest that migraine triggers activate CCL2-CCR2 signalling in macrophages and T cells. This consequently enhances both CGRP and PACAP signalling in TG neurons, ultimately leading to persistent neuronal sensitization underlying chronic headache. Our work not only identifies the peripheral CCL2 and CCR2 as potential targets for chronic migraine therapy, but also provides proof-of-concept that inhibition of both peripheral CGRP and CCL2-CCR2 signalling is more effective than targeting either pathway alone.
Collapse
Affiliation(s)
- Sun Ryu
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, Campus Box MSC 8054-86-05, St. Louis, MO 63110, USA
| | - Xuemei Liu
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, Campus Box MSC 8054-86-05, St. Louis, MO 63110, USA
| | - Tingting Guo
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, Campus Box MSC 8054-86-05, St. Louis, MO 63110, USA
| | - Zhaohua Guo
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, Campus Box MSC 8054-86-05, St. Louis, MO 63110, USA
| | - Jintao Zhang
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, Campus Box MSC 8054-86-05, St. Louis, MO 63110, USA
| | - Yu-Qing Cao
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, Campus Box MSC 8054-86-05, St. Louis, MO 63110, USA
| |
Collapse
|
2
|
Yuan J. CCR2: A characteristic chemokine receptor in normal and pathological intestine. Cytokine 2023; 169:156292. [PMID: 37437448 DOI: 10.1016/j.cyto.2023.156292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/25/2023] [Accepted: 07/01/2023] [Indexed: 07/14/2023]
Abstract
C-C motif chemokine receptor 2 (CCR2), together with its ligands, especially C-C motif ligand 2 (CCL2), to which CCR2 has the highest affinity, form a noteworthy signaling pathway in recruiting macrophages for the immune responses among variegated disorders in vivo environment. Scientometric methods are used to analyze intestine-related CCR2 expression. We describe the current knowledge on biological function of CCR2 in physiological intestine in three dimensions, namely its effects on stromal cells, angiogenesis, and remodeling. However, anomalous expression of CCR2 has also been conveyed to correlate with detrimental outcomes in intestine, such as infective colitis, inflammatory bowel disease, carcinogenesis, and colon-related metastasis. In this article, we briefly summarize recent experimental works on CCR2 and its ligands, mostly CCL2, in intestinal-related physiological and pathological states to ravel out their working mechanisms in intestinal diseases.
Collapse
Affiliation(s)
- Jin Yuan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Li S, Wang Y, Jiang H, Bai Y, Chen T, Chen M, Ma M, Yang S, Wu Y, Shi C, Wang F, Chen Y. Display of CCL21 on cancer cell membrane through genetic modification using a pH low insertion peptide. Int J Biol Macromol 2023; 240:124324. [PMID: 37023874 DOI: 10.1016/j.ijbiomac.2023.124324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023]
Abstract
CCL21, a secondary lymphoid tissue chemokine, plays an important role in generating an effective anti-tumor immune response. In this study, a genetically modified CCL21 was developed by inserting a pH low insertion peptide to establish a CCL21-rich microenvironment for tumors. The fusion tag thioredoxin (Trx) was designed and fused at the N-terminal of the recombinant protein to protect it from being irrevocably misfolded in microbial host cells. The prokaryotic expression vector pET32a-CCL21-pHLIP was constructed and successfully expressed in E. coli BL21 (DE3) with a soluble expression form and a molecular weight of ~35 kDa. The induction conditions were optimized to obtain an extremely high yield of 6.7 mg target protein from 31.1 mg total protein. The 6xHis tagged Trx-CCL21-pHLIP was purified using Ni-NTA resin, and it was confirmed using SDS-PAGE and Western blot analyses. Consequently, the Trx-CCL21-pHLIP protein was successfully displayed on the cancer cell surface in a weak acidic microenvironment and showed the same ability as CCL21 in recruiting CCR7-positive cells. Additionally, the CCL21 fusion protein with or without Trx tag showed similar functions. Therefore, the study implies the feasibility of directing a modular genetic method for the development of protein-based drugs.
Collapse
Affiliation(s)
- Sitian Li
- Medical 3D Printing Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, PR China; Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, PR China
| | - Yongtao Wang
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Huaiqing Jiang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, PR China
| | - Yueyue Bai
- Medical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, PR China
| | - Tao Chen
- Department of Orthopedic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, PR China
| | - Min Chen
- Medical 3D Printing Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, PR China
| | - Mengze Ma
- Medical 3D Printing Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, PR China
| | - Shenyu Yang
- Medical 3D Printing Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, PR China
| | - Yan Wu
- Medical 3D Printing Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, PR China
| | - Chaochen Shi
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, PR China
| | - Fazhan Wang
- Medical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, PR China.
| | - Yazhou Chen
- Medical 3D Printing Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, PR China; Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, PR China.
| |
Collapse
|
4
|
Computational and Rational Design of Single-Chain Antibody against Tick-Borne Encephalitis Virus for Modifying Its Specificity. Viruses 2021; 13:v13081494. [PMID: 34452359 PMCID: PMC8402911 DOI: 10.3390/v13081494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/09/2021] [Accepted: 06/23/2021] [Indexed: 12/27/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) causes 5−7 thousand cases of human meningitis and encephalitis annually. The neutralizing and protective antibody ch14D5 is a potential therapeutic agent. This antibody exhibits a high affinity for binding with the D3 domain of the glycoprotein E of the Far Eastern subtype of the virus, but a lower affinity for the D3 domains of the Siberian and European subtypes. In this study, a 2.2-fold increase in the affinity of single-chain antibody sc14D5 to D3 proteins of the Siberian and European subtypes of the virus was achieved using rational design and computational modeling. This improvement can be further enhanced in the case of the bivalent binding of the full-length chimeric antibody containing the identified mutation.
