1
|
Hutchings CJ, Sato AK. Phage display technology and its impact in the discovery of novel protein-based drugs. Expert Opin Drug Discov 2024; 19:887-915. [PMID: 39074492 DOI: 10.1080/17460441.2024.2367023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/07/2024] [Indexed: 07/31/2024]
Abstract
INTRODUCTION Phage display technology is a well-established versatile in vitro display technology that has been used for over 35 years to identify peptides and antibodies for use as reagents and therapeutics, as well as exploring the diversity of alternative scaffolds as another option to conventional therapeutic antibody discovery. Such successes have been responsible for spawning a range of biotechnology companies, as well as many complementary technologies devised to expedite the drug discovery process and resolve bottlenecks in the discovery workflow. AREAS COVERED In this perspective, the authors summarize the application of phage display for drug discovery and provide examples of protein-based drugs that have either been approved or are being developed in the clinic. The amenability of phage display to generate functional protein molecules to challenging targets and recent developments of strategies and techniques designed to harness the power of sampling diverse repertoires are highlighted. EXPERT OPINION Phage display is now routinely combined with cutting-edge technologies to deep-mine antibody-based repertoires, peptide, or alternative scaffold libraries generating a wealth of data that can be leveraged, e.g. via artificial intelligence, to enable the potential for clinical success in the discovery and development of protein-based therapeutics.
Collapse
|
2
|
Garcia-Calvo E, García-García A, Rodríguez S, Martín R, García T. Unraveling the Properties of Phage Display Fab Libraries and Their Use in the Selection of Gliadin-Specific Probes by Applying High-Throughput Nanopore Sequencing. Viruses 2024; 16:686. [PMID: 38793567 PMCID: PMC11126117 DOI: 10.3390/v16050686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Directed evolution is a pivotal strategy for new antibody discovery, which allowed the generation of high-affinity Fabs against gliadin from two antibody libraries in our previous studies. One of the libraries was exclusively derived from celiac patients' mRNA (immune library) while the other was obtained through a protein engineering approach (semi-immune library). Recent advances in high-throughput DNA sequencing techniques are revolutionizing research across genomics, epigenomics, and transcriptomics. In the present work, an Oxford Nanopore in-lab sequencing device was used to comprehensively characterize the composition of the constructed libraries, both at the beginning and throughout the phage-mediated selection processes against gliadin. A customized analysis pipeline was used to select high-quality reads, annotate chain distribution, perform sequence analysis, and conduct statistical comparisons between the different selection rounds. Some immunological attributes of the most representative phage variants after the selection process were also determined. Sequencing results revealed the successful transfer of the celiac immune response features to the immune library and the antibodies derived from it, suggesting the crucial role of these features in guiding the selection of high-affinity recombinant Fabs against gliadin. In summary, high-throughput DNA sequencing has improved our understanding of the selection processes aimed at generating molecular binders against gliadin.
Collapse
Affiliation(s)
| | - Aina García-García
- Department of Nutrition and Food Sciences, School of Veterinary Sciences, Universidad Complutense de Madrid, 28040 Madrid, Spain; (E.G.-C.); (S.R.); (R.M.); (T.G.)
| | | | | | | |
Collapse
|
3
|
Case M, Smith M, Vinh J, Thurber G. Machine learning to predict continuous protein properties from binary cell sorting data and map unseen sequence space. Proc Natl Acad Sci U S A 2024; 121:e2311726121. [PMID: 38451939 PMCID: PMC10945751 DOI: 10.1073/pnas.2311726121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/27/2023] [Indexed: 03/09/2024] Open
Abstract
Proteins are a diverse class of biomolecules responsible for wide-ranging cellular functions, from catalyzing reactions to recognizing pathogens. The ability to evolve proteins rapidly and inexpensively toward improved properties is a common objective for protein engineers. Powerful high-throughput methods like fluorescent activated cell sorting and next-generation sequencing have dramatically improved directed evolution experiments. However, it is unclear how to best leverage these data to characterize protein fitness landscapes more completely and identify lead candidates. In this work, we develop a simple yet powerful framework to improve protein optimization by predicting continuous protein properties from simple directed evolution experiments using interpretable, linear machine learning models. Importantly, we find that these models, which use data from simple but imprecise experimental estimates of protein fitness, have predictive capabilities that approach more precise but expensive data. Evaluated across five diverse protein engineering tasks, continuous properties are consistently predicted from readily available deep sequencing data, demonstrating that protein fitness space can be reasonably well modeled by linear relationships among sequence mutations. To prospectively test the utility of this approach, we generated a library of stapled peptides and applied the framework to predict affinity and specificity from simple cell sorting data. We then coupled integer linear programming, a method to optimize protein fitness from linear weights, with mutation scores from machine learning to identify variants in unseen sequence space that have improved and co-optimal properties. This approach represents a versatile tool for improved analysis and identification of protein variants across many domains of protein engineering.
Collapse
Affiliation(s)
- Marshall Case
- Chemical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Matthew Smith
- Chemical Engineering, University of Michigan, Ann Arbor, MI48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI48109
| | - Jordan Vinh
- Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Greg Thurber
- Chemical Engineering, University of Michigan, Ann Arbor, MI48109
- Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
4
|
Smith MD, Case MA, Makowski EK, Tessier PM. Position-Specific Enrichment Ratio Matrix scores predict antibody variant properties from deep sequencing data. Bioinformatics 2023; 39:btad446. [PMID: 37478351 PMCID: PMC10477941 DOI: 10.1093/bioinformatics/btad446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/21/2023] [Accepted: 07/20/2023] [Indexed: 07/23/2023] Open
Abstract
MOTIVATION Deep sequencing of antibody and related protein libraries after phage or yeast-surface display sorting is widely used to identify variants with increased affinity, specificity, and/or improvements in key biophysical properties. Conventional approaches for identifying optimal variants typically use the frequencies of observation in enriched libraries or the corresponding enrichment ratios. However, these approaches disregard the vast majority of deep sequencing data and often fail to identify the best variants in the libraries. RESULTS Here, we present a method, Position-Specific Enrichment Ratio Matrix (PSERM) scoring, that uses entire deep sequencing datasets from pre- and post-selections to score each observed protein variant. The PSERM scores are the sum of the site-specific enrichment ratios observed at each mutated position. We find that PSERM scores are much more reproducible and correlate more strongly with experimentally measured properties than frequencies or enrichment ratios, including for multiple antibody properties (affinity and non-specific binding) for a clinical-stage antibody (emibetuzumab). We expect that this method will be broadly applicable to diverse protein engineering campaigns. AVAILABILITY AND IMPLEMENTATION All deep sequencing datasets and code to perform the analyses presented within are available via https://github.com/Tessier-Lab-UMich/PSERM_paper.
