1
|
Yang H, Qi M, He Q, Hwang SH, Yang J, McCoy M, Morisseau C, Zhao S, Hammock BD. Quantification of soluble epoxide hydrolase inhibitors in experimental and clinical samples using the nanobody-based ELISA. J Pharm Anal 2023; 13:1013-1023. [PMID: 37842656 PMCID: PMC10568103 DOI: 10.1016/j.jpha.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 10/17/2023] Open
Abstract
To ensure proper dosage of a drug, analytical quantification of it in biofluid is necessary. Liquid chromatography mass spectrometry (LC-MS) is the conventional method of choice as it permits accurate identification and quantification. However, it requires expensive instrumentation and is not appropriate for bedside use. Using soluble epoxide hydrolase (sEH) inhibitors (EC5026 and TPPU) as examples, we report development of a nanobody-based enzyme-linked immunosorbent assay (ELISA) for such small molecules and its use to accurately quantify the drug chemicals in human samples. Under optimized conditions, two nanobody-based ELISAs were successfully established for EC5026 and TPPU with low limits of detection of 0.085 ng/mL and 0.31 ng/mL, respectively, and two order of magnitude linear ranges with high precision and accuracy. The assay was designed to detect parent and two biologically active metabolites in the investigation of a new drug candidate EC5026. In addition, the ELISAs displayed excellent correlation with LC-MS analysis and evaluation of inhibitory potency. The results indicate that nanobody-based ELISA methods can efficiently analyze drug like compounds. These methods could be easily implemented by the bedside, in the field in remote areas or in veterinary practice. This work illustrates that nanobody based assays offer alternative and supplementary analytical tools to mass spectrometry for monitoring small molecule medicines during clinical development and therapy. Attributes of nanobody based pharmaceutical assays are discussed.
Collapse
Affiliation(s)
- Huiyi Yang
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Meng Qi
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
- Langfang Normal University, Langfang, Hebei, 065000, China
| | - Qiyi He
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Sung Hee Hwang
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Jun Yang
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Mark McCoy
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Suqing Zhao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Bruce D. Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| |
Collapse
|
2
|
Yu S, Zhang L, Wang A, Jin Y, Zhou D. Nanobodies: the Potential Application in Bacterial Treatment and Diagnosis. Biochem Pharmacol 2023:115640. [PMID: 37315818 DOI: 10.1016/j.bcp.2023.115640] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
An infection caused by bacteria is one of the main factors that poses a threat to human health. A recent report from the World Health Organization (WHO) has highlighted that bacteria that cause blood infections have become increasingly drug-resistant. Therefore, it is crucial to research and develop new techniques for detecting and treating these infections. Since their discovery, nanobodies have exhibited numerous outstanding biological properties. They are easy to express, modify, and have high stability, robust permeability and low immunogenicity, all of which indicate their potential as a substitute. Nanobodies have been utilized in a variety of studies on viruses and cancer. This article primarily focuses on nanobodies and introduces their characteristics and application in the diagnosis and treatment of bacterial infections.
Collapse
Affiliation(s)
- Siyuan Yu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang, China
| | - Lu Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang, China; Northwest A&F University Shenzhen Research Institute, Shenzhen, China; Department of Animal Engineering, Yangling Vocational&Technical College, Xianyang, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang, China; Northwest A&F University Shenzhen Research Institute, Shenzhen, China.
| | - Dong Zhou
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang, China
| |
Collapse
|
3
|
Tomimoto Y, Yamazaki R, Shirai H. Increasing the melting temperature of VHH with the in silico free energy score. Sci Rep 2023; 13:4922. [PMID: 36966210 PMCID: PMC10039853 DOI: 10.1038/s41598-023-32022-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 03/21/2023] [Indexed: 03/27/2023] Open
Abstract
VHH, the antigen-binding fragment of a heavy chain-only antibody, is a useful component of antibody-based therapeutics. Thermal stability, represented by the melting temperature (Tm), is one of the key factors affecting the developability of antibody-based therapeutics. In this study, we examined whether the in silico free energy score dStability can be used to design mutants with improved Tm compared to the anti-lysozyme VHH, D3-L11. After verifying that exhaustive mutagenesis was inefficient for improving Tm, we performed a two-round rational approach that combined dStability calculations with a small number of experiments. This method improved the Tm by more than 5 °C in several single mutants including A79I. It reduced the affinity for the antigen by less than 1.6-fold. We speculate that stabilization of A79I required exquisite compatibility among neighboring residues to fill in the internal cavity in the protein. Given that we identified only one mutation that could simultaneously improve Tm and almost maintain affinity, we concluded that achieving both is extremely difficult, even with single mutations that are not located in the paratope. Therefore, we recommend using a variety of approaches when trying to achieve such a feat. Our method will be a useful complementary approach to other existing methods.
Collapse
Affiliation(s)
- Yusuke Tomimoto
- Applied Research and Operations, Astellas Pharma Inc., Tsukuba city, Ibaraki, 305-8585, Japan
| | - Rika Yamazaki
- Applied Research and Operations, Astellas Pharma Inc., Tsukuba city, Ibaraki, 305-8585, Japan
| | - Hiroki Shirai
- Applied Research and Operations, Astellas Pharma Inc., Tsukuba city, Ibaraki, 305-8585, Japan.
- Riken Center for Computational Science, Nihonbashi 1-Chome Mitsui Building, 15th floor, 1-4-1 Nihonbashi, Tsukuba, 103-0027, Japan.
| |
Collapse
|
4
|
Tsukahara N, Murakami A, Motohashi M, Nakayama H, Kondo Y, Ito Y, Azuma T, Kishimoto H. An alpaca single-domain antibody (VHH) phage display library constructed by CDR shuffling provided high-affinity VHHs against desired protein antigens. Int Immunol 2022; 34:421-434. [PMID: 35689594 DOI: 10.1093/intimm/dxac022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Antigen-combining sites of the camelid heavy-chain antibody variable domain (VHH) are constructed by three complementarity-determining regions (CDR1, CDR2 and CDR3). We prepared cDNA using mRNA extracted from peripheral lymphocytes of alpacas that had been non-immunized or immunized with human serum albumin (HSA). The VHH gene fragments encoding the amino-terminal half-containing CDR1 as well as CDR2 and the carboxy-terminal half-containing CDR3 were amplified independently by PCR, and then full-length VHH gene fragments were generated by overlap extension PCR and cloned into the phagemid vector. This protocol, referred to as CDR shuffling, allowed us to construct an alpaca VHH phage display library possessing repertoires different from those naturally occurring in animals. We asked, first, whether this library was able to provide the functional VHH fragments against HSA, an immunized antigen, and obtained 29 anti-HSA VHH clones, 41% possessed KD values of lower than 10-8 M, 5 of which had KD values of 10-10 M. We also obtained VHH clones against non-immunized protein antigens such as cardiac troponin T and I, Ebola virus glycoprotein 1 and human immunoglobulin G by biopanning. We compared the amino acid sequences and affinities and found that 43% of VHHs had KD values of less than 10-8 M, although those having KD values of 10-10 M were unavailable. These results suggested that the CDR-shuffled VHH phage display library could potentially provide VHHs against non-immunized protein antigens with similar levels of affinities to those against immunized antigens.