Collapse
|
5
|
Fernández-Quintero ML, Heiss MC, Pomarici ND, Math BA, Liedl KR. Antibody CDR loops as ensembles in solution vs. canonical clusters from X-ray structures. MAbs 2021; 12:1744328. [PMID: 32264741 PMCID: PMC7153821 DOI: 10.1080/19420862.2020.1744328] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In the past decade, the relevance of antibodies as therapeutics has increased substantially. Therefore, structural and functional characterization, in particular of the complementarity-determining regions (CDRs), is crucial to the design and engineering of antibodies with unique binding properties. Various studies have focused on classifying the CDR loops into a small set of main-chain conformations to facilitate antibody design by assuming that certain sequences can only adopt a limited number of conformations. Here, we present a kinetic classification of CDR loop structures as ensembles in solution. Using molecular dynamics simulations in combination with strong experimental structural information, we observe conformational transitions between canonical clusters and additional dominant solution structures in the micro-to-millisecond timescale for all CDR loops, independent of length and sequence composition. Besides identifying all relevant conformations in solution, our results revealed that various canonical cluster medians actually belong to the same kinetic minimum. Additionally, we reconstruct the kinetics and probabilities of the conformational transitions between canonical clusters, and thereby extend the model of static canonical structures to reveal a dynamic conformational ensemble in solution as a new paradigm in the field of antibody structure design. Abbreviations: CDR: Complementary-determining region; Fv: Antibody variable fragment; PCCA: Perron cluster analysis; tICA: Time-lagged independent component analysis; VH: Heavy chain variable region; VL: Light chain variable region
Collapse
Affiliation(s)
- Monica L Fernández-Quintero
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Martin C Heiss
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Nancy D Pomarici
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Barbara A Math
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Klaus R Liedl
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
6
|
Behfar S, Hassanshahi G, Nazari A, Khorramdelazad H. A brief look at the role of monocyte chemoattractant protein-1 (CCL2) in the pathophysiology of psoriasis. Cytokine 2018; 110:226-231. [DOI: 10.1016/j.cyto.2017.12.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/05/2017] [Accepted: 12/08/2017] [Indexed: 12/22/2022]
|
7
|
Vakilian A, Khorramdelazad H, Heidari P, Sheikh Rezaei Z, Hassanshahi G. CCL2/CCR2 signaling pathway in glioblastoma multiforme. Neurochem Int 2016; 103:1-7. [PMID: 28025034 DOI: 10.1016/j.neuint.2016.12.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/20/2016] [Indexed: 02/04/2023]
Abstract
Glioblastoma multiform (GBM) is described as one of the most frequent primary brain tumors. These types of malignancies constitute only 15% of all primary brain tumors. Despite, extensive developments on effective therapeutic methods during the 20th century as well as the first decade of the present century (21st), the median survival rate for patients suffering from GBM is only approximately 15 months, even in response to multi-modal therapy. numerous types of reticuloendothelial system cells such as macrophages and microglial cells occupied within both GBM and also normal surrounding tissues. These immune cells acquire an otherwise activated phenotype with potent tumor-tropic functions that contribute to the glioma growth and invasion. The CC chemokine, CCL2 (previously named MCP-1) is of the most important CC chemokines family member involving in regulation of oriented migration and penetrative infiltration of mainly reticuloendothelial system cells specifically monocyte/macrophage phenotypes. Fundamental parts are played by CCL2 and its related receptor (the CCR2) in brain tumors and obviously in migration of monocytes from the bloodstream through the vascular endothelium. Therefore, CCL2/CCR2 axis is required for the routine immunological surveillance of tissues, in accordance with response to inflammation. Briefly, in this review, we have tried our best to collect the latest, straightened and summarize literature reports exist within data base regarding the interaction between microglia/macrophages and CCL2/CCR2 axis in GBM. We aimed to discuss potential application of this chemokine/receptor interaction axis for the expansion of future anti-glioma therapies as well.