Collapse
Affiliation(s)
- Matthew D Smith
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109-2200, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109-2200, United States
| | - Marshall A Case
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109-2200, United States
| | - Emily K Makowski
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109-2200, United States
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109-2200, United States
| | - Peter M Tessier
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109-2200, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109-2200, United States
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109-2200, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109-2200, United States
- Protein Folding Disease Initiative, University of Michigan, Ann Arbor, MI 48109-2200, United States
- Michigan Alzheimer’s Disease Center, University of Michigan, Ann Arbor, MI 48109-2200, United States
| |
Collapse
|
5
|
Smith MD, Case MA, Makowski EK, Tessier PM. Position-Specific Enrichment Ratio Matrix scores predict antibody variant properties from deep sequencing data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.10.548448. [PMID: 37503142 PMCID: PMC10369870 DOI: 10.1101/2023.07.10.548448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Motivation Deep sequencing of antibody and related protein libraries after phage or yeast-surface display sorting is widely used to identify variants with increased affinity, specificity and/or improvements in key biophysical properties. Conventional approaches for identifying optimal variants typically use the frequencies of observation in enriched libraries or the corresponding enrichment ratios. However, these approaches disregard the vast majority of deep sequencing data and often fail to identify the best variants in the libraries. Results Here, we present a method, Position-Specific Enrichment Ratio Matrix (PSERM) scoring, that uses entire deep sequencing datasets from pre- and post-selections to score each observed protein variant. The PSERM scores are the sum of the site-specific enrichment ratios observed at each mutated position. We find that PSERM scores are much more reproducible and correlate more strongly with experimentally measured properties than frequencies or enrichment ratios, including for multiple antibody properties (affinity and non-specific binding) for a clinical-stage antibody (emibetuzumab). We expect that this method will be broadly applicable to diverse protein engineering campaigns. Availability All deep sequencing datasets and code to do the analyses presented within are available via GitHub. Contact Peter Tessier, ptessier@umich.edu. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
|
6
|
Velappan N, Ferrara F, D’Angelo S, Close D, Naranjo L, Bolding MR, Mozden SC, Troup CB, McCullough DK, Gomez A, Kedge M, Bradbury ARM. Direct selection of functional fluorescent-protein antibody fusions by yeast display. PLoS One 2023; 18:e0280930. [PMID: 36827414 PMCID: PMC9956592 DOI: 10.1371/journal.pone.0280930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/11/2023] [Indexed: 02/26/2023] Open
Abstract
Antibodies are important reagents for research, diagnostics, and therapeutics. Many examples of chimeric proteins combining the specific target recognition of antibodies with complementing functionalities such as fluorescence, toxicity or enzymatic activity have been described. However, antibodies selected solely on the basis of their binding specificities are not necessarily ideal candidates for the construction of chimeras. Here, we describe a high throughput method based on yeast display to directly select antibodies most suitable for conversion to fluorescent chimera. A library of scFv binders was converted to a fluorescent chimeric form, by cloning thermal green protein into the linker between VH and VL, and directly selecting for both binding and fluorescent functionality. This allowed us to directly identify antibodies functional in the single chain TGP format, that manifest higher protein expression, easier protein purification, and one-step binding assays.
Collapse
Affiliation(s)
- Nileena Velappan
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States of America
| | | | - Sara D’Angelo
- Specifica Inc., Santa Fe, NM, United States of America
| | - Devin Close
- Arup Laboratories, Salt Lake City, UT, United States of America
| | | | - Madeline R. Bolding
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States of America
| | - Sarah C. Mozden
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States of America
| | | | - Donna K. McCullough
- Microbiology Department, University of Tennessee, Knoxville, TN, United States of America
| | - Analyssa Gomez
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States of America
| | - Marijo Kedge
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States of America
| | | |
Collapse
|
7
|
Maruthachalam BV, Barreto K, Hogan D, Kusalik A, Geyer CR. Generation of synthetic antibody fragments with optimal complementarity determining region lengths for Notch-1 recognition. Front Microbiol 2022; 13:931307. [PMID: 35992693 PMCID: PMC9381698 DOI: 10.3389/fmicb.2022.931307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Synthetic antibodies have been engineered against a wide variety of antigens with desirable biophysical, biochemical, and pharmacological properties. Here, we describe the generation and characterization of synthetic antigen-binding fragments (Fabs) against Notch-1. Three single-framework synthetic Fab libraries, named S, F, and modified-F, were screened against the recombinant human Notch-1 extracellular domain using phage display. These libraries were built on a modified trastuzumab framework, containing two or four diversified complementarity-determining regions (CDRs) and different CDR diversity designs. In total, 12 Notch-1 Fabs were generated with 10 different CDRH3 lengths. These Fabs possessed a high affinity for Notch-1 (sub-nM to mid-nM KDapp values) and exhibited different binding profiles (mono-, bi-or tri-specific) toward Notch/Jagged receptors. Importantly, we showed that screening focused diversity libraries, implementing next-generation sequencing approaches, and fine-tuning the CDR length diversity provided improved binding solutions for Notch-1 recognition. These findings have implications for antibody library design and antibody phage display.
Collapse
Affiliation(s)
| | - Kris Barreto
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Daniel Hogan
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Anthony Kusalik
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Clarence Ronald Geyer
- Department of Pathology, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Clarence Ronald Geyer,
| |
Collapse
|
8
|
A Simple Whole-Plasmid PCR Method to Construct High-Diversity Synthetic Phage Display Libraries. Mol Biotechnol 2022; 64:791-803. [PMID: 35107752 PMCID: PMC9217769 DOI: 10.1007/s12033-021-00442-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 12/17/2021] [Indexed: 11/03/2022]
Abstract
Phage display technology utilises peptide and antibody libraries with very high diversities to select ligands with specific binding properties. The production of such libraries can be labour intensive and technically challenging and whilst there are commercial sources of libraries, the exploitation of the resulting binders is constrained by ownership of the libraries. Here, a peptide library of ~ 1 × 109 variants for display on gene VIII was produced alongside three VHH antibody libraries with similar diversity, where 12mer, 16mer or 21mer CDR3s were introduced into the highly stable cAbBCII10 scaffold displayed on gene III. The cloning strategy used a simple whole-plasmid PCR method and type IIS restriction enzyme assembly that facilitate the seamless insertion of diversity into any suitable phage coat protein or antibody scaffold. This method reproducibly produced 1 × 109 variants from just 10 transformations and the four libraries had relatively low bias with 82 to 86% of all sequences present as single copies. The functionality of both peptide and antibody libraries were demonstrated by selection of ligands with specific binding properties by biopanning. The peptide library was used to epitope map a monoclonal antibody. The VHH libraries were pooled and used to select an antibody to recombinant human collagen type 1.