Collapse
Affiliation(s)
- Narutoshi Tsukahara
- Department of Immunology & Parasitology, Graduate School of Medicine, University of the Ryukyus, Uehara, Nishihara, Nakagami, Okinawa, Japan.,RePHAGEN Co., Ltd., Suzaki, Uruma, Okinawa, Japan
| | - Akikazu Murakami
- RePHAGEN Co., Ltd., Suzaki, Uruma, Okinawa, Japan.,Department of Oral Microbiology, Graduate School of Biomedical Sciences, Tokushima University, Kuramoto, Tokushima, Tokushima, Japan
| | - Maiko Motohashi
- Department of Immunology & Parasitology, Graduate School of Medicine, University of the Ryukyus, Uehara, Nishihara, Nakagami, Okinawa, Japan
| | | | | | - Yuji Ito
- Graduate School of Science and Engineering, Kagoshima University, Korimoto, Kagoshima, Kagoshima, Japan
| | - Takachika Azuma
- Antibody Engineering Research Center Co., Ltd., Yamazaki, Noda, Chiba, Japan
| | - Hidehiro Kishimoto
- Department of Immunology & Parasitology, Graduate School of Medicine, University of the Ryukyus, Uehara, Nishihara, Nakagami, Okinawa, Japan
| |
Collapse
|
5
|
Lyu M, Shi X, Liu X, Liu Y, Zhu X, Liao L, Zhao H, Sun N, Wang S, Chen L, Fan L, Xu Q, Zhu Q, Gao K, Chen H, Zhu Y, Li Z, Guo W, Zheng Y, Gu Y, Liu L, Wang M, Liu Y. Generation and Screening of Antigen-Specific Nanobodies from Mammalian Cells Expressing the BCR Repertoire Library Using Droplet-Based Microfluidics. Anal Chem 2022; 94:7970-7980. [PMID: 35604850 DOI: 10.1021/acs.analchem.2c00865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nanobodies, also known as VHHs, originate from the serum of Camelidae. Nanobodies have considerable advantages over conventional antibodies, including smaller size, more modifiable, and deeper tissue penetration, making them promising tools for immunotherapy and antibody-drug development. A high-throughput nanobody screening platform is critical to the rapid development of nanobodies. To date, droplet-based microfluidic systems have exhibited improved performance compared to the traditional phage display technology in terms of time and throughput. In realistic situations, however, it is difficult to directly apply the technology to the screening of nanobodies. Requirements of plasma cell enrichment and high cell viability, as well as a lack of related commercial reagents, are leading causes for impeding the development of novel methods. We overcame these obstacles by constructing a eukaryotic display system that secretes nanobodies utilizing homologous recombination and eukaryotic transformation technologies, and the significant advantages are that it is independent of primary cell viability and it does not require plasma cell enrichment in advance. Next, a signal capture system of "SA-beads + Biotin-antigen + nanobody-6 × His + fluorescence-labeled anti-6 × His (secondary antibody)" was designed for precise localization of the eukaryotic-expressed nanobodies in a droplet. Based on this innovation, we screened 293T cells expressing anti-PD-L1 nanobodies with a high positive rate of targeted cells (up to 99.8%). Then, single-cell transcriptomic profiling uncovered the intercellular heterogeneity and BCR sequence of target cells at a single-cell level. The complete complementarity determining region (CDR3) structure was obtained, which was totally consistent with the BCR reference. This study expanded the linkage between microfluidic technology and nanobody applications and also showed potential to accelerate the rapid transformation of nanobodies in the large-scale market.
Collapse
Affiliation(s)
- Menghua Lyu
- BGI-Shenzhen, Shenzhen 518083, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuyang Shi
- BGI-Shenzhen, Shenzhen 518083, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Yang Liu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xijun Zhu
- BGI-Shenzhen, Shenzhen 518083, China
| | | | | | - Na Sun
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Linzhe Chen
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Linyuan Fan
- BGI-Shenzhen, Shenzhen 518083, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qumiao Xu
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Kai Gao
- BGI-Shenzhen, Shenzhen 518083, China
| | - Huaying Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Yonggang Zhu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Zida Li
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Weijin Guo
- Department of Biomedical Engineering, Shantou University, Shantou 515063, China
| | - Yue Zheng
- BGI-Shenzhen, Shenzhen 518083, China
| | - Ying Gu
- BGI-Shenzhen, Shenzhen 518083, China
| | | | | | - Ya Liu
- BGI-Shenzhen, Shenzhen 518083, China.,Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen 518100, China
| |
Collapse
|
6
|
Valdés-Tresanco MS, Molina-Zapata A, Pose AG, Moreno E. Structural Insights into the Design of Synthetic Nanobody Libraries. Molecules 2022; 27:molecules27072198. [PMID: 35408597 PMCID: PMC9000494 DOI: 10.3390/molecules27072198] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/27/2022] Open
Abstract
Single domain antibodies from camelids, or nanobodies, are a unique class of antibody fragments with several advantageous characteristics: small monomeric size, high stability and solubility and easy tailoring for multiple applications. Nanobodies are gaining increasing acceptance as diagnostic tools and promising therapeutic agents in cancer and other diseases. While most nanobodies are obtained from immunized animals of the camelid family, a few synthetic nanobody libraries constructed in recent years have shown the capability of generating high quality nanobodies in terms of affinity and stability. Since this synthetic approach has important advantages over the use of animals, the recent advances are indeed encouraging. Here we review over a dozen synthetic nanobody libraries reported so far and discuss the different approaches followed in their construction and validation, with an emphasis on framework and hypervariable loop design as critical issues defining their potential as high-class nanobody sources.
Collapse
Affiliation(s)
- Mario S. Valdés-Tresanco
- Faculty of Basic Sciences, University of Medellin, Medellin 050026, Colombia; (A.M.-Z.); (A.G.P.)
- Correspondence: (M.S.V.-T.); (E.M.)
| | - Andrea Molina-Zapata
- Faculty of Basic Sciences, University of Medellin, Medellin 050026, Colombia; (A.M.-Z.); (A.G.P.)
- Grupo de Micología Médica y Experimental, Corporación para Investigaciones Biológicas (CIB), Medellin 050034, Colombia
| | - Alaín González Pose
- Faculty of Basic Sciences, University of Medellin, Medellin 050026, Colombia; (A.M.-Z.); (A.G.P.)
| | - Ernesto Moreno
- Faculty of Basic Sciences, University of Medellin, Medellin 050026, Colombia; (A.M.-Z.); (A.G.P.)
- Correspondence: (M.S.V.-T.); (E.M.)
| |
Collapse
|
7
|
Construction of a Humanized Artificial VHH Library Reproducing Structural Features of Camelid VHHs for Therapeutics. Antibodies (Basel) 2022; 11:antib11010010. [PMID: 35225868 PMCID: PMC8884020 DOI: 10.3390/antib11010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/07/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
A variable domain of heavy chain antibody (VHH) has different binding properties than conventional antibodies. Conventional antibodies prefer binding to the convex portion of the antigen, whereas VHHs prefer epitopes, such as crevices and clefts on the antigen. Therefore, developing candidates with the binding characteristics of camelid VHHs is important. Thus, To this end, a synthetic VHH library that reproduces the structural properties of camelid VHHs was constructed. First, the characteristics of VHHs were classified according to the paratope formation based on crystal structure analyses of the complex structures of VHHs and antigens. Then, we classified 330 complementarity-determining region 3 (CDR3) structures of VHHs from the Protein Data Bank (PDB) into three loop structures: Upright, Half-Roll, and Roll. Moreover, these structures depended on the number of amino acid residues within CDR3. Furthermore, in the Upright loops, several amino acid residues in the FR2 are involved in the paratope formation, along with CDR3, suggesting that the FR2 design in the synthetic library is important. A humanized synthetic VHH library, comprising two sub-libraries, Upright and Roll, was constructed and named PharmaLogical. A validation study confirmed that our PharmaLogical library reproduces VHHs with the characteristics of the paratope formation of the camelid VHHs, and shows good performance in VHH screening.
Collapse
|
8
|
Wang Y, Zhang C, Wang J, Knopp D. Recent Progress in Rapid Determination of Mycotoxins Based on Emerging Biorecognition Molecules: A Review. Toxins (Basel) 2022; 14:73. [PMID: 35202100 PMCID: PMC8874725 DOI: 10.3390/toxins14020073] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 12/12/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by fungal species, which pose significant risk to humans and livestock. The mycotoxins which are produced from Aspergillus, Penicillium, and Fusarium are considered most important and therefore regulated in food- and feedstuffs. Analyses are predominantly performed by official laboratory methods in centralized labs by expert technicians. There is an urgent demand for new low-cost, easy-to-use, and portable analytical devices for rapid on-site determination. Most significant advances were realized in the field bioanalytical techniques based on molecular recognition. This review aims to discuss recent progress in the generation of native biomolecules and new bioinspired materials towards mycotoxins for the development of reliable bioreceptor-based analytical methods. After brief presentation of basic knowledge regarding characteristics of most important mycotoxins, the generation, benefits, and limitations of present and emerging biorecognition molecules, such as polyclonal (pAb), monoclonal (mAb), recombinant antibodies (rAb), aptamers, short peptides, and molecularly imprinted polymers (MIPs), are discussed. Hereinafter, the use of binders in different areas of application, including sample preparation, microplate- and tube-based assays, lateral flow devices, and biosensors, is highlighted. Special focus, on a global scale, is placed on commercial availability of single receptor molecules, test-kits, and biosensor platforms using multiplexed bead-based suspension assays and planar biochip arrays. Future outlook is given with special emphasis on new challenges, such as increasing use of rAb based on synthetic and naïve antibody libraries to renounce animal immunization, multiple-analyte test-kits and high-throughput multiplexing, and determination of masked mycotoxins, including stereoisomeric degradation products.