Collapse
Affiliation(s)
- Alireza Vakilian
- Geriatric Care Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hossein Khorramdelazad
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Parisa Heidari
- Department of Hematology and Medical Laboratory Sciences, School of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Sheikh Rezaei
- Department of Hematology and Medical Laboratory Sciences, School of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Hematology and Medical Laboratory Sciences, School of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
8
|
Ott C, König J, Höhn A, Jung T, Grune T. Macroautophagy is impaired in old murine brain tissue as well as in senescent human fibroblasts. Redox Biol 2016; 10:266-273. [PMID: 27825071 PMCID: PMC5099282 DOI: 10.1016/j.redox.2016.10.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 10/07/2016] [Accepted: 10/12/2016] [Indexed: 12/22/2022] Open
Abstract
The overall decrease in proteolytic activity in aging can promote and accelerate protein accumulation and metabolic disturbances. To specifically analyze changes in macroautophagy (MA) we quantified different autophagy-related proteins (ATGs) in young, adult and old murine tissue as well as in young and senescent human fibroblasts. Thus, we revealed significantly reduced levels of ATG5-ATG12, LC3-II/LC3-I ratio, Beclin-1 and p62 in old brain tissue and senescent human fibroblasts. To investigate the role of mTOR, the protein itself and its target proteins p70S6 kinase and 4E-BP1 were quantified. Significant increased mTOR protein levels were determined in old tissue and cells. Determination of phosphorylated and basal amount of both proteins suggested higher mTOR activity in old murine tissue and senescent human fibroblasts. Besides the reduced levels of ATGs, mTOR can additionally reduce MA, promoting further acceleration of protein accumulation and metabolic disturbances during aging.
Collapse
Affiliation(s)
- Christiane Ott
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany.
| | - Jeannette König
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany.
| | - Annika Höhn
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany.
| | - Tobias Jung
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany; German Center for Cardiovascular Research (DZHK), 10117 Berlin, Germany.
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany; German Center for Cardiovascular Research (DZHK), 10117 Berlin, Germany.
| |
Collapse
|
9
|
Oberthür D, Achenbach J, Gabdulkhakov A, Buchner K, Maasch C, Falke S, Rehders D, Klussmann S, Betzel C. Crystal structure of a mirror-image L-RNA aptamer (Spiegelmer) in complex with the natural L-protein target CCL2. Nat Commun 2015; 6:6923. [PMID: 25901662 PMCID: PMC4423205 DOI: 10.1038/ncomms7923] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/16/2015] [Indexed: 02/07/2023] Open
Abstract
We report the crystal structure of a 40mer mirror-image RNA oligonucleotide completely built from nucleotides of the non-natural L-chirality in complex with the pro-inflammatory chemokine L-CLL2 (monocyte chemoattractant protein-1), a natural protein composed of regular L-amino acids. The L-oligonucleotide is an L-aptamer (a Spiegelmer) identified to bind L-CCL2 with high affinity, thereby neutralizing the chemokine's activity. CCL2 plays a key role in attracting and positioning monocytes; its overexpression in several inflammatory diseases makes CCL2 an interesting pharmacological target. The PEGylated form of the L-aptamer, NOX-E36 (emapticap pegol), already showed promising efficacy in clinical Phase II studies conducted in diabetic nephropathy patients. The structure of the L-oligonucleotide·L-protein complex was solved and refined to 2.05 Å. It unveils the L-aptamer's intramolecular contacts and permits a detailed analysis of its structure–function relationship. Furthermore, the analysis of the intermolecular drug–target interactions reveals insight into the selectivity of the L-aptamer for certain related chemokines. Spiegelmers are ‘mirror image' L-ribose oligonucleotides being developed as therapeutics. Here the authors present a crystal structure of the therapeutic L-aptamer NOX-E36 bound to the pro-inflammatory chemokine CLL2, providing insight into NOX-E36's selectivity and mode of action.
Collapse
Affiliation(s)
- Dominik Oberthür
- Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY Building 22a, Notkestrasse 85, 22607 Hamburg, Germany.,Center for Free-Electron Laser Science, Deutsches Elektronen Synchrotron-DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - John Achenbach
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Azat Gabdulkhakov
- Institute of Protein Research, RAS, Pushchino, Moscow Region 142290, Russian Federation
| | - Klaus Buchner
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | | | - Sven Falke
- Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY Building 22a, Notkestrasse 85, 22607 Hamburg, Germany
| | - Dirk Rehders
- Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY Building 22a, Notkestrasse 85, 22607 Hamburg, Germany
| | - Sven Klussmann
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Christian Betzel
- Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY Building 22a, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
10
|
Soluble overexpression and purification of bioactive human CCL2 in E. coli by maltose-binding protein. Mol Biol Rep 2014; 42:651-63. [PMID: 25391768 DOI: 10.1007/s11033-014-3812-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/03/2014] [Indexed: 12/17/2022]
Abstract
Human chemokine (C-C motif) ligand 2 (hCCL2) is a small cytokine in the CC chemokine family that attracts monocytes, memory T lymphocytes, and natural killer cells to the site of tissue injury- or infection-induced inflammation. hCCL2 has been implicated in the pathogeneses of diseases characterized by monocytic infiltrates, including psoriasis, rheumatoid arthritis, atherosclerosis, multiple sclerosis, and insulin-resistant diabetes. The prokaryotic overexpression of hCCL2 has been investigated previously in an attempt to develop biomedical applications for this factor, but this has been hampered by protein misfolding and aggregation into inclusion bodies. In our present study, we screened 7 protein tags-Trx, GST, MBP, NusA, His8, PDI, and PDIb'a'-for their ability to allow the soluble overexpression of hCCL2. Three tags-MBP, His8, and PDI-solubilized more than half of the expressed hCCL2 fusion proteins. Lowering the expression temperature to 18 °C significantly further improved the solubility of all fusion proteins. MBP was chosen for further study based on its solubility, expression level, ease of purification, and tag size. MBP-CCL2 was purified using conventional chromatography and cleaved using TEV or Factor Xa proteases. Biological activity was assessed using luciferase and cell migration assays. Factor Xa-cleaved hCCL2 was found to be active and TEV-cleaved hCCL2 showed relatively less activity. This is probably because the additional glycine residues present at the N-terminus of hCCL2 following TEV digestion interfere with the binding of hCCL2 to its receptor.