Collapse
|
9
|
Short Read-Length Next Generation DNA Sequencing of Antibody CDR Combinations from Phage Selection Outputs. Methods Mol Biol 2021. [PMID: 34478134 DOI: 10.1007/978-1-0716-1450-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Phage display is commonly used to select target-binding antibody fragments from large libraries containing billions of unique antibody clones. In practice, selection outputs are often highly heterogenous, making it desirable to recover sequence information from the selected pool. Next Generation DNA Sequencing (NGS) enables the acquisition of sufficient sequencing reads to cover the pool diversity, however read-lengths are typically too short to capture paired antibody complementarity-determining regions (CDRs), which is needed to reconstruct target-binding antibody fragments. Here, we describe a simple in vitro protocol to bring the DNA encoding the antibody CDRs closer together. The final PCR product referred to as a "CDR strip" is suitable for short read-length NGS. In this method, phagemid ssDNA is recovered from antibody phage display biopanning and used as a template to create a heteroduplex with deletions between CDRs of interest. The shorter strand in the heteroduplex is preferentially PCR amplified to generate a CDR strip that is sequenced using NGS. We have also included a bioinformatics approach to analyze the CDR strip populations so that single antibody clones can be created from paired CDR sequences.
Collapse
|
10
|
Valldorf B, Hinz SC, Russo G, Pekar L, Mohr L, Klemm J, Doerner A, Krah S, Hust M, Zielonka S. Antibody display technologies: selecting the cream of the crop. Biol Chem 2021; 403:455-477. [PMID: 33759431 DOI: 10.1515/hsz-2020-0377] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
Antibody display technologies enable the successful isolation of antigen-specific antibodies with therapeutic potential. The key feature that facilitates the selection of an antibody with prescribed properties is the coupling of the protein variant to its genetic information and is referred to as genotype phenotype coupling. There are several different platform technologies based on prokaryotic organisms as well as strategies employing higher eukaryotes. Among those, phage display is the most established system with more than a dozen of therapeutic antibodies approved for therapy that have been discovered or engineered using this approach. In recent years several other technologies gained a certain level of maturity, most strikingly mammalian display. In this review, we delineate the most important selection systems with respect to antibody generation with an emphasis on recent developments.
Collapse
Affiliation(s)
- Bernhard Valldorf
- Chemical and Pharmaceutical Development, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Steffen C Hinz
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287Darmstadt, Germany
| | - Giulio Russo
- Abcalis GmbH, Inhoffenstrasse 7, D-38124Braunschweig, Germany.,Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106Braunschweig, Germany
| | - Lukas Pekar
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Laura Mohr
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, University of Frankfurt, Max-von-Laue-Strasse 13, D-60438Frankfurt am Main, Germany
| | - Janina Klemm
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287Darmstadt, Germany
| | - Achim Doerner
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Simon Krah
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106Braunschweig, Germany
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| |
Collapse
|
11
|
Ferrara F, Teixeira AA, Naranjo L, Erasmus MF, D'Angelo S, Bradbury ARM. Exploiting next-generation sequencing in antibody selections - a simple PCR method to recover binders. MAbs 2021; 12:1701792. [PMID: 31829073 PMCID: PMC7009332 DOI: 10.1080/19420862.2019.1701792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Antibody discovery using invitro display technologies such as phage and/or yeast display has become acornerstone in many research and development projects, including the creation of new drugs for clinical use. Traditionally, after the selection phase, random clones are isolated for binding validation and Sanger sequencing. More recently, next-generation sequencing (NGS) technology has allowed deeper insight into the antibody population after aselection campaign, enabling the identification of many more specific binders. However, this approach only provides the DNA sequences of potential binders, the properties of which need to be fully elucidated by obtaining corresponding clones and expressing them for further validation. Here we present arapid novel method to harvest potential clones identified by NGS that uses asimple PCR and yeast recombination approach. The protocol was tested in selections against three different targets and was able to recover clones at an abundance level that would be impractical to identify using traditional methods.
Collapse
Affiliation(s)
| | - Andre A Teixeira
- Specifica Inc., Santa Fe, NM, USA.,Bioscience Division, New Mexico Consortium, Los Alamos, NM, USA
| | | | | | | | | |
Collapse
|
12
|
Abstract
The concept of engineering robust protein scaffolds for novel binding functions emerged 20 years ago, one decade after the advent of recombinant antibody technology. Early examples were the Affibody, Monobody (Adnectin), and Anticalin proteins, which were derived from fragments of streptococcal protein A, from the tenth type III domain of human fibronectin, and from natural lipocalin proteins, respectively. Since then, this concept has expanded considerably, including many other protein templates. In fact, engineered protein scaffolds with useful binding specificities, mostly directed against targets of biomedical relevance, constitute an area of active research today, which has yielded versatile reagents as laboratory tools. However, despite strong interest from basic science, only a handful of those protein scaffolds have undergone biopharmaceutical development up to the clinical stage. This includes the abovementioned pioneering examples as well as designed ankyrin repeat proteins (DARPins). Here we review the current state and clinical validation of these next-generation therapeutics.