Collapse
Affiliation(s)
- Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Cui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Dietmar Knopp
- Chair for Analytical Chemistry and Water Chemistry, Institute of Hydrochemistry, Technische Universitat München, Elisabeth-Winterhalter-Weg 6, D-81377 München, Germany
| |
Collapse
|
9
|
Chen X, Gentili M, Hacohen N, Regev A. A cell-free nanobody engineering platform rapidly generates SARS-CoV-2 neutralizing nanobodies. Nat Commun 2021; 12:5506. [PMID: 34535642 PMCID: PMC8448731 DOI: 10.1038/s41467-021-25777-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 09/01/2021] [Indexed: 11/21/2022] Open
Abstract
Antibody engineering technologies face increasing demands for speed, reliability and scale. We develop CeVICA, a cell-free nanobody engineering platform that uses ribosome display for in vitro selection of nanobodies from a library of 1011 randomized sequences. We apply CeVICA to engineer nanobodies against the Receptor Binding Domain (RBD) of SARS-CoV-2 spike protein and identify >800 binder families using a computational pipeline based on CDR-directed clustering. Among 38 experimentally-tested families, 30 are true RBD binders and 11 inhibit SARS-CoV-2 pseudotyped virus infection. Affinity maturation and multivalency engineering increase nanobody binding affinity and yield a virus neutralizer with picomolar IC50. Furthermore, the capability of CeVICA for comprehensive binder prediction allows us to validate the fitness of our nanobody library. CeVICA offers an integrated solution for rapid generation of divergent synthetic nanobodies with tunable affinities in vitro and may serve as the basis for automated and highly parallel nanobody engineering.
Collapse
Affiliation(s)
- Xun Chen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | | | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Genentech, 1 DNA Way, South San Francisco, CA, USA.
| |
Collapse
|
10
|
Brilhante-da-Silva N, de Oliveira Sousa RM, Arruda A, Dos Santos EL, Marinho ACM, Stabeli RG, Fernandes CFC, Pereira SDS. Camelid Single-Domain Antibodies for the Development of Potent Diagnosis Platforms. Mol Diagn Ther 2021; 25:439-456. [PMID: 34146333 DOI: 10.1007/s40291-021-00533-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2021] [Indexed: 11/26/2022]
Abstract
The distinct biophysical and pharmaceutical properties of camelid single-domain antibodies, referred to as VHHs or nanobodies, are associated with their nanometric dimensions, elevated stability, and antigen recognition capacity. These biomolecules can circumvent a number of diagnostic system limitations, especially those related to the size and stability of conventional immunoglobulins currently used in enzyme-linked immunosorbent assays and point-of-care, electrochemical, and imaging assays. In these formats, VHHs are directionally conjugated to different molecules, such as metallic nanoparticles, small peptides, and radioisotopes, which demonstrates their comprehensive versatility. Thus, the application of VHHs in diagnostic systems range from the identification of cancer cells to the detection of degenerative disease biomarkers, viral antigens, bacterial toxins, and insecticides. The improvements of sensitivity and specificity are among the central benefits resulting from the use of VHHs, which are indispensable parameters for high-quality diagnostics. Therefore, this review highlights the main biotechnological advances related to camelid single-domain antibodies and their use in in vitro and in vivo diagnostic approaches for human health.
Collapse
Affiliation(s)
- Nairo Brilhante-da-Silva
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, Fiocruz, Unidade Rondônia, Porto Velho, RO, 76812-245, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, Brazil
| | - Rosa Maria de Oliveira Sousa
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, Fiocruz, Unidade Rondônia, Porto Velho, RO, 76812-245, Brazil
| | - Andrelisse Arruda
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, Fiocruz, Unidade Rondônia, Porto Velho, RO, 76812-245, Brazil
| | - Eliza Lima Dos Santos
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, Fiocruz, Unidade Rondônia, Porto Velho, RO, 76812-245, Brazil
| | - Anna Carolina Machado Marinho
- Plataforma de Desenvolvimento de Anticorpos e Nanocorpos, Fundação Oswaldo Cruz, Fiocruz Ceará, Eusebio, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Rodrigo Guerino Stabeli
- Plataforma Bi-institucional de Medicina Translacional.Fundação Oswaldo Cruz-USP, Ribeirão Preto, São Paulo, Brazil
| | - Carla Freire Celedonio Fernandes
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, Brazil
- Plataforma de Desenvolvimento de Anticorpos e Nanocorpos, Fundação Oswaldo Cruz, Fiocruz Ceará, Eusebio, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Soraya Dos Santos Pereira
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, Fiocruz, Unidade Rondônia, Porto Velho, RO, 76812-245, Brazil.
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, Brazil.
- Programa de Pós-graduação em Biologia Experimental, Universidade Federal de Rondônia, Porto Velho, Brazil.
| |
Collapse
|
11
|
Chen X, Gentili M, Hacohen N, Regev A. A cell-free antibody engineering platform rapidly generates SARS-CoV-2 neutralizing antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.10.29.361287. [PMID: 33140055 PMCID: PMC7605568 DOI: 10.1101/2020.10.29.361287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Antibody engineering technologies face increasing demands for speed, reliability and scale. We developed CeVICA, a cell-free antibody engineering platform that integrates a novel generation method and design for camelid heavy-chain antibody VHH domain-based synthetic libraries, optimized in vitro selection based on ribosome display and a computational pipeline for binder prediction based on CDR-directed clustering. We applied CeVICA to engineer antibodies against the Receptor Binding Domain (RBD) of the SARS-CoV-2 spike proteins and identified >800 predicted binder families. Among 14 experimentally-tested binders, 6 showed inhibition of pseudotyped virus infection. Antibody affinity maturation further increased binding affinity and potency of inhibition. Additionally, the unique capability of CeVICA for efficient and comprehensive binder prediction allowed retrospective validation of the fitness of our synthetic VHH library design and revealed direction for future refinement. CeVICA offers an integrated solution to rapid generation of divergent synthetic antibodies with tunable affinities in vitro and may serve as the basis for automated and highly parallel antibody generation.
Collapse
Affiliation(s)
- Xun Chen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts Institute of Technology, Department of Biology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Current address: Genentech, 1 DNA Way, South San Francisco, CA, USA
| |
Collapse
|
12
|
Zhang JR, Wang Y, Dong JX, Yang JY, Zhang YQ, Wang F, Si R, Xu ZL, Wang H, Xiao ZL, Shen YD. Development of a Simple Pretreatment Immunoassay Based on an Organic Solvent-Tolerant Nanobody for the Detection of Carbofuran in Vegetable and Fruit Samples. Biomolecules 2019; 9:biom9100576. [PMID: 31591300 PMCID: PMC6843801 DOI: 10.3390/biom9100576] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/04/2019] [Accepted: 10/04/2019] [Indexed: 12/22/2022] Open
Abstract
Nanobodies are one-tenth the size of conventional antibodies and are naturally obtained from the atypical heavy-chain-only antibodies present in camelids. Their small size, high solubility, high stability, and strong resilience to organic solvents facilitate their use as novel analytical reagents in immunochemistry. In this study, specific nanobodies against pesticide carbofuran were isolated and characterized from an immunized library via phage display platform. We further established an indirect competitive enzyme-linked immunosorbent assay (ELISA) using nanobody Nb316 to detect carbofuran in vegetable and fruit samples. The results showed a half-maximal inhibitory concentration (IC50) of 7.27 ng/mL and a detection limit of 0.65 ng/mL. A simplified sample pretreatment procedure omitting the evaporation of organic solvent was used. The averaged recovery rate of spiked samples ranged between 82.3% and 103.9%, which correlated with that of standard UPLC–MS/MS method. In conclusion, a nanobody with high specificity for carbofuran was characterized, and a nanobody-based sensitive immunoassay for simple and rapid detection of carbofuran in real samples was validated.