Collapse
|
11
|
Dunster JL, Byrne HM, King JR. The resolution of inflammation: a mathematical model of neutrophil and macrophage interactions. Bull Math Biol 2014; 76:1953-80. [PMID: 25053556 DOI: 10.1007/s11538-014-9987-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 06/17/2014] [Indexed: 12/17/2022]
Abstract
There is growing interest in inflammation due to its involvement in many diverse medical conditions, including Alzheimer's disease, cancer, arthritis and asthma. The traditional view that resolution of inflammation is a passive process is now being superceded by an alternative hypothesis whereby its resolution is an active, anti-inflammatory process that can be manipulated therapeutically. This shift in mindset has stimulated a resurgence of interest in the biological mechanisms by which inflammation resolves. The anti-inflammatory processes central to the resolution of inflammation revolve around macrophages and are closely related to pro-inflammatory processes mediated by neutrophils and their ability to damage healthy tissue. We develop a spatially averaged model of inflammation centring on its resolution, accounting for populations of neutrophils and macrophages and incorporating both pro- and anti-inflammatory processes. Our ordinary differential equation model exhibits two outcomes that we relate to healthy and unhealthy states. We use bifurcation analysis to investigate how variation in the system parameters affects its outcome. We find that therapeutic manipulation of the rate of macrophage phagocytosis can aid in resolving inflammation but success is critically dependent on the rate of neutrophil apoptosis. Indeed our model predicts that an effective treatment protocol would take a dual approach, targeting macrophage phagocytosis alongside neutrophil apoptosis.
Collapse
Affiliation(s)
- J L Dunster
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK,
| | | | | |
Collapse
|
12
|
Abstract
Experimental and human studies have shown that proteinuria contributes to the progression of renal disease. Overexposure to filtered proteins promotes the expression and release of chemokines by tubular epithelial cells, thus leading to inflammatory cell recruitment and renal impairment. This review focuses on recent progress in cellular and molecular understanding of the role of chemokines in the pathogenesis of proteinuria-induced renal injury, as well as their clinical implications and therapeutic potential.
Collapse
|
13
|
Kiyoshi M, Caaveiro JMM, Miura E, Nagatoishi S, Nakakido M, Soga S, Shirai H, Kawabata S, Tsumoto K. Affinity improvement of a therapeutic antibody by structure-based computational design: generation of electrostatic interactions in the transition state stabilizes the antibody-antigen complex. PLoS One 2014; 9:e87099. [PMID: 24475232 PMCID: PMC3903617 DOI: 10.1371/journal.pone.0087099] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 12/19/2013] [Indexed: 12/18/2022] Open
Abstract
The optimization of antibodies is a desirable goal towards the development of better therapeutic strategies. The antibody 11K2 was previously developed as a therapeutic tool for inflammatory diseases, and displays very high affinity (4.6 pM) for its antigen the chemokine MCP-1 (monocyte chemo-attractant protein-1). We have employed a virtual library of mutations of 11K2 to identify antibody variants of potentially higher affinity, and to establish benchmarks in the engineering of a mature therapeutic antibody. The most promising candidates identified in the virtual screening were examined by surface plasmon resonance to validate the computational predictions, and to characterize their binding affinity and key thermodynamic properties in detail. Only mutations in the light-chain of the antibody are effective at enhancing its affinity for the antigen in vitro, suggesting that the interaction surface of the heavy-chain (dominated by the hot-spot residue Phe101) is not amenable to optimization. The single-mutation with the highest affinity is L-N31R (4.6-fold higher affinity than wild-type antibody). Importantly, all the single-mutations showing increase affinity incorporate a charged residue (Arg, Asp, or Glu). The characterization of the relevant thermodynamic parameters clarifies the energetic mechanism. Essentially, the formation of new electrostatic interactions early in the binding reaction coordinate (transition state or earlier) benefits the durability of the antibody-antigen complex. The combination of in silico calculations and thermodynamic analysis is an effective strategy to improve the affinity of a matured therapeutic antibody.