Collapse
Affiliation(s)
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, 85354 Freising, Germany;
| |
Collapse
|
13
|
Yoo DK, Lee SR, Jung Y, Han H, Lee HK, Han J, Kim S, Chae J, Ryu T, Chung J. Machine Learning-Guided Prediction of Antigen-Reactive In Silico Clonotypes Based on Changes in Clonal Abundance through Bio-Panning. Biomolecules 2020; 10:E421. [PMID: 32182714 PMCID: PMC7175295 DOI: 10.3390/biom10030421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 02/07/2023] Open
Abstract
c-Met is a promising target in cancer therapy for its intrinsic oncogenic properties. However, there are currently no c-Met-specific inhibitors available in the clinic. Antibodies blocking the interaction with its only known ligand, hepatocyte growth factor, and/or inducing receptor internalization have been clinically tested. To explore other therapeutic antibody mechanisms like Fc-mediated effector function, bispecific T cell engagement, and chimeric antigen T cell receptors, a diverse panel of antibodies is essential. We prepared a chicken immune scFv library, performed four rounds of bio-panning, obtained 641 clones using a high-throughput clonal retrieval system (TrueRepertoireTM, TR), and found 149 antigen-reactive scFv clones. We also prepared phagemid DNA before the start of bio-panning (round 0) and, after each round of bio-panning (round 1-4), performed next-generation sequencing of these five sets of phagemid DNA, and identified 860,207 HCDR3 clonotypes and 443,292 LCDR3 clonotypes along with their clonal abundance data. We then established a TR data set consisting of antigen reactivity for scFv clones found in TR analysis and the clonal abundance of their HCDR3 and LCDR3 clonotypes in five sets of phagemid DNA. Using the TR data set, a random forest machine learning algorithm was trained to predict the binding properties of in silico HCDR3 and LCDR3 clonotypes. Subsequently, we synthesized 40 HCDR3 and 40 LCDR3 clonotypes predicted to be antigen reactive (AR) and constructed a phage-displayed scFv library called the AR library. In parallel, we also prepared an antigen non-reactive (NR) library using 10 HCDR3 and 10 LCDR3 clonotypes predicted to be NR. After a single round of bio-panning, we screened 96 randomly-selected phage clones from the AR library and found out 14 AR scFv clones consisting of 5 HCDR3 and 11 LCDR3 AR clonotypes. We also screened 96 randomly-selected phage clones from the NR library, but did not identify any AR clones. In summary, machine learning algorithms can provide a method for identifying AR antibodies, which allows for the characterization of diverse antibody libraries inaccessible by traditional methods.
Collapse
Affiliation(s)
- Duck Kyun Yoo
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Seung Ryul Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Yushin Jung
- Celemics, Inc., 131 Gasandigital 1-ro, Geumcheon-gu, Seoul 08506, Korea
| | - Haejun Han
- Celemics, Inc., 131 Gasandigital 1-ro, Geumcheon-gu, Seoul 08506, Korea
| | - Hwa Kyoung Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jerome Han
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Soohyun Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jisu Chae
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Taehoon Ryu
- Celemics, Inc., 131 Gasandigital 1-ro, Geumcheon-gu, Seoul 08506, Korea
| | - Junho Chung
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
14
|
Abstract
Phage display antibody libraries have proven an invaluable resource for the isolation of diagnostic and potentially therapeutic antibodies, the latter usually being antibody fragments converted into IgG formats. Recent advances in the production of highly diverse and functional antibody libraries are considered here, including for Fabs, scFvs and nanobodies. These advances include codon optimisation during generation of CDR diversity, improved display levels using novel signal sequences, molecular chaperones and isomerases and the use of highly stable scaffolds with relatively high expression levels. In addition, novel strategies for the batch reformatting of scFv and Fab phagemid libraries, derived from phage panning, into IgG formats are described. These strategies allow the screening of antibodies in the end-use format, facilitating more efficient selection of potential therapeutics.
Collapse
|
15
|
Gallo E. High-Throughput Generation of In Silico Derived Synthetic Antibodies via One-step Enzymatic DNA Assembly of Fragments. Mol Biotechnol 2020; 62:142-150. [PMID: 31894513 DOI: 10.1007/s12033-019-00232-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phage-display technology offers robust methods for isolating antibody (Ab) molecules with specificity for different target antigens. Recent advancements couple Ab selections with in silico strategies, such as predictive computational models or next-generation sequencing metadata analysis of Ab selections. These advancements result in enhanced Ab clonal diversities with potential for enlarged epitope coverage of the target antigen. A current limitation however, is that de novo Ab sequences must undergo DNA gene synthesis, and subsequent expression as Ab proteins for downstream validations. Due to the high costs and time for commercially generating large sets of DNA genes, we report a high-throughput platform for the synthesis of in silico derived Ab clones. As a proof of concept we demonstrate the simultaneous synthesis of 96 unique Abs with varied lengths and complementary determining region compositions. Each of the 96 Ab clones undergoes a one-step enzymatic assembly of distinct DNA fragments that combine into a circularized Fab expression plasmid. This strategy allows for the rapid and efficient synthesis of 96 DNA constructs in a 3 day window, and exhibits high percentage fidelity-greater than 93%. Accordingly, the synthesis of Ab DNA constructs as Fab expression plasmids allow for rapid execution of downstream Ab protein validations, with potential for implementation into high-throughput Ab protein characterization pipelines. Altogether, the platform presented here proves rapid and also cost-effective, which is important for labs with limited resources, since it utilizes standard laboratory equipment and molecular reagents.
Collapse
Affiliation(s)
- Eugenio Gallo
- Department of Molecular Genetics, Charles Best Institute, University of Toronto, 112 College Street, 112 College Street, Room 70, Toronto, ON, M5G 1L6, Canada.
| |
Collapse
|
16
|
Barreto K, Maruthachalam BV, Hill W, Hogan D, Sutherland AR, Kusalik A, Fonge H, DeCoteau JF, Geyer CR. Next-generation sequencing-guided identification and reconstruction of antibody CDR combinations from phage selection outputs. Nucleic Acids Res 2019; 47:e50. [PMID: 30854567 PMCID: PMC6511873 DOI: 10.1093/nar/gkz131] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 12/12/2018] [Accepted: 03/07/2019] [Indexed: 12/12/2022] Open
Abstract
Next-generation sequencing (NGS) technologies have been employed in several phage display platforms for analyzing natural and synthetic antibody sequences and for identifying and reconstructing single-chain variable fragments (scFv) and antigen-binding fragments (Fab) not found by conventional ELISA screens. In this work, we developed an NGS-assisted antibody discovery platform by integrating phage-displayed, single-framework, synthetic Fab libraries. Due to limitations in attainable read and amplicon lengths, NGS analysis of Fab libraries and selection outputs is usually restricted to either VH or VL. Since this information alone is not sufficient for high-throughput reconstruction of Fabs, we developed a rapid and simple method for linking and sequencing all diversified CDRs in phage Fab pools. Our method resulted in a reliable and straightforward platform for converting NGS information into Fab clones. We used our NGS-assisted Fab reconstruction method to recover low-frequency rare clones from phage selection outputs. While previous studies chose rare clones for rescue based on their relative frequencies in sequencing outputs, we chose rare clones for reconstruction from less-frequent CDRH3 lengths. In some cases, reconstructed rare clones (frequency ∼0.1%) showed higher affinity and better specificity than high-frequency top clones identified by Sanger sequencing, highlighting the significance of NGS-based approaches in synthetic antibody discovery.