Collapse
Affiliation(s)
- Jin-ru Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.-r.Z.); (J.-y.Y.); (Y.-q.Z.); (F.W.); (R.S.); (Z.-l.X.); (Y.-d.S.)
| | - Yu Wang
- Guangzhou Institute of Food Inspection, Guangzhou 510080, China;
| | - Jie-xian Dong
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA;
- Neurobiology, Physiology & Behavior, University of California, Davis, CA 95616, USA
| | - Jin-yi Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.-r.Z.); (J.-y.Y.); (Y.-q.Z.); (F.W.); (R.S.); (Z.-l.X.); (Y.-d.S.)
| | - Yu-qi Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.-r.Z.); (J.-y.Y.); (Y.-q.Z.); (F.W.); (R.S.); (Z.-l.X.); (Y.-d.S.)
| | - Feng Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.-r.Z.); (J.-y.Y.); (Y.-q.Z.); (F.W.); (R.S.); (Z.-l.X.); (Y.-d.S.)
| | - Rui Si
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.-r.Z.); (J.-y.Y.); (Y.-q.Z.); (F.W.); (R.S.); (Z.-l.X.); (Y.-d.S.)
| | - Zhen-lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.-r.Z.); (J.-y.Y.); (Y.-q.Z.); (F.W.); (R.S.); (Z.-l.X.); (Y.-d.S.)
- Correspondence: (Z.-l.X.); (H.W.); Tel.: +86-20-85283448 (H.W.); Fax: +86-20-85280270 (H.W.)
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.-r.Z.); (J.-y.Y.); (Y.-q.Z.); (F.W.); (R.S.); (Z.-l.X.); (Y.-d.S.)
- Correspondence: (Z.-l.X.); (H.W.); Tel.: +86-20-85283448 (H.W.); Fax: +86-20-85280270 (H.W.)
| | - Zhi-li Xiao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.-r.Z.); (J.-y.Y.); (Y.-q.Z.); (F.W.); (R.S.); (Z.-l.X.); (Y.-d.S.)
| | - Yu-dong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.-r.Z.); (J.-y.Y.); (Y.-q.Z.); (F.W.); (R.S.); (Z.-l.X.); (Y.-d.S.)
| |
Collapse
|
13
|
Olson MA, Legler PM, Zabetakis D, Turner KB, Anderson GP, Goldman ER. Sequence Tolerance of a Single-Domain Antibody with a High Thermal Stability: Comparison of Computational and Experimental Fitness Profiles. ACS OMEGA 2019; 4:10444-10454. [PMID: 31460140 PMCID: PMC6648363 DOI: 10.1021/acsomega.9b00730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/09/2019] [Indexed: 06/10/2023]
Abstract
The sequence fitness of a llama single-domain antibody with an unusually high thermal stability is explored by a combined computational and experimental study. Starting with the X-ray crystallographic structure, RosettaBackrub simulations were applied to model sequence-structure tolerance profiles and identify key substitution sites. From the model calculations, an experimental site-directed mutagenesis was used to produce a panel of mutants, and their melting temperatures were determined by thermal denaturation. The results reveal a sequence fitness of an excess stability of approximately 12 °C, a value taken from a decrease in the melting temperature of an electrostatic charge-reversal substitution in the CRD3 without a deleterious effect on the binding affinity to the antigen. The tolerance for the disruption of antigen recognition without loss in the thermal stability was demonstrated by the introduction of a proline in place of a tyrosine in the CDR2, producing a mutant that eliminated binding. To further assist the sequence design and the selection of engineered single-domain antibodies, an assessment of different computational strategies is provided of their accuracy in the detection of substitution "hot spots" in the sequence tolerance landscape.
Collapse
Affiliation(s)
- Mark A. Olson
- Systems
and Structural Biology Division, USAMRIID, Frederick, Maryland 21702, United States
| | - Patricia M. Legler
- Center
for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, District of Columbia 20375, United States
| | - Daniel Zabetakis
- Center
for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, District of Columbia 20375, United States
| | - Kendrick B. Turner
- Center
for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, District of Columbia 20375, United States
| | - George P. Anderson
- Center
for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, District of Columbia 20375, United States
| | - Ellen R. Goldman
- Center
for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, District of Columbia 20375, United States
| |
Collapse
|
14
|
Zhang YQ, Xu ZL, Wang F, Cai J, Dong JX, Zhang JR, Si R, Wang CL, Wang Y, Shen YD, Sun Y, Wang H. Isolation of Bactrian Camel Single Domain Antibody for Parathion and Development of One-Step dc-FEIA Method Using VHH-Alkaline Phosphatase Fusion Protein. Anal Chem 2018; 90:12886-12892. [PMID: 30256086 DOI: 10.1021/acs.analchem.8b03509] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A heavy chain variable fragment of heavy chain only antibodies derived from camelids termed VHH shows beneficial characteristics for immunoassay in terms of high sensitivity, outstanding stability and ease in expression. In the present study, we isolated six VHHs from phage display library against parathion, which is a widely used organophosphorus pesticide with high toxicity and persistence. One of six selected VHHs named VHH9, showed highest specificity and superior thermo-stability. A VHH9-alkaline phosphatase (AP) fusion was constructed and used to establish a one-step direct competitive fluorescence enzyme immunoassay (dc-FEIA) with a half maximal inhibitory concentration (IC50) of 1.6 ng/mL and a limit of detection of 0.2 ng/mL which was 4-fold or 3-fold higher sensitivity than direct competitive enzyme-linked immunoassay (dc-ELISA) and indirect competitive enzyme-linked immunoassay (ic-ELISA) for parathion. Furthermore, our assay indicated a 50% reduction on operation time compared with the ic-ELISA method. The presented immunoassay was validated with spiked Chinese cabbage, cucumber, and lettuce samples, and confirmed by UPLC-MS/MS. The results indicated that the VHH-AP-based dc-FEIA is a reproducible detection assay for parathion residues in vegetable samples.
Collapse
Affiliation(s)
- Yu-Qi Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science , South China Agricultural University , Guangzhou 510642 , P. R. China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science , South China Agricultural University , Guangzhou 510642 , P. R. China
| | - Feng Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science , South China Agricultural University , Guangzhou 510642 , P. R. China
| | - Jun Cai
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science , South China Agricultural University , Guangzhou 510642 , P. R. China
| | - Jie-Xian Dong
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center , University of California , Davis , California 95616 , United States
- Neurobiology, Physiology & Behavior , University of California , Davis , California 95616 , United States
| | - Jin-Ru Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science , South China Agricultural University , Guangzhou 510642 , P. R. China
| | - Rui Si
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science , South China Agricultural University , Guangzhou 510642 , P. R. China
| | - Cheng-Long Wang
- Guangzhou Institute of Food Inspection , Guangzhou 510080 , P. R. China
| | - Yu Wang
- Guangzhou Institute of Food Inspection , Guangzhou 510080 , P. R. China
| | - Yu-Dong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science , South China Agricultural University , Guangzhou 510642 , P. R. China
| | - Yuanming Sun
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science , South China Agricultural University , Guangzhou 510642 , P. R. China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science , South China Agricultural University , Guangzhou 510642 , P. R. China
| |
Collapse
|
15
|
Liu JL, Raghu D, Anderson GP, Goldman ER, Christodoulides JA, Raphael MP. Improving biosensing activity to carcinoembryonic antigen with orientated single domain antibodies. Heliyon 2017; 3:e00478. [PMID: 29423452 PMCID: PMC5772350 DOI: 10.1016/j.heliyon.2017.e00478] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/06/2017] [Accepted: 11/29/2017] [Indexed: 01/08/2023] Open
Abstract
Carcinoembryonic antigen (CEA), also referred as CEACAM5, is integral to the adhesion process during cancer invasion and metastasis and is one of the most widely used tumor markers for assisting the diagnosis of cancer recurrence and cancer metastasis. Antibodies against CEA molecules have been developed for detection and diagnostic applications following tumor removal. Single domain antibodies (sdAbs) against CEA isolated from dromedary and llama exhibited high specificity in binding to tumor cells. However, because these CEA sdAbs were not designed to be orientated when conjugated to surface sensors, there is potential for significant improvements in their activity and limit of detection. Herein we modified the CEA sdAbs with two different C-terminal fusions designed to aid with orientation by way of the tail’s charge and biotin binding. A fusion which incorporated the C-terminus addition of a positively charged tail (B5-GS3K) improved biosensor sensitivity to CEA while also retaining the sub-nanomolar binding affinity and thermal stability of the unmodified sdAb. Using our fabricated surfaces on bare gold chips and a multiplexed surface plasmon resonance imager (SPRi), we quantified the specific binding activities, defined as the percentage of bound epitopes to the total immobilized, of the sdAb fusions and anti-CEA mAb. Our results demonstrate that monovalent B5-GS3K exhibited significantly improved binding activity, approximately 3-fold higher than bivalent mAb.