Collapse
Affiliation(s)
- Masato Kiyoshi
- Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Jose M. M. Caaveiro
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Medical Proteomics, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Eri Miura
- Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Satoru Nagatoishi
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Makoto Nakakido
- Laboratory of Medical Proteomics, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Shinji Soga
- Molecular Medicine Research Laboratories, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan
| | - Hiroki Shirai
- Molecular Medicine Research Laboratories, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan
| | - Shigeki Kawabata
- Molecular Medicine Research Laboratories, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan
| | - Kouhei Tsumoto
- Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Medical Proteomics, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
14
|
Molecular basis of lateral force spectroscopy nano-diagnostics: computational unbinding of autism related chemokine MCP-1 from IgG antibody. J Mol Model 2013; 19:4773-80. [PMID: 24061853 PMCID: PMC3825506 DOI: 10.1007/s00894-013-1972-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 08/01/2013] [Indexed: 12/05/2022]
Abstract
Monocyte-chemoattractant protein-1 (MCP-1), also known as CCL2, is a potent chemoattractant of T cells and monocytes, involved in inflammatory and angio-proliferative brain and retinal diseases. Higher expression of MCP-1 is observed in metastatic tumors. Unusual levels of MCP-1 in the brain may be correlated with autism. Immunochemistry where atomic force microscope (AFM) tips functionalized with appropriate antibodies against MCP-1 are used could in principle support medical diagnostics. Useful signals from single molecule experiments may be generated if interaction forces are large enough. The chemokine-antibody unbinding force depends on a relative motion of the interacting fragments of the complex. In this paper the stability of the medically important MCP-1- immunoglobulin G antibody Fab fragment complex has been studied using steered molecular dynamics (SMD) computer simulations with the aim to model possible arrangements of nano-diagnostics experiments. Using SMD we confirm that molecular recognition in MCP1-IgG is based mainly on six pairs of residues: Glu39A - Arg98H, Lys56A - Asp52H, Asp65A - Arg32L, Asp68A - Arg32L, Thr32A - Glu55L, Gln61A - Tyr33H. The minimum external force required for mechanical dissociation of the complex depends on a direction of the force. The pulling of the MCP-1 antigen in the directions parallel to the antigen-antibody contact plane requires forces about 20 %–40 % lower than in the perpendicular one. Fortunately, these values are large enough that the fast lateral force spectroscopy may be used for effective nano-diagnostics purposes. We show that molecular modeling is a useful tool in planning AFM force spectroscopy experiments. Lateral SMD forces (green arrow) required for mechanical unbinding of MCP-1 chemokine (blue) from Ig G antibody (red/gray) are 20-40% lower than vertical ones (orange arrow) ![]()
Collapse
|
15
|
Scalley-Kim ML, Hess BW, Kelly RL, Krostag ARF, Lustig KH, Marken JS, Ovendale PJ, Posey AR, Smolak PJ, Taylor JDL, Wood CL, Bienvenue DL, Probst P, Salmon RA, Allison DS, Foy TM, Raport CJ. A novel highly potent therapeutic antibody neutralizes multiple human chemokines and mimics viral immune modulation. PLoS One 2012; 7:e43332. [PMID: 22912856 PMCID: PMC3422223 DOI: 10.1371/journal.pone.0043332] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 07/19/2012] [Indexed: 11/18/2022] Open
Abstract
Chemokines play a key role in leukocyte recruitment during inflammation and are implicated in the pathogenesis of a number of autoimmune diseases. As such, inhibiting chemokine signaling has been of keen interest for the development of therapeutic agents. This endeavor, however, has been hampered due to complexities in the chemokine system. Many chemokines have been shown to signal through multiple receptors and, conversely, most chemokine receptors bind to more than one chemokine. One approach to overcoming this complexity is to develop a single therapeutic agent that binds and inactivates multiple chemokines, similar to an immune evasion strategy utilized by a number of viruses. Here, we describe the development and characterization of a novel therapeutic antibody that targets a subset of human CC chemokines, specifically CCL3, CCL4, and CCL5, involved in chronic inflammatory diseases. Using a sequential immunization approach, followed by humanization and phage display affinity maturation, a therapeutic antibody was developed that displays high binding affinity towards the three targeted chemokines. In vitro, this antibody potently inhibits chemotaxis and chemokine-mediated signaling through CCR1 and CCR5, primary chemokine receptors for the targeted chemokines. Furthermore, we have demonstrated in vivo efficacy of the antibody in a SCID-hu mouse model of skin leukocyte migration, thus confirming its potential as a novel therapeutic chemokine antagonist. We anticipate that this antibody will have broad therapeutic utility in the treatment of a number of autoimmune diseases due to its ability to simultaneously neutralize multiple chemokines implicated in disease pathogenesis.