Collapse
Affiliation(s)
- Kris Barreto
- Department of Pathology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | | | - Wayne Hill
- Department of Pathology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Daniel Hogan
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
| | - Ashley R Sutherland
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Anthony Kusalik
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
| | - Humphrey Fonge
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - John F DeCoteau
- Department of Pathology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - C Ronald Geyer
- Department of Pathology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
17
|
Yang Z, Du M, Wang W, Xin X, Ma P, Zhang H, Lerner RA. Affinity maturation of an TpoR targeting antibody in full-length IgG form for enhanced agonist activity. Protein Eng Des Sel 2019; 31:233-241. [PMID: 29474709 DOI: 10.1093/protein/gzy002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/31/2018] [Indexed: 01/08/2023] Open
Abstract
It has been observed that converting scFv formatted antibodies to full-length IgG often associates with loss of affinity. We aim to address this issue in this paper by establishing an integrated affinity maturation method applying yeast display technology platform. To demonstrate that, we employed a human thrombopoietin receptor targeting antibody named 3D9 which was identified previously from a combinational antibody library in scFv-Fc fusion protein form. We have observed that significant potency loss happened when 3D9 was transformed to full-length IgG form. In this study, we tested whether the potency of the full-length IgG can be improved by affinity maturation of 3D9 using a modified Fab yeast display platform. An efficient CDR3 targeted mutagenesis strategy was designed for Fab library with pre-designed CDR diversity. Next generation sequencing was also used for evaluation of the enrichment process and investigation of sequence-function relationship of the antibody. A variant with improved affinity and higher potency was identified. The study demonstrates that the strategy we used here are efficient for optimizing affinity and activity of full-length IgGs.
Collapse
Affiliation(s)
- Zhuo Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mingjuan Du
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Wei Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Xiu Xin
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Peixiang Ma
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Hongkai Zhang
- State key laboratory of medicinal chemical biology, Nankai University, Tianjin.,College of Life Science, Nankai University, Tianjin, China
| | - Richard A Lerner
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China.,Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA
| |
Collapse
|
18
|
Abstract
The display of antibodies on the surface of Saccharomyces cerevisiae cells enables the high-throughput and precise selection of specific binders for the target antigen. The recent implementation of next-generation sequencing (NGS) to antibody display screening provides a complete picture of the entire selected polyclonal population. As such, NGS overcomes the limitations of random clones screening, but it comes with two main limitations: (1) depending upon the platform, the sequencing is usually restricted to the variable heavy chain domain complementary determining region 3 (HCDR3), or VH gene, and does not provide additional information on the rest of the antibody gene, including the VL; and (2) the sequence-identified clones are not physically available for validation. Here, we describe a rapid and effective protocol based on an inverse-PCR method to recover specific antibody clones based on their HCDR3 sequence from a yeast display selection output.
Collapse
|
19
|
D'Angelo S, Staquicini FI, Ferrara F, Staquicini DI, Sharma G, Tarleton CA, Nguyen H, Naranjo LA, Sidman RL, Arap W, Bradbury AR, Pasqualini R. Selection of phage-displayed accessible recombinant targeted antibodies (SPARTA): methodology and applications. JCI Insight 2018; 3:98305. [PMID: 29720567 DOI: 10.1172/jci.insight.98305] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/05/2018] [Indexed: 11/17/2022] Open
Abstract
We developed a potentially novel and robust antibody discovery methodology, termed selection of phage-displayed accessible recombinant targeted antibodies (SPARTA). This combines an in vitro screening step of a naive human antibody library against known tumor targets, with in vivo selections based on tumor-homing capabilities of a preenriched antibody pool. This unique approach overcomes several rate-limiting challenges to generate human antibodies amenable to rapid translation into medical applications. As a proof of concept, we evaluated SPARTA on 2 well-established tumor cell surface targets, EphA5 and GRP78. We evaluated antibodies that showed tumor-targeting selectivity as a representative panel of antibody-drug conjugates (ADCs) and were highly efficacious. Our results validate a discovery platform to identify and validate monoclonal antibodies with favorable tumor-targeting attributes. This approach may also extend to other diseases with known cell surface targets and affected tissues easily isolated for in vivo selection.
Collapse
Affiliation(s)
| | - Fernanda I Staquicini
- Rutgers Cancer Institute of New Jersey at University Hospital and Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | | | - Daniela I Staquicini
- Rutgers Cancer Institute of New Jersey at University Hospital and Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Geetanjali Sharma
- University of New Mexico Comprehensive Cancer Center, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Christy A Tarleton
- University of New Mexico Comprehensive Cancer Center, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Huynh Nguyen
- University of New Mexico Comprehensive Cancer Center, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | | | - Richard L Sidman
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey at University Hospital and Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | | | - Renata Pasqualini
- Rutgers Cancer Institute of New Jersey at University Hospital and Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
20
|
D'Angelo S, Ferrara F, Naranjo L, Erasmus MF, Hraber P, Bradbury ARM. Many Routes to an Antibody Heavy-Chain CDR3: Necessary, Yet Insufficient, for Specific Binding. Front Immunol 2018; 9:395. [PMID: 29568296 PMCID: PMC5852061 DOI: 10.3389/fimmu.2018.00395] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/13/2018] [Indexed: 12/11/2022] Open
Abstract
Because of its great potential for diversity, the immunoglobulin heavy-chain complementarity-determining region 3 (HCDR3) is taken as an antibody molecule’s most important component in conferring binding activity and specificity. For this reason, HCDR3s have been used as unique identifiers to investigate adaptive immune responses in vivo and to characterize in vitro selection outputs where display systems were employed. Here, we show that many different HCDR3s can be identified within a target-specific antibody population after in vitro selection. For each identified HCDR3, a number of different antibodies bearing differences elsewhere can be found. In such selected populations, all antibodies with the same HCDR3 recognize the target, albeit at different affinities. In contrast, within unselected populations, the majority of antibodies with the same HCDR3 sequence do not bind the target. In one HCDR3 examined in depth, all target-specific antibodies were derived from the same VDJ rearrangement, while non-binding antibodies with the same HCDR3 were derived from many different V and D gene rearrangements. Careful examination of previously published in vivo datasets reveals that HCDR3s shared between, and within, different individuals can also originate from rearrangements of different V and D genes, with up to 26 different rearrangements yielding the same identical HCDR3 sequence. On the basis of these observations, we conclude that the same HCDR3 can be generated by many different rearrangements, but that specific target binding is an outcome of unique rearrangements and VL pairing: the HCDR3 is necessary, albeit insufficient, for specific antibody binding.