Collapse
Affiliation(s)
- Jinny L Liu
- Center for Biomolecular Science & Engineering, Naval Research Laboratory, Washington, DC 20375, United States
| | - Deepa Raghu
- BioReliance, Sigma-Aldrich Corp, 14920 Broschart Road, Rockville, MD 20850, United States
| | - George P Anderson
- Center for Biomolecular Science & Engineering, Naval Research Laboratory, Washington, DC 20375, United States
| | - Ellen R Goldman
- Center for Biomolecular Science & Engineering, Naval Research Laboratory, Washington, DC 20375, United States
| | - Joseph A Christodoulides
- Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375, United States
| | - Marc P Raphael
- Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375, United States
| |
Collapse
|
16
|
Liu JL, Shriver-Lake LC, Anderson GP, Zabetakis D, Goldman ER. Selection, characterization, and thermal stabilization of llama single domain antibodies towards Ebola virus glycoprotein. Microb Cell Fact 2017; 16:223. [PMID: 29233140 PMCID: PMC5726015 DOI: 10.1186/s12934-017-0837-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/28/2017] [Indexed: 12/26/2022] Open
Abstract
Background A key advantage of recombinant antibody technology is the ability to optimize and tailor reagents. Single domain antibodies (sdAbs), the recombinantly produced variable domains derived from camelid and shark heavy chain antibodies, provide advantages of stability and solubility and can be further engineered to enhance their properties. In this study, we generated sdAbs specific for Ebola virus envelope glycoprotein (GP) and increased their stability to expand their utility for use in austere locals. Ebola virus is extremely virulent and causes fatal hemorrhagic fever in ~ 50 percent of the cases. The viral GP binds to host cell receptors to facilitate viral entry and thus plays a critical role in pathogenicity. Results An immune phage display library containing more than 107 unique clones was developed from a llama immunized with a combination of killed Ebola virus and recombinantly produced GP. We panned the library to obtain GP binding sdAbs and isolated sdAbs from 5 distinct sequence families. Three GP binders with dissociation constants ranging from ~ 2 to 20 nM, and melting temperatures from ~ 57 to 72 °C were selected for protein engineering in order to increase their stability through a combination of consensus sequence mutagenesis and the addition of a non-canonical disulfide bond. These changes served to increase the melting temperatures of the sdAbs by 15–17 °C. In addition, fusion of a short positively charged tail to the C-terminus which provided ideal sites for the chemical modification of these sdAbs resulted in improved limits of detection of GP and Ebola virus like particles while serving as tracer antibodies. Conclusions SdAbs specific for Ebola GP were selected and their stability and functionality were improved utilizing protein engineering. Thermal stability of antibody reagents may be of particular importance when operating in austere locations that lack reliable refrigeration. Future efforts can evaluate the potential of these isolated sdAbs as candidates for diagnostic or therapeutic applications for Ebola. Electronic supplementary material The online version of this article (10.1186/s12934-017-0837-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jinny L Liu
- US Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, 4555 Overlook Ave SW, Washington, DC, 20375, USA
| | - Lisa C Shriver-Lake
- US Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, 4555 Overlook Ave SW, Washington, DC, 20375, USA
| | - George P Anderson
- US Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, 4555 Overlook Ave SW, Washington, DC, 20375, USA
| | - Dan Zabetakis
- US Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, 4555 Overlook Ave SW, Washington, DC, 20375, USA
| | - Ellen R Goldman
- US Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, 4555 Overlook Ave SW, Washington, DC, 20375, USA.
| |
Collapse
|
17
|
Goldman ER, Liu JL, Zabetakis D, Anderson GP. Enhancing Stability of Camelid and Shark Single Domain Antibodies: An Overview. Front Immunol 2017; 8:865. [PMID: 28791022 PMCID: PMC5524736 DOI: 10.3389/fimmu.2017.00865] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 07/07/2017] [Indexed: 11/13/2022] Open
Abstract
Single domain antibodies (sdAbs) are gaining a reputation as superior recognition elements as they combine the advantages of the specificity and affinity found in conventional antibodies with high stability and solubility. Melting temperatures (Tms) of sdAbs cover a wide range from below 50 to over 80°C. Many sdAbs have been engineered to increase their Tm, making them stable until exposed to extreme temperatures. SdAbs derived from the variable heavy chains of camelid and shark heavy chain-only antibodies are termed VHH and VNAR, respectively, and generally exhibit some ability to refold and bind antigen after heat denaturation. This ability to refold varies from 0 to 100% and is a property dependent on both intrinsic factors of the sdAb and extrinsic conditions such as the sample buffer ionic strength, pH, and sdAb concentration. SdAbs have also been engineered to increase their solubility and refolding ability, which enable them to function even after exposure to temperatures that exceed their melting point. In addition, efforts to improve their stability at extreme pH and in the presence of chemical denaturants or proteases have been undertaken. Multiple routes have been employed to engineer sdAbs with these enhanced stabilities. The methods utilized to achieve these goals include grafting complementarity-determining regions onto stable frameworks, introduction of non-canonical disulfide bonds, random mutagenesis combined with stringent selection, point mutations such as inclusion of negative charges, and genetic fusions. Increases of up to 20°C have been realized, pushing the Tm of some sdAbs to over 90°C. Herein, we present an overview of the work done to stabilize sdAbs derived from camelids and sharks. Utilizing these various strategies sdAbs have been stabilized without significantly compromising their affinity, thereby providing superior reagents for detection, diagnostic, and therapeutic applications.
Collapse
Affiliation(s)
- Ellen R Goldman
- Center for BioMolecular Science and Engineering, US Naval Research Laboratory, Washington, DC, United States
| | - Jinny L Liu
- Center for BioMolecular Science and Engineering, US Naval Research Laboratory, Washington, DC, United States
| | - Dan Zabetakis
- Center for BioMolecular Science and Engineering, US Naval Research Laboratory, Washington, DC, United States
| | - George P Anderson
- Center for BioMolecular Science and Engineering, US Naval Research Laboratory, Washington, DC, United States
| |
Collapse
|
18
|
Abstract
BACKGROUND Variable domains of camelid heavy-chain antibodies, commonly named nanobodies, have high biotechnological potential. In view of their broad range of applications in research, diagnostics and therapy, engineering their stability is of particular interest. One important aspect is the improvement of thermostability, because it can have immediate effects on conformational stability, protease resistance and aggregation propensity of the protein. METHODS We analyzed the sequences and thermostabilities of 78 purified nanobody binders. From this data, potentially stabilizing amino acid variations were identified and studied experimentally. RESULTS Some mutations improved the stability of nanobodies by up to 6.1°C, with an average of 2.3°C across eight modified nanobodies. The stabilizing mechanism involves an improvement of both conformational stability and aggregation behavior, explaining the variable degree of stabilization in individual molecules. In some instances, variations predicted to be stabilizing actually led to thermal destabilization of the proteins. The reasons for this contradiction between prediction and experiment were investigated. CONCLUSIONS The results reveal a mutational strategy to improve the biophysical behavior of nanobody binders and indicate a species-specificity of nanobody architecture. GENERAL SIGNIFICANCE This study illustrates the potential and limitations of engineering nanobody thermostability by merging sequence information with stability data, an aspect that is becoming increasingly important with the recent development of high-throughput biophysical methods.