Collapse
Affiliation(s)
- Michelle L. Scalley-Kim
- Department of Protein Engineering, VLST Corporation, Seattle, Washington, United States of America
| | - Bruce W. Hess
- Department of Immunology and Preclinical Pharmacology, VLST Corporation, Seattle, Washington, United States of America
| | - Ryan L. Kelly
- Department of Protein Sciences, VLST Corporation, Seattle, Washington, United States of America
| | - Anne-Rachel F. Krostag
- Department of Protein Engineering, VLST Corporation, Seattle, Washington, United States of America
| | - Kurt H. Lustig
- Department of Immunology and Preclinical Pharmacology, VLST Corporation, Seattle, Washington, United States of America
| | - John S. Marken
- Department of Protein Engineering, VLST Corporation, Seattle, Washington, United States of America
| | - Pamela J. Ovendale
- Department of Immunology and Preclinical Pharmacology, VLST Corporation, Seattle, Washington, United States of America
| | - Aaron R. Posey
- Department of Immunology and Preclinical Pharmacology, VLST Corporation, Seattle, Washington, United States of America
| | - Pamela J. Smolak
- Department of Protein Engineering, VLST Corporation, Seattle, Washington, United States of America
| | - Janelle D. L. Taylor
- Department of Protein Engineering, VLST Corporation, Seattle, Washington, United States of America
| | - C. L. Wood
- Department of Protein Engineering, VLST Corporation, Seattle, Washington, United States of America
| | - David L. Bienvenue
- Department of Protein Sciences, VLST Corporation, Seattle, Washington, United States of America
| | - Peter Probst
- Department of Immunology and Preclinical Pharmacology, VLST Corporation, Seattle, Washington, United States of America
| | - Ruth A. Salmon
- Department of Immunology and Preclinical Pharmacology, VLST Corporation, Seattle, Washington, United States of America
| | - Daniel S. Allison
- Department of Protein Engineering, VLST Corporation, Seattle, Washington, United States of America
| | - Teresa M. Foy
- Department of Immunology and Preclinical Pharmacology, VLST Corporation, Seattle, Washington, United States of America
- * E-mail:
| | - Carol J. Raport
- Department of Immunology and Preclinical Pharmacology, VLST Corporation, Seattle, Washington, United States of America
| |
Collapse
|
16
|
Abstract
Antibodies capable of targeting more than one antigen are envisioned to expand therapeutic efficacy in complex disease settings. Several strategies have been developed to achieve multiple targeting, including antibody mixtures and bispecific formats. In recent years, several dual- and pan-specific antibodies have been described and represent an alternative approach. These antibodies bind to different targets using a single antigen-combining site while maintaining high affinity and specificity, thus challenging the 'one antibody, one antigen' dogma. Despite certain drawbacks, the simple IgG format of this drug class enables rapid progression into the clinic.
Collapse
|
17
|
Structural basis for high selectivity of anti-CCL2 neutralizing antibody CNTO 888. Mol Immunol 2012; 51:227-33. [PMID: 22487721 DOI: 10.1016/j.molimm.2012.03.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 03/07/2012] [Indexed: 11/20/2022]
Abstract
Human CC chemokine ligand 2 (CCL2), also known as monocyte chemoattractant protein-1 (MCP-1), is a member of the β chemokine family whose actions are mediated through the G-protein-coupled receptor CCR2. Binding of CCL2 to its receptor CCR2 triggers calcium mobilization and chemotaxis. CCL2 is implicated in the pathogenesis of certain inflammatory diseases and cancer. CNTO 888, a neutralizing human anti-CCL2 antibody, was derived by antibody phage display. The antibody binds human CCL2 with high affinity (K(D)=22 pM) and inhibits CCL2 binding to its receptor. The crystal structure of the CNTO 888 Fab alone and in complex with the monomeric form of CCL2 (P8A variant) was determined at 2.6 Å and 2.8 Å resolution, respectively. CNTO 888 recognizes a conformational epitope encompassing residues 18-24 and 45-51 that overlaps the mapped receptor binding site. The epitope of CNTO 888 does not overlap with the dimerization site of CCL2, and thus its inhibitory activity is not expected to result from interference with the oligomeric state of CCL2. Comparison of the X-ray-determined epitopes of CNTO 888 and another CCL2-neutralizing antibody, 11K2, provides insight into the molecular basis of antibody selectivity and functional inhibition.
Collapse
|
18
|
Yu ED, Girardi E, Wang J, Mac TT, Yu KOA, Van Calenbergh S, Porcelli SA, Zajonc DM. Structural basis for the recognition of C20:2-αGalCer by the invariant natural killer T cell receptor-like antibody L363. J Biol Chem 2011; 287:1269-78. [PMID: 22110136 DOI: 10.1074/jbc.m111.308783] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Natural killer T (NKT) cells express a semi-invariant Vα14 T cell receptor (TCR) and recognize structurally diverse antigens presented by the antigen-presenting molecule CD1d that range from phosphoglycerolipids to α- and β-anomeric glycosphingolipids, as well as microbial α-glycosyl diacylglycerolipids. Recently developed antibodies that are specific for the complex of the prototypical invariant NKT (iNKT) cell antigen αGalCer (KRN7000) bound to mouse CD1d have become valuable tools in elucidating the mechanism of antigen loading and presentation. Here, we report the 3.1 Å resolution crystal structure of the Fab of one of these antibodies, L363, bound to mCD1d complexed with the αGalCer analog C20:2, revealing that L363 is an iNKT TCR-like antibody that binds CD1d-presented αGalCer in a manner similar to the TCR. The structure reveals that L363 depends on both the L and H chains for binding to the glycolipid-mCD1d complex, although only the L chain is involved in contacts with the glycolipid antigen. The H chain of L363 features residue Trp-104, which mimics the TCR CDR3α residue Leu-99, which is crucial for CD1d binding. We characterized the antigen-specificity of L363 toward several different glycolipids, demonstrating that whereas the TCR can induce structural changes in both antigen and CD1d to recognize disparate lipid antigens, the antibody L363 can only induce the F' roof formation in CD1d but fails to reorient the glycolipid headgroup necessary for binding. In summary, L363 is a powerful tool to study mechanism of iNKT cell activation for structural analogs of KRN7000, and our study can aid in the design of antibodies with altered antigen specificity.