Collapse
Affiliation(s)
| | | | | | | | - Peter Hraber
- Los Alamos National Laboratory, Los Alamos, NM, United States
| | | |
Collapse
|
21
|
Hemadou A, Giudicelli V, Smith ML, Lefranc MP, Duroux P, Kossida S, Heiner C, Hepler NL, Kuijpers J, Groppi A, Korlach J, Mondon P, Ottones F, Jacobin-Valat MJ, Laroche-Traineau J, Clofent-Sanchez G. Pacific Biosciences Sequencing and IMGT/HighV-QUEST Analysis of Full-Length Single Chain Fragment Variable from an In Vivo Selected Phage-Display Combinatorial Library. Front Immunol 2017; 8:1796. [PMID: 29326697 PMCID: PMC5742356 DOI: 10.3389/fimmu.2017.01796] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 11/30/2017] [Indexed: 12/14/2022] Open
Abstract
Phage-display selection of immunoglobulin (IG) or antibody single chain Fragment variable (scFv) from combinatorial libraries is widely used for identifying new antibodies for novel targets. Next-generation sequencing (NGS) has recently emerged as a new method for the high throughput characterization of IG and T cell receptor (TR) immune repertoires both in vivo and in vitro. However, challenges remain for the NGS sequencing of scFv from combinatorial libraries owing to the scFv length (>800 bp) and the presence of two variable domains [variable heavy (VH) and variable light (VL) for IG] associated by a peptide linker in a single chain. Here, we show that single-molecule real-time (SMRT) sequencing with the Pacific Biosciences RS II platform allows for the generation of full-length scFv reads obtained from an in vivo selection of scFv-phages in an animal model of atherosclerosis. We first amplified the DNA of the phagemid inserts from scFv-phages eluted from an aortic section at the third round of the in vivo selection. From this amplified DNA, 450,558 reads were obtained from 15 SMRT cells. Highly accurate circular consensus sequences from these reads were generated, filtered by quality and then analyzed by IMGT/HighV-QUEST with the functionality for scFv. Full-length scFv were identified and characterized in 348,659 reads. Full-length scFv sequencing is an absolute requirement for analyzing the associated VH and VL domains enriched during the in vivo panning rounds. In order to further validate the ability of SMRT sequencing to provide high quality, full-length scFv sequences, we tracked the reads of an scFv-phage clone P3 previously identified by biological assays and Sanger sequencing. Sixty P3 reads showed 100% identity with the full-length scFv of 767 bp, 53 of them covering the whole insert of 977 bp, which encompassed the primer sequences. The remaining seven reads were identical over a shortened length of 939 bp that excludes the vicinity of primers at both ends. Interestingly these reads were obtained from each of the 15 SMRT cells. Thus, the SMRT sequencing method and the IMGT/HighV-QUEST functionality for scFv provides a straightforward protocol for characterization of full-length scFv from combinatorial phage libraries.
Collapse
Affiliation(s)
| | - Véronique Giudicelli
- IMGT®, The International ImMunoGeneTics Information System®, Laboratoire d'ImmunoGénétique Moléculaire, LIGM, Institut de Génétique Humaine, IGH, UMR 9002, CNRS, Montpellier University, Montpellier, France
| | | | - Marie-Paule Lefranc
- IMGT®, The International ImMunoGeneTics Information System®, Laboratoire d'ImmunoGénétique Moléculaire, LIGM, Institut de Génétique Humaine, IGH, UMR 9002, CNRS, Montpellier University, Montpellier, France
| | - Patrice Duroux
- IMGT®, The International ImMunoGeneTics Information System®, Laboratoire d'ImmunoGénétique Moléculaire, LIGM, Institut de Génétique Humaine, IGH, UMR 9002, CNRS, Montpellier University, Montpellier, France
| | - Sofia Kossida
- IMGT®, The International ImMunoGeneTics Information System®, Laboratoire d'ImmunoGénétique Moléculaire, LIGM, Institut de Génétique Humaine, IGH, UMR 9002, CNRS, Montpellier University, Montpellier, France
| | | | | | | | - Alexis Groppi
- Université de Bordeaux, Centre de Bioinformatique de Bordeaux (CBiB), Bordeaux, France
| | | | | | | | | | | | | |
Collapse
|
22
|
Parola C, Neumeier D, Reddy ST. Integrating high-throughput screening and sequencing for monoclonal antibody discovery and engineering. Immunology 2017; 153:31-41. [PMID: 28898398 DOI: 10.1111/imm.12838] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 12/14/2022] Open
Abstract
Monoclonal antibody discovery and engineering is a field that has traditionally been dominated by high-throughput screening platforms (e.g. hybridomas and surface display). In recent years the emergence of high-throughput sequencing has made it possible to obtain large-scale information on antibody repertoire diversity. Additionally, it has now become more routine to perform high-throughput sequencing on antibody repertoires to also directly discover antibodies. In this review, we provide an overview of the progress in this field to date and show how high-throughput screening and sequencing are converging to deliver powerful new workflows for monoclonal antibody discovery and engineering.
Collapse
Affiliation(s)
- Cristina Parola
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.,Life Science Zurich Graduate School, Systems Biology, ETH Zurich, University of Zurich, Zurich, Switzerland
| | - Daniel Neumeier
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| |
Collapse
|
23
|
Mei M, Zhou Y, Peng W, Yu C, Ma L, Zhang G, Yi L. Application of modified yeast surface display technologies for non-Antibody protein engineering. Microbiol Res 2017; 196:118-128. [DOI: 10.1016/j.micres.2016.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/21/2016] [Accepted: 12/09/2016] [Indexed: 02/07/2023]
|
24
|
Friedensohn S, Khan TA, Reddy ST. Advanced Methodologies in High-Throughput Sequencing of Immune Repertoires. Trends Biotechnol 2016; 35:203-214. [PMID: 28341036 DOI: 10.1016/j.tibtech.2016.09.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/19/2016] [Accepted: 09/30/2016] [Indexed: 11/19/2022]
Abstract
In recent years, major efforts have been made to develop sophisticated experimental and bioinformatic workflows for sequencing adaptive immune repertoires. The immunological insight gained has been applied to fields as varied as lymphocyte biology, immunodiagnostics, vaccines, cancer immunotherapy, and antibody engineering. In this review, we provide a detailed overview of these advanced methodologies, focusing specifically on strategies to reduce sequencing errors and bias and to achieve high-throughput pairing of variable regions (e.g., heavy-light or alpha-beta chains). In addition, we highlight recent technologies for single-cell transcriptome sequencing that can be integrated with immune repertoires. Finally, we provide a perspective on advanced immune repertoire sequencing and its ability to impact basic immunology, biopharmaceutical drug discovery and development, and cancer immunotherapy.