Collapse
|
19
|
Anderson GP, Liu JH, Zabetakis D, Liu JL, Goldman ER. Thermal stabilization of anti-α-cobratoxin single domain antibodies. Toxicon 2017; 129:68-73. [PMID: 28209480 DOI: 10.1016/j.toxicon.2017.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/09/2017] [Accepted: 02/11/2017] [Indexed: 10/20/2022]
Abstract
There is an unmet need for snake antivenoms that can be stored ready to use near the point of care. To address that need we have taken two anti-α-cobratoxin single domain antibodies and increased their thermal stability to improve their ambient temperature shelf-life. The anti-α-cobratoxin single domain antibodies C2 and C20 were first isolated, and demonstrated to be toxin neutralizing by Richard et al., 2013 (Richard, G., Meyers, A.J., McLean, M.D., Arbabi-Ghahroudi, M., MacKenzie, R., Hall, J.C., 2013. In vivo neutralization of alpha-cobratoxin with high-affinity llama single-domain antibodies (VHHs) and a VHH-Fc antibody. PLoS One 8, e69495). To thermal stabilize C2 and C20, we first made changes to their frame work 1 region that we had previously identified to be stabilizing, as well as reverted to the hallmark amino acids highly conserved in VHH domains; these changes improved their melting temperature (Tm) by 2 and 6 °C respectively. The further addition of a non-canonical disulfide bond raised the Tm an additional 13 and 9 °C respectively; giving final Tm values of 86 and 75 °C. Testing these mutants at 1 mg/mL at a range of elevated temperatures for an hour; we found that at 65 °C the wild type C2 and C20 had lost 35 and 95% of their binding activity respectively, while the mutants with the added disulfide bond retained nearly 100% of their initial binding activity. While significant work remains to formulate and field a shelf-stable antivenom, our results indicate such a product should be attainable in the near future.
Collapse
Affiliation(s)
- George P Anderson
- US Naval Research Laboratory, Center for Biomolecular Science and Engineering, 4555 Overlook Ave SW, Washington, DC, 20375, USA.
| | - Jessica H Liu
- Science and Engineering Apprenticeship Program, US Naval Research Laboratory, 4555, Overlook Ave SW, Washington, DC, USA
| | - Dan Zabetakis
- US Naval Research Laboratory, Center for Biomolecular Science and Engineering, 4555 Overlook Ave SW, Washington, DC, 20375, USA
| | - Jinny L Liu
- US Naval Research Laboratory, Center for Biomolecular Science and Engineering, 4555 Overlook Ave SW, Washington, DC, 20375, USA
| | - Ellen R Goldman
- US Naval Research Laboratory, Center for Biomolecular Science and Engineering, 4555 Overlook Ave SW, Washington, DC, 20375, USA
| |
Collapse
|
20
|
Bever CS, Dong JX, Vasylieva N, Barnych B, Cui Y, Xu ZL, Hammock BD, Gee SJ. VHH antibodies: emerging reagents for the analysis of environmental chemicals. Anal Bioanal Chem 2016; 408:5985-6002. [PMID: 27209591 DOI: 10.1007/s00216-016-9585-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 03/24/2016] [Accepted: 04/19/2016] [Indexed: 01/28/2023]
Abstract
A VHH antibody (or nanobody) is the antigen binding fragment of heavy chain only antibodies. Discovered nearly 25 years ago, they have been investigated for their use in clinical therapeutics and immunodiagnostics, and more recently for environmental monitoring applications. A new and valuable immunoreagent for the analysis of small molecular weight environmental chemicals, VHH will overcome many pitfalls encountered with conventional reagents. In the work so far, VHH antibodies often perform comparably to conventional antibodies for small molecule analysis, are amenable to numerous genetic engineering techniques, and show ease of adaption to other immunodiagnostic platforms for use in environmental monitoring. Recent reviews cover the structure and production of VHH antibodies as well as their use in clinical settings. However, no report focuses on the use of these VHH antibodies to detect small environmental chemicals (MW < 1500 Da). This review article summarizes the efforts made to produce VHHs to various environmental targets, compares the VHH-based assays with conventional antibody assays, and discusses the advantages and limitations in developing these new antibody reagents particularly to small molecule targets. Graphical Abstract Overview of the production of VHHs to small environmental chemicals and highlights of the utility of these new emerging reagents.
Collapse
Affiliation(s)
- Candace S Bever
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Jie-Xian Dong
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Natalia Vasylieva
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Bogdan Barnych
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Yongliang Cui
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA.,Department of Oral Biology, School of Dental Medicine, University of Buffalo, State University of New York, Buffalo, NY, 14214, USA
| | - Zhen-Lin Xu
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Shirley J Gee
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
21
|
Turner KB, Naciri J, Liu JL, Anderson GP, Goldman ER, Zabetakis D. Next-Generation Sequencing of a Single Domain Antibody Repertoire Reveals Quality of Phage Display Selected Candidates. PLoS One 2016; 11:e0149393. [PMID: 26895405 PMCID: PMC4760936 DOI: 10.1371/journal.pone.0149393] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/01/2016] [Indexed: 11/18/2022] Open
Abstract
Next-Generation Sequencing and bioinformatics are powerful tools for analyzing the large number of DNA sequences present in an immune library. In this work, we constructed a cDNA library of single domain antibodies from a llama immunized with staphylococcal enterotoxin B. The resulting library was sequenced, resulting in approximately 8.5 million sequences with 5.4 million representing intact, useful sequences. The sequenced library was interrogated using sequences of known SEB-binding single domain antibodies from the library obtained through phage display panning methods in a previous study. New antibodies were identified, produced, and characterized, and were shown to have affinities and melting temperatures comparable to those obtained by traditional panning methods. This demonstrates the utility of using NGS as a complementary tool to phage-displayed biopanning as a means for rapidly obtaining additional antibodies from an immune library. It also shows that phage display, using a library of high diversity, is able to select high quality antibodies even when they are low in frequency.
Collapse
Affiliation(s)
- Kendrick B. Turner
- American Society for Engineering Education, Postdoctoral Fellow at the US Naval Research Laboratory, Washington, DC, United States of America
| | - Jennifer Naciri
- American Society for Engineering Education, Science and Engineering Apprenticeship Participant at US Naval Research Laboratory, Washington, DC, United States of America
| | - Jinny L. Liu
- Center for Bio/molecular Science and Engineering, US Naval Research Laboratory, Washington, DC, United States of America
| | - George P. Anderson
- Center for Bio/molecular Science and Engineering, US Naval Research Laboratory, Washington, DC, United States of America
| | - Ellen R. Goldman
- Center for Bio/molecular Science and Engineering, US Naval Research Laboratory, Washington, DC, United States of America
| | - Dan Zabetakis
- Center for Bio/molecular Science and Engineering, US Naval Research Laboratory, Washington, DC, United States of America
| |
Collapse
|
22
|
Julian MC, Lee CC, Tiller KE, Rabia LA, Day EK, Schick AJ, Tessier PM. Co-evolution of affinity and stability of grafted amyloid-motif domain antibodies. Protein Eng Des Sel 2015; 28:339-50. [PMID: 26386257 DOI: 10.1093/protein/gzv050] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/17/2015] [Indexed: 11/12/2022] Open
Abstract
An attractive approach for designing lead antibody candidates is to mimic natural protein interactions by grafting peptide recognition motifs into the complementarity-determining regions (CDRs). We are using this approach to generate single-domain (VH) antibodies specific for amyloid-forming proteins such as the Alzheimer's Aβ peptide. Here, we use random mutagenesis and yeast surface display to improve the binding affinity of a lead VH domain grafted with Aβ residues 33-42 in CDR3. Interestingly, co-selection for improved Aβ binding and VH display on the surface of yeast yields antibody domains with improved affinity and reduced stability. The highest affinity VH domains were strongly destabilized on the surface of yeast as well as unfolded when isolated as autonomous domains. In contrast, stable VH domains with improved affinity were reliably identified using yeast surface display by replacing the display antibody that recognizes a linear epitope tag at the terminus of both folded and unfolded VH domains with a conformational ligand (Protein A) that recognizes a discontinuous epitope on the framework of folded VH domains. Importantly, we find that selection for improved stability using Protein A without simultaneous co-selection for improved Aβ binding leads to strong enrichment for stabilizing mutations that reduce antigen binding. Our findings highlight the importance of simultaneously optimizing affinity and stability to improve the rapid isolation of well-folded and specific antibody fragments.