Collapse
Affiliation(s)
- Esther Dawen Yu
- Division of Cell Biology, La Jolla Institute for Allergy & Immunology, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Fagète S, Rousseau F, Magistrelli G, Gueneau F, Ravn U, Kosco-Vilbois MH, Fischer N. Dual specificity of anti-CXCL10-CXCL9 antibodies is governed by structural mimicry. J Biol Chem 2011; 287:1458-67. [PMID: 22041899 DOI: 10.1074/jbc.m111.253658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dual-specific antibodies are characterized by an antigen-combining site mediating specific interactions with two different antigens. We have generated five dual-specific single chain variable fragments (scFv) that neutralize the activity of the two chemokines, CXCL9 and CXCL10, to bind to their receptor CXCR3. To better understand how these dual-specific scFvs bind these two chemokines that only share a 37% sequence identity, we mapped their epitopes on human CXCL9 and CXCL10 and identified serine 13 (Ser(13)) as a critical residue. It is conserved between the two chemokines but not in the third ligand for CXCR3, CXCL11. Furthermore, Ser(13) is exposed in the tetrameric structure of CXCL10, which is consistent with our finding that the scFvs are able to bind to CXCL9 and CXCL10 immobilized on glycosaminoglycans. Overall, the data indicate that these dual-specific scFvs bind to a conserved surface involved in CXCR3 receptor interaction for CXCL10 and CXCL9. Thus, structural mimicry between the two targets is likely to be responsible for the observed dual specificity of these antibody fragments.
Collapse
|
20
|
Kaufmann KW, Lemmon GH, Deluca SL, Sheehan JH, Meiler J. Practically useful: what the Rosetta protein modeling suite can do for you. Biochemistry 2010; 49:2987-98. [PMID: 20235548 PMCID: PMC2850155 DOI: 10.1021/bi902153g] [Citation(s) in RCA: 291] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
![]()
The objective of this review is to enable researchers to use the software package Rosetta for biochemical and biomedicinal studies. We provide a brief review of the six most frequent research problems tackled with Rosetta. For each of these six tasks, we provide a tutorial that illustrates a basic Rosetta protocol. The Rosetta method was originally developed for de novo protein structure prediction and is regularly one of the best performers in the community-wide biennial Critical Assessment of Structure Prediction. Predictions for protein domains with fewer than 125 amino acids regularly have a backbone root-mean-square deviation of better than 5.0 Å. More impressively, there are several cases in which Rosetta has been used to predict structures with atomic level accuracy better than 2.5 Å. In addition to de novo structure prediction, Rosetta also has methods for molecular docking, homology modeling, determining protein structures from sparse experimental NMR or EPR data, and protein design. Rosetta has been used to accurately design a novel protein structure, predict the structure of protein−protein complexes, design altered specificity protein−protein and protein−DNA interactions, and stabilize proteins and protein complexes. Most recently, Rosetta has been used to solve the X-ray crystallographic phase problem.
Collapse
Affiliation(s)
- Kristian W Kaufmann
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, USA
| | | | | | | | | |
Collapse
|
21
|
Sircar A, Gray JJ. SnugDock: paratope structural optimization during antibody-antigen docking compensates for errors in antibody homology models. PLoS Comput Biol 2010; 6:e1000644. [PMID: 20098500 PMCID: PMC2800046 DOI: 10.1371/journal.pcbi.1000644] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 12/15/2009] [Indexed: 11/19/2022] Open
Abstract
High resolution structures of antibody-antigen complexes are useful for analyzing the binding interface and to make rational choices for antibody engineering. When a crystallographic structure of a complex is unavailable, the structure must be predicted using computational tools. In this work, we illustrate a novel approach, named SnugDock, to predict high-resolution antibody-antigen complex structures by simultaneously structurally optimizing the antibody-antigen rigid-body positions, the relative orientation of the antibody light and heavy chains, and the conformations of the six complementarity determining region loops. This approach is especially useful when the crystal structure of the antibody is not available, requiring allowances for inaccuracies in an antibody homology model which would otherwise frustrate rigid-backbone docking predictions. Local docking using SnugDock with the lowest-energy RosettaAntibody homology model produced more accurate predictions than standard rigid-body docking. SnugDock can be combined with ensemble docking to mimic conformer selection and induced fit resulting in increased sampling of diverse antibody conformations. The combined algorithm produced four medium (Critical Assessment of PRediction of Interactions-CAPRI rating) and seven acceptable lowest-interface-energy predictions in a test set of fifteen complexes. Structural analysis shows that diverse paratope conformations are sampled, but docked paratope backbones are not necessarily closer to the crystal structure conformations than the starting homology models. The accuracy of SnugDock predictions suggests a new genre of general docking algorithms with flexible binding interfaces targeted towards making homology models useful for further high-resolution predictions. Antibodies are proteins that are key elements of the immune system and increasingly used as drugs. Antibodies bind tightly and specifically to antigens to block their activity or to mark them for destruction. Three-dimensional structures of the antibody-antigen complexes are useful for understanding their mechanism and for designing improved antibody drugs. Experimental determination of structures is laborious and not always possible, so we have developed tools to predict structures of antibody-antigen complexes computationally. Computer-predicted models of antibodies, or homology models, typically have errors which can frustrate algorithms for prediction of protein-protein interfaces (docking), and result in incorrect predictions. Here, we have created and tested a new docking algorithm which incorporates flexibility to overcome structural errors in the antibody structural model. The algorithm allows both intramolecular and interfacial flexibility in the antibody during docking, resulting in improved accuracy approaching that when using experimentally determined antibody structures. Structural analysis of the predicted binding region of the complex will enable the protein engineer to make rational choices for better antibody drug designs.