Collapse
Affiliation(s)
- Simon Friedensohn
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Tarik A Khan
- Pharmaceutical Development & Supplies Biologics Europe, F. Hoffman-La Roche Ltd, Basel, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| |
Collapse
|
25
|
Huston JS. The burgeoning antibody landscape. Protein Eng Des Sel 2016; 29:399-401. [DOI: 10.1093/protein/gzw044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Indexed: 12/12/2022] Open
|
26
|
Glanville J, D'Angelo S, Khan TA, Reddy ST, Naranjo L, Ferrara F, Bradbury ARM. Deep sequencing in library selection projects: what insight does it bring? Curr Opin Struct Biol 2016; 33:146-60. [PMID: 26451649 DOI: 10.1016/j.sbi.2015.09.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/19/2015] [Accepted: 09/17/2015] [Indexed: 11/17/2022]
Abstract
High throughput sequencing is poised to change all aspects of the way antibodies and other binders are discovered and engineered. Millions of available sequence reads provide an unprecedented sampling depth able to guide the design and construction of effective, high quality naïve libraries containing tens of billions of unique molecules. Furthermore, during selections, high throughput sequencing enables quantitative tracing of enriched clones and position-specific guidance to amino acid variation under positive selection during antibody engineering. Successful application of the technologies relies on specific PCR reagent design, correct sequencing platform selection, and effective use of computational tools and statistical measures to remove error, identify antibodies, estimate diversity, and extract signatures of selection from the clone down to individual structural positions. Here we review these considerations and discuss some of the remaining challenges to the widespread adoption of the technology.
Collapse
Affiliation(s)
- J Glanville
- Program in Computational and Systems Immunology, Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - S D'Angelo
- University of New Mexico Comprehensive Cancer Center, and Division of Molecular Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - T A Khan
- ETH Zurich, Department of Biosystems Science and Engineering, Basel, Switzerland
| | - S T Reddy
- ETH Zurich, Department of Biosystems Science and Engineering, Basel, Switzerland
| | - L Naranjo
- Bioscience division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - F Ferrara
- University of New Mexico Comprehensive Cancer Center, and Division of Molecular Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - A R M Bradbury
- Bioscience division, Los Alamos National Laboratory, Los Alamos, NM, USA.
| |
Collapse
|
27
|
Lövgren J, Pursiheimo JP, Pyykkö M, Salmi J, Lamminmäki U. Next generation sequencing of all variable loops of synthetic single framework scFv-Application in anti-HDL antibody selections. N Biotechnol 2016; 33:790-796. [PMID: 27450754 DOI: 10.1016/j.nbt.2016.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/01/2016] [Accepted: 07/17/2016] [Indexed: 11/30/2022]
Abstract
Next generation sequencing (NGS) can be applied to monitoring antibody phage display library selection processes to follow the enrichment of each individual antibody clone. Utilising the recent development of the Illumina sequencing platform enabling sequencing up to 2×300bp, we have developed a method to deep sequence all complementarity determining regions (CDRs) in the clones obtained from a synthetic single framework antibody library. This was complemented by an in-house bioinformatics pipeline for efficient analysis of the sequencing results. The method was utilised to study antibody selections against high density lipoprotein (HDL) particles. Sequencing of the output from each selection round enabled extraction of useful information on both the total copy numbers as well as the relative enrichment rates of the clones. Ten antibody clones showing different ranking in terms of frequency were reproduced from synthetic DNA constructs and their capacity to bind HDL was verified by an immunoassay. The method thus facilitates the isolation of clones of interest, and in particular can assist retrieval of less efficiently enriched, yet interesting clones, which are unlikely to be identified by conventional, random colony picking based, screening.
Collapse
Affiliation(s)
- Janita Lövgren
- Department of Biochemistry, Division of Biotechnology, University of Turku, Turku, Finland.
| | - Juha-Pekka Pursiheimo
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Mikko Pyykkö
- Department of Biochemistry, Division of Biotechnology, University of Turku, Turku, Finland
| | - Jussi Salmi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Urpo Lamminmäki
- Department of Biochemistry, Division of Biotechnology, University of Turku, Turku, Finland
| |
Collapse
|
28
|
Bidlingmaier S, Ha K, Lee NK, Su Y, Liu B. Proteome-wide Identification of Novel Ceramide-binding Proteins by Yeast Surface cDNA Display and Deep Sequencing. Mol Cell Proteomics 2016; 15:1232-45. [PMID: 26729710 DOI: 10.1074/mcp.m115.055954] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Indexed: 11/06/2022] Open
Abstract
Although the bioactive sphingolipid ceramide is an important cell signaling molecule, relatively few direct ceramide-interacting proteins are known. We used an approach combining yeast surface cDNA display and deep sequencing technology to identify novel proteins binding directly to ceramide. We identified 234 candidate ceramide-binding protein fragments and validated binding for 20. Most (17) bound selectively to ceramide, although a few (3) bound to other lipids as well. Several novel ceramide-binding domains were discovered, including the EF-hand calcium-binding motif, the heat shock chaperonin-binding motif STI1, the SCP2 sterol-binding domain, and the tetratricopeptide repeat region motif. Interestingly, four of the verified ceramide-binding proteins (HPCA, HPCAL1, NCS1, and VSNL1) and an additional three candidate ceramide-binding proteins (NCALD, HPCAL4, and KCNIP3) belong to the neuronal calcium sensor family of EF hand-containing proteins. We used mutagenesis to map the ceramide-binding site in HPCA and to create a mutant HPCA that does not bind to ceramide. We demonstrated selective binding to ceramide by mammalian cell-produced wild type but not mutant HPCA. Intriguingly, we also identified a fragment from prostaglandin D2synthase that binds preferentially to ceramide 1-phosphate. The wide variety of proteins and domains capable of binding to ceramide suggests that many of the signaling functions of ceramide may be regulated by direct binding to these proteins. Based on the deep sequencing data, we estimate that our yeast surface cDNA display library covers ∼60% of the human proteome and our selection/deep sequencing protocol can identify target-interacting protein fragments that are present at extremely low frequency in the starting library. Thus, the yeast surface cDNA display/deep sequencing approach is a rapid, comprehensive, and flexible method for the analysis of protein-ligand interactions, particularly for the study of non-protein ligands.