Collapse
Affiliation(s)
- Mark C Julian
- Center for Biotechnology & Interdisciplinary Studies, Isermann Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Christine C Lee
- Center for Biotechnology & Interdisciplinary Studies, Isermann Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Kathryn E Tiller
- Center for Biotechnology & Interdisciplinary Studies, Isermann Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Lilia A Rabia
- Center for Biotechnology & Interdisciplinary Studies, Isermann Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Evan K Day
- Center for Biotechnology & Interdisciplinary Studies, Isermann Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Arthur J Schick
- Center for Biotechnology & Interdisciplinary Studies, Isermann Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Peter M Tessier
- Center for Biotechnology & Interdisciplinary Studies, Isermann Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
23
|
Entzminger KC, Johnson JL, Hyun J, Lieberman RL, Maynard JA. Increased Fab thermoresistance via VH-targeted directed evolution. Protein Eng Des Sel 2015; 28:365-77. [PMID: 26283664 DOI: 10.1093/protein/gzv037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/15/2015] [Indexed: 01/17/2023] Open
Abstract
Antibody aggregation is frequently mediated by the complementarity determining regions within the variable domains and can significantly decrease purification yields, shorten shelf-life and increase the risk of anti-drug immune responses. Aggregation-resistant antibodies could offset these risks; accordingly, we have developed a directed evolution strategy to improve Fab stability. A Fab-phage display vector was constructed and the VH domain targeted for mutagenesis by error-prone PCR. To enrich for thermoresistant clones, the resulting phage library was transiently heated, followed by selection for binding to an anti-light chain constant domain antibody. Five unique variants were identified, each possessing one to three amino acid substitutions. Each engineered Fab possessed higher, Escherichia coli expression yield, a 2-3°C increase in apparent melting temperature and improved aggregation resistance upon heating at high concentration. Select mutations were combined and shown to confer additive improvements to these biophysical characteristics. Finally, the wild-type and most stable triple variant Fab variant were converted into a human IgG1 and expressed in mammalian cells. Both expression level and aggregation resistance were similarly improved in the engineered IgG1. Analysis of the wild-type Fab crystal structure provided a structural rationale for the selected residues changes. This approach can help guide future Fab stabilization efforts.
Collapse
Affiliation(s)
| | - Jennifer L Johnson
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| | | | - Raquel L Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| | - Jennifer A Maynard
- Chemical Engineering, University of Texas at Austin, 1 University Station, Austin, TX 78712, USA
| |
Collapse
|
24
|
Turner KB, Liu JL, Zabetakis D, Lee AB, Anderson GP, Goldman ER. Improving the biophysical properties of anti-ricin single-domain antibodies. ACTA ACUST UNITED AC 2015. [PMID: 28626694 PMCID: PMC5466252 DOI: 10.1016/j.btre.2015.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Single-domain antibodies (sdAbs) derived from heavy-chain only antibodies produced in camelids are attractive immunoreagents due to their small size, high affinity, and ability to refold and retain binding activity after denaturation. It has been observed that some sdAbs, however, exhibit undesirable properties including reduced solubility when subjected to heating or upon long-term storage at production-relevant concentrations, which can limit their usefulness. Using a multi-step, rational design approach that included consensus-sequence driven sequence repairs, the alteration of net protein charge, and the introduction of non-native disulfide bonds, augmented solubility and increased melting temperatures were achieved. The improved sdAbs tolerated storage in solution at high concentration (10 mg/mL) and were able to withstand multiple cycles of heating to high temperature (70 °C). This work demonstrates a pathway for improving the biophysical characteristics of sdAbs which is essential for expanding their utility for both diagnostic as well as therapeutic applications.
Collapse
Affiliation(s)
- Kendrick B. Turner
- American Society for Engineering Education, Postdoctoral Fellow at the Naval Research Laboratory, Washington, DC 20375, USA
| | - Jinny L. Liu
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375, USA
| | - Dan Zabetakis
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375, USA
| | | | - George P. Anderson
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375, USA
| | - Ellen R. Goldman
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375, USA
- Corresponding author. Tel.: +1 202 404 6052
| |
Collapse
|
25
|
Evaluation of disulfide bond position to enhance the thermal stability of a highly stable single domain antibody. PLoS One 2014; 9:e115405. [PMID: 25526640 PMCID: PMC4272287 DOI: 10.1371/journal.pone.0115405] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 11/21/2014] [Indexed: 11/21/2022] Open
Abstract
Single domain antibodies are the small recombinant variable domains derived from camelid heavy-chain-only antibodies. They are renowned for their stability, in large part due to their ability to refold following thermal or chemical denaturation. In addition to refolding after heat denaturation, A3, a high affinity anti-Staphylococcal Enterotoxin B single domain antibody, possesses a melting temperature of ∼84°C, among the highest reported for a single domain antibody. In this work we utilized the recently described crystal structure of A3 to select locations for the insertion of a second disulfide bond and evaluated the impact that the addition of this second bond had on the melting temperature. Four double-disulfide versions of A3 were constructed and each was found to improve the melting temperature relative to the native structure without reducing affinity. Placement of the disulfide bond at a previously published position between framework regions 2 and 3 yielded the largest improvement (>6°C), suggesting this location is optimal, and seemingly provides a universal route to raise the melting temperature of single domain antibodies. This study further demonstrates that even single domain antibodies with extremely high melting points can be further stabilized by addition of disulfide bonds.
Collapse
|
26
|
Walper SA, Liu JL, Zabetakis D, Anderson GP, Goldman ER. Development and evaluation of single domain antibodies for vaccinia and the L1 antigen. PLoS One 2014; 9:e106263. [PMID: 25211488 PMCID: PMC4161341 DOI: 10.1371/journal.pone.0106263] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/30/2014] [Indexed: 11/25/2022] Open
Abstract
There is ongoing interest to develop high affinity, thermal stable recognition elements to replace conventional antibodies in biothreat detection assays. As part of this effort, single domain antibodies that target vaccinia virus were developed. Two llamas were immunized with killed viral particles followed by boosts with the recombinant membrane protein, L1, to stimulate the immune response for envelope and membrane proteins of the virus. The variable domains of the induced heavy chain antibodies were selected from M13 phage display libraries developed from isolated RNA. Selection via biopanning on the L1 antigen produced single domain antibodies that were specific and had affinities ranging from 4×10−9 M to 7.0×10−10 M, as determined by surface plasmon resonance. Several showed good ability to refold after heat denaturation. These L1-binding single domain antibodies, however, failed to recognize the killed vaccinia antigen. Useful vaccinia binding single domain antibodies were isolated by a second selection using the killed virus as the target. The virus binding single domain antibodies were incorporated in sandwich assays as both capture and tracer using the MAGPIX system yielding limits of detection down to 4×105 pfu/ml, a four-fold improvement over the limit obtained using conventional antibodies. This work demonstrates the development of anti-vaccinia single domain antibodies and their incorporation into sandwich assays for viral detection. It also highlights the properties of high affinity and thermal stability that are hallmarks of single domain antibodies.