Collapse
Affiliation(s)
- Aroop Sircar
- Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jeffrey J. Gray
- Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Program in Molecular & Computational Biophysics, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
22
|
Grygiel TLR, Teplyakov A, Obmolova G, Stowell N, Holland R, Nemeth JF, Pomerantz SC, Kruszynski M, Gilliland GL. Synthesis by native chemical ligation and crystal structure of human CCL2. Biopolymers 2010; 94:350-9. [DOI: 10.1002/bip.21390] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 2009. [PMID: 19441883 DOI: 10.1089/jir.2008.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chemokines constitute a family of chemoattractant cytokines and are subdivided into four families on the basis of the number and spacing of the conserved cysteine residues in the N-terminus of the protein. Chemokines play a major role in selectively recruiting monocytes, neutrophils, and lymphocytes, as well as in inducing chemotaxis through the activation of G-protein-coupled receptors. Monocyte chemoattractant protein-1 (MCP-1/CCL2) is one of the key chemokines that regulate migration and infiltration of monocytes/macrophages. Both CCL2 and its receptor CCR2 have been demonstrated to be induced and involved in various diseases. Migration of monocytes from the blood stream across the vascular endothelium is required for routine immunological surveillance of tissues, as well as in response to inflammation. This review will discuss these biological processes and the structure and function of CCL2.
Collapse
Affiliation(s)
- Satish L Deshmane
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | |
Collapse
|
24
|
Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 2009; 29:313-26. [PMID: 19441883 DOI: 10.1089/jir.2008.0027] [Citation(s) in RCA: 2719] [Impact Index Per Article: 181.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chemokines constitute a family of chemoattractant cytokines and are subdivided into four families on the basis of the number and spacing of the conserved cysteine residues in the N-terminus of the protein. Chemokines play a major role in selectively recruiting monocytes, neutrophils, and lymphocytes, as well as in inducing chemotaxis through the activation of G-protein-coupled receptors. Monocyte chemoattractant protein-1 (MCP-1/CCL2) is one of the key chemokines that regulate migration and infiltration of monocytes/macrophages. Both CCL2 and its receptor CCR2 have been demonstrated to be induced and involved in various diseases. Migration of monocytes from the blood stream across the vascular endothelium is required for routine immunological surveillance of tissues, as well as in response to inflammation. This review will discuss these biological processes and the structure and function of CCL2.
Collapse
Affiliation(s)
- Satish L Deshmane
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | |
Collapse
|
25
|
Fagète S, Ravn U, Gueneau F, Magistrelli G, Kosco-Vilbois MH, Fischer N. Specificity tuning of antibody fragments to neutralize two human chemokines with a single agent. MAbs 2009; 1:288-96. [PMID: 20069756 PMCID: PMC2726596 DOI: 10.4161/mabs.1.3.8527] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 03/23/2009] [Indexed: 02/01/2023] Open
Abstract
Chemokines are important mediators of the immune response that are responsible for the trafficking of immune cells between lymphoid organs and migration towards sites of inflammation.Using phage display selection and a functional screening approach, we have isolated a panel of single-chain fragment variable (scFv) capable of neutralizing the activity of the human chemokine CXCL10 (hCXCL10). One of the isolated scFv was weakly cross-reactive against another human chemokine CXCL9,but was unable to block its biological activity. We diversified the complementarity determining region 3 (CDR3) of the light chain variable domain (VL) of this scFv and combined phage display with high throughput antibody array screening to identify variants capable of neutralizing both chemokines. Using this approach it is therefore possible to engineer pan-specific antibodies that could prove very useful to antagonize redundant signaling pathways such as the chemokine signaling network.
Collapse
|
26
|
A pipeline for the production of antibody fragments for structural studies using transient expression in HEK 293T cells. Protein Expr Purif 2008; 62:83-9. [DOI: 10.1016/j.pep.2008.06.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 06/24/2008] [Accepted: 06/30/2008] [Indexed: 11/18/2022]
|
27
|
Fischer N. New magic bullets can hit more than one target. Expert Opin Drug Discov 2008; 3:833-9. [PMID: 23484961 DOI: 10.1517/17460441.3.8.833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Monoclonal antibodies have emerged as an attractive and successful class of molecules for therapeutic intervention in several areas of human disease. However, evidence is accumulating that targeting a single protein, or single epitope on a protein, is not sufficient to achieve efficacy in certain diseases. The therapeutic range of monoclonal antibodies may therefore be more limited than anticipated. How can multiple antigen targeting be achieved and in what setting can it be beneficial? Intense efforts in antibody engineering have explored different ways to reach this goal and have yielded innovative classes of molecules presenting intrinsic advantages as well as challenges at different development stages.
Collapse
Affiliation(s)
- Nicolas Fischer
- Novimmune SA, 14 ch. des Aulx, Ch-1228 Plan-les-Ouates, Switzerland +41 22 5935144 ; +41 22 5935139 ;
| |
Collapse
|