Collapse
Affiliation(s)
- Scott Bidlingmaier
- From the Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94110
| | - Kevin Ha
- From the Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94110
| | - Nam-Kyung Lee
- From the Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94110
| | - Yang Su
- From the Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94110
| | - Bin Liu
- From the Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94110
| |
Collapse
|
29
|
Batonick M, Holland EG, Busygina V, Alderman D, Kay BK, Weiner MP, Kiss MM. Platform for high-throughput antibody selection using synthetically-designed antibody libraries. N Biotechnol 2015; 33:565-73. [PMID: 26607994 DOI: 10.1016/j.nbt.2015.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/04/2015] [Accepted: 11/09/2015] [Indexed: 11/30/2022]
Abstract
Synthetic humanized antibody libraries are frequently generated by random incorporation of changes at multiple positions in the antibody hypervariable regions. Although these libraries have very large theoretical diversities (>10(20)), the practical diversity that can be achieved by transformation of Escherichia coli is limited to about 10(10). To constrain the practical diversity to sequences that more closely mimic the diversity of natural human antibodies, we generated a scFv phage library using entirely pre-defined complementarity determining regions (CDR). We have used this library to select for novel antibodies against four human protein targets and demonstrate that identification of enriched sequences at each of the six CDRs in early selection rounds can be used to reconstruct a consensus antibody with selectivity for the target.
Collapse
Affiliation(s)
- Melissa Batonick
- AxioMx, Inc., 688 East Main Street, Branford, CT 06405, United States.
| | - Erika G Holland
- AxioMx, Inc., 688 East Main Street, Branford, CT 06405, United States
| | - Valeria Busygina
- AxioMx, Inc., 688 East Main Street, Branford, CT 06405, United States
| | - Dawn Alderman
- AxioMx, Inc., 688 East Main Street, Branford, CT 06405, United States
| | - Brian K Kay
- University of Illinois at Chicago, 845 West Taylor Street Chicago, IL 60607, United States
| | - Michael P Weiner
- AxioMx, Inc., 688 East Main Street, Branford, CT 06405, United States
| | - Margaret M Kiss
- AxioMx, Inc., 688 East Main Street, Branford, CT 06405, United States
| |
Collapse
|
30
|
One-Step Recovery of scFv Clones from High-Throughput Sequencing-Based Screening of Phage Display Libraries Challenged to Cells Expressing Native Claudin-1. BIOMED RESEARCH INTERNATIONAL 2015; 2015:703213. [PMID: 26649313 PMCID: PMC4662980 DOI: 10.1155/2015/703213] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/05/2015] [Indexed: 01/09/2023]
Abstract
Expanding the availability of monoclonal antibodies interfering with hepatitis C virus infection of hepatocytes is an active field of investigation within medical biotechnologies, to prevent graft reinfection in patients subjected to liver transplantation and to overcome resistances elicited by novel antiviral drugs. In this paper, we describe a complete pipeline for screening of phage display libraries of human scFvs against native Claudin-1, a tight-junction protein involved in hepatitis C virus infection, expressed on the cell surface of human hepatocytes. To this aim, we implemented a high-throughput sequencing approach for library screening, followed by a simple and effective strategy to recover active binder clones from enriched sublibraries. The recovered clones were successfully converted to active immunoglobulins, thus demonstrating the effectiveness of the whole procedure. This novel approach can guarantee rapid and cheap isolation of antibodies for virtually any native antigen involved in human diseases, for therapeutic and/or diagnostic applications.
Collapse
|
31
|
Ferrara F, D'Angelo S, Gaiotto T, Naranjo L, Tian H, Gräslund S, Dobrovetsky E, Hraber P, Lund-Johansen F, Saragozza S, Sblattero D, Kiss C, Bradbury ARM. Recombinant renewable polyclonal antibodies. MAbs 2015; 7:32-41. [PMID: 25530082 DOI: 10.4161/19420862.2015.989047] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Only a small fraction of the antibodies in a traditional polyclonal antibody mixture recognize the target of interest, frequently resulting in undesirable polyreactivity. Here, we show that high-quality recombinant polyclonals, in which hundreds of different antibodies are all directed toward a target of interest, can be easily generated in vitro by combining phage and yeast display. We show that, unlike traditional polyclonals, which are limited resources, recombinant polyclonal antibodies can be amplified over one hundred million-fold without losing representation or functionality. Our protocol was tested on 9 different targets to demonstrate how the strategy allows the selective amplification of antibodies directed toward desirable target specific epitopes, such as those found in one protein but not a closely related one, and the elimination of antibodies recognizing common epitopes, without significant loss of diversity. These recombinant renewable polyclonal antibodies are usable in different assays, and can be generated in high throughput. This approach could potentially be used to develop highly specific recombinant renewable antibodies against all human gene products.
Collapse
|
32
|
Henry KA, Tanha J, Hussack G. Identification of cross-reactive single-domain antibodies against serum albumin using next-generation DNA sequencing. Protein Eng Des Sel 2015; 28:379-83. [PMID: 26319004 DOI: 10.1093/protein/gzv039] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/20/2015] [Indexed: 11/13/2022] Open
Abstract
Antibodies that cross-react with multiple isoforms or homologue of a given protein are often desirable, especially in therapeutic applications. Here, we report the identification of several unique, clonally unrelated, single-domain antibodies (sdAbs) that bind to multiple serum albumin orthologues (human, rhesus, rat and mouse) with low-to-medium nanomolar affinity from a llama immunized only with human serum albumin. Using single-round panning of a phage-displayed sdAb library against serum albumins and next-generation DNA sequencing, we were able to predict patterns of sdAb reactivity to the albumins of different species with ∼90% accuracy. We expect this strategy to be generally applicable for identifying cross-reactive sdAbs, particularly when these exist at low frequency and/or are poorly enriched by panning. Moreover, the sdAbs identified here are of potential interest for serum half-life extension of biologics.
Collapse
Affiliation(s)
- Kevin A Henry
- Human Health Therapeutics Portfolio, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, Canada K1A 0R6
| | - Jamshid Tanha
- Human Health Therapeutics Portfolio, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, Canada K1A 0R6 School of Environmental Sciences, Ontario Agricultural College, University of Guelph, 50 Stone Road East, Guelph, ON, Canada N1G 2W1 Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 75 Laurier Avenue East, Ottawa, ON, Canada K1H 8M5
| | - Greg Hussack
- Human Health Therapeutics Portfolio, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, Canada K1A 0R6
| |
Collapse
|
33
|
Sensitive recovery of recombinant antibody clones after their in silico identification within NGS datasets. J Immunol Methods 2015; 420:50-5. [DOI: 10.1016/j.jim.2015.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/06/2015] [Accepted: 03/06/2015] [Indexed: 11/20/2022]
|