1
|
Early Post-Hatch Nutrition Influences Performance and Muscle Growth in Broiler Chickens. Animals (Basel) 2022; 12:ani12233281. [PMID: 36496802 PMCID: PMC9740399 DOI: 10.3390/ani12233281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
The poultry industry is under pressure to produce safe and good quality meat in the welfare conditions. Many areas such as genetics, biosecurity, and immunoprophylaxis were improved, and hatchery is one of the areas in which welfare could be improved for better production output. The aim of the study was to investigate the effect of early post-hatch nutrition providing body weight and muscle development in broiler chickens. The experiment involving two groups (chicken hatched with access to water and feed in the hatcher, and chicken without feed and water in hatcher) was replicated three times, and the body weights and breast-muscle index of the randomly chosen 30 chickens per group in each term were measured on the 1st, 7th, 21st, and 35th day of life. The breast-muscle sample was taken for genetic examination (the expression of the myoD, myoG, and MRF4 genes) and histological examination. The results showed that the positive effect of early nutrition was observed on the seventh day of bird life with higher expression of myoG and MRF4 and higher body weight of the birds. The positive effect of early nutrition on the diameter of the breast-muscle fibers was visible on days 21 and 35 of chicken life. The average final body weight in groups with early access to food and water was 5% higher than in groups hatched under classic conditions. Conclusions: early feeding in the hatcher improves performance and muscle growth in broiler chickens.
Collapse
|
2
|
Reed KM, Mendoza KM, Xu J, Strasburg GM, Velleman SG. Transcriptome Response of Differentiating Muscle Satellite Cells to Thermal Challenge in Commercial Turkey. Genes (Basel) 2022; 13:1857. [PMID: 36292741 PMCID: PMC9601516 DOI: 10.3390/genes13101857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/04/2022] Open
Abstract
Early muscle development involves the proliferation and differentiation of stem cells (satellite cells, SCs) in the mesoderm to form multinucleated myotubes that mature into muscle fibers and fiber bundles. Proliferation of SCs increases the number of cells available for muscle formation while simultaneously maintaining a population of cells for future response. Differentiation dramatically changes properties of the SCs and environmental stressors can have long lasting effects on muscle growth and physiology. This study was designed to characterize transcriptional changes induced in turkey SCs undergoing differentiation under thermal challenge. Satellite cells from the pectoralis major (p. major) muscle of 1-wk old commercial fast-growing birds (Nicholas turkey, NCT) and from a slower-growing research line (Randombred Control Line 2, RBC2) were proliferated for 72 h at 38 °C and then differentiated for 48 h at 33 °C (cold), 43 °C (hot) or 38 °C (control). Gene expression among thermal treatments and between turkey lines was examined by RNAseq to detect significant differentially expressed genes (DEGs). Cold treatment resulted in significant gene expression changes in the SCs from both turkey lines, with the primary effect being down regulation of the DEGs with overrepresentation of genes involved in regulation of skeletal muscle tissue regeneration and sarcomere organization. Heat stress increased expression of genes reported to regulate myoblast differentiation and survival and to promote cell adhesion particularly in the NCT line. Results suggest that growth selection in turkeys has altered the developmental potential of SCs in commercial birds to increase hypertrophic potential of the p. major muscle and sarcomere assembly. The biology of SCs may account for the distinctly different outcomes in response to thermal challenge on breast muscle growth, development, and structure of the turkey.
Collapse
Affiliation(s)
- Kent M. Reed
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Kristelle M. Mendoza
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Jiahui Xu
- Department of Animal Sciences, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Gale M. Strasburg
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Sandra G. Velleman
- Department of Animal Sciences, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| |
Collapse
|
3
|
Özlü S, Erkuş T, Kamanlı S, Nicholson AD, Elibol O. Influence of the preplacement holding time and feeding hydration supplementation before placement on yolk sac utilization, the crop filling rate, feeding behavior and