Collapse
Affiliation(s)
- Scott A. Walper
- Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC, United States of America
| | - Jinny L. Liu
- Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC, United States of America
| | - Daniel Zabetakis
- Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC, United States of America
| | - George P. Anderson
- Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC, United States of America
| | - Ellen R. Goldman
- Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC, United States of America
- * E-mail:
| |
Collapse
|
27
|
George J, Compton JR, Leary DH, Olson MA, Legler PM. Structural and mutational analysis of a monomeric and dimeric form of a single domain antibody with implications for protein misfolding. Proteins 2014; 82:3101-16. [PMID: 25136772 DOI: 10.1002/prot.24671] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/01/2014] [Accepted: 08/11/2014] [Indexed: 11/10/2022]
Abstract
Camelid single domain antibodies (sdAb) are known for their thermal stability and reversible refolding. We have characterized an unusually stable sdAb recognizing Staphylococcal enterotoxin B with one of the highest reported melting temperatures (T(m) = 85°C). Unexpectedly, ∼10-20% of the protein formed a dimer in solution. Three other cases where <20% of the sdAb dimerized have been reported; however, this is the first report of both the monomeric and dimeric X-ray crystal structures. Concentration of the monomer did not lead to the formation of new dimer suggesting a stable conformationally distinct species in a fraction of the cytoplasmically expressed protein. Comparison of periplasmic and cytoplasmic expression showed that the dimer was associated with cytoplasmic expression. The disulfide bond was partially reduced in the WT protein purified from the cytoplasm and the protein irreversibly unfolded. Periplasmic expression produced monomeric protein with a fully formed disulfide bond and mostly reversible refolding. Crystallization of a disulfide-bond free variant, C22A/C99V, purified from the periplasm yielded a structure of a monomeric form, while crystallization of C22A/C99V from the cytoplasm produced an asymmetric dimer. In the dimer, a significant conformational asymmetry was found in the loop residues of the edge β-strands (S50-Y60) containing the highly variable complementarity determining region, CDR2. Two dimeric assemblies were predicted from the crystal packing. Mutation of a residue at one of the interfaces, Y98A, disrupted the dimer in solution. The pleomorphic homodimer may yield insight into the stability of misfolded states and the importance of the conserved disulfide bond in preventing their formation.
Collapse
Affiliation(s)
- Jade George
- Bowie State University, Bowie, 14000 Jericho Park Road, Maryland, 20715-9465
| | | | | | | | | |
Collapse
|
28
|
Turner KB, Zabetakis D, Legler P, Goldman ER, Anderson GP. Isolation and epitope mapping of staphylococcal enterotoxin B single-domain antibodies. SENSORS (BASEL, SWITZERLAND) 2014; 14:10846-63. [PMID: 24949641 PMCID: PMC4118376 DOI: 10.3390/s140610846] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 12/22/2022]
Abstract
Single-domain antibodies (sdAbs), derived from the heavy chain only antibodies found in camelids such as llamas have the potential to provide rugged detection reagents with high affinities, and the ability to refold after denaturation. We have isolated and characterized sdAbs specific to staphylococcal enterotoxin B (SEB) which bind to two distinct epitopes and are able to function in a sandwich immunoassay for toxin detection. Characterization of these sdAbs revealed that each exhibited nanomolar binding affinities or better. Melting temperatures for the sdAbs ranged from approximately 60 °C to over 70 °C, with each demonstrating at least partial refolding after denaturation and several were able to completely refold. A first set of sdAbs was isolated by panning the library using adsorbed antigen, all of which recognized the same epitope on SEB. Epitope mapping suggested that these sdAbs bind to a particular fragment of SEB (VKSIDQFLYFDLIYSI) containing position L45 (underlined), which is involved in binding to the major histocompatibility complex (MHC). Differences in the binding affinities of the sdAbs to SEB and a less-toxic vaccine immunogen, SEBv (L45R/Y89A/Y94A) were also consistent with binding to this epitope. A sandwich panning strategy was utilized to isolate sdAbs which bind a second epitope. This epitope differed from the initial one obtained or from that recognized by previously isolated anti-SEB sdAb A3. Using SEB-toxin spiked milk we demonstrated that these newly isolated sdAbs could be utilized in sandwich-assays with each other, A3, and with various monoclonal antibodies.
Collapse
Affiliation(s)
- Kendrick B Turner
- American Society for Engineering Education, Postdoctoral Fellow at the Naval Research Laboratory, Washington, DC 20375, USA.
| | - Dan Zabetakis
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375, USA.
| | - Patricia Legler
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375, USA.
| | - Ellen R Goldman
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375, USA.
| | - George P Anderson
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375, USA.
| |
Collapse
|
29
|
Liu JL, Zabetakis D, Walper SA, Goldman ER, Anderson GP. Bioconjugates of rhizavidin with single domain antibodies as bifunctional immunoreagents. J Immunol Methods 2014; 411:37-42. [PMID: 24946086 DOI: 10.1016/j.jim.2014.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/09/2014] [Accepted: 06/04/2014] [Indexed: 11/18/2022]
Abstract
Use of the avidin-biotin binding interaction for immunoassay applications is widespread. One advantageous immunoreagent is the recombinant fusion of an antibody fragment with a biotin binding protein. These genetic fusions alleviate the need to prepare chemical conjugates to achieve molecules that combine target recognition with signal transduction or to facilitate the directional immobilization of the binding element. In order for such a fusion protein to be useful, however, it must be able to be produced in good yield. Unfortunately, recombinant production of avidin or streptavidin as well as bioconjugates derived thereof has been problematic. An alternative biotin binding molecule called rhizavidin has been described, which forms a homodimer instead of a tetramer, but it has not been evaluated in genetic fusions with antibody binding domains. Single domain antibodies, the variable domain derived from camelid heavy chain only antibodies, offer binding domains with high affinity, and solubility that are well expressed in Escherichia coli. In this work, we prepared an anti-ricin single domain antibody - rhizavidin bioconjugate and evaluated it on the basis of its production in E. coli and on its activity in comparison to a streptavidin core bioconjugate and unfused single domain antibody. The single domain antibody-rhizavidin bioconjugate produced much better than its streptavidin core counterparts, yielding an average of 14 mg/L, a 20-fold improvement. When used in assays the rhizavidin conjugate provided the same desirable characteristics as the streptavidin core fusion as both capture and detection reagents. Since rhizavidin and single domain antibodies both display impressive thermal stabilities their fusion provides a route to achieve robust bifunctional immunoreagents.
Collapse
Affiliation(s)
- Jinny L Liu
- Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, 4555 Overlook Ave. SW, Washington, DC 20375, USA
| | - Dan Zabetakis
- Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, 4555 Overlook Ave. SW, Washington, DC 20375, USA
| | - Scott A Walper
- Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, 4555 Overlook Ave. SW, Washington, DC 20375, USA
| | - Ellen R Goldman
- Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, 4555 Overlook Ave. SW, Washington, DC 20375, USA
| | - George P Anderson
- Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, 4555 Overlook Ave. SW, Washington, DC 20375, USA.
| |
Collapse
|
30
|
Goldman ER, Brozozog-Lee PA, Zabetakis D, Turner KB, Walper SA, Liu JL, Anderson GP. Negative tail fusions can improve ruggedness of single domain antibodies. Protein Expr Purif 2014; 95:226-32. [PMID: 24440507 DOI: 10.1016/j.pep.2014.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/06/2014] [Accepted: 01/08/2014] [Indexed: 12/31/2022]
Abstract
Single-domain antibodies (sdAbs), the recombinantly expressed binding domains derived from the heavy-chain-only antibodies found in camelids and sharks, are valued for their ability to refold after heat denaturation. However, some sdAbs are prone to aggregation on extended heating at high concentration. Additionally, sdAbs prepared cytoplasmically often lack the conserved disulfide bond found in variable heavy domains, which both decreases their melting point and can decrease their ability to refold. Genetic fusions of sdAbs with the acid tail of α-synuclein (ATS) resulted in constructs that had enhanced ability to resist aggregation. In addition, almost complete refolding was observed even in the absence of the disulfide bond. These sdAb-ATS fusions expand the utility of sdAbs. They provide sdAbs that are resistant to aggregation, and enable the production of re-foldable sdAbs in the reducing environment of the cytoplasm.
Collapse
Affiliation(s)
- Ellen R Goldman
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375, USA
| | | | - Dan Zabetakis
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375, USA
| | - Kendrick B Turner
- Science and Engineering Apprenticeship Program, American Society for Engineering Education, 4555 Overlook Ave. SW, Washington, DC 20375, USA
| | - Scott A Walper
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375, USA
| | - Jinny L Liu
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375, USA
| | - George P Anderson
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375, USA.
| |
Collapse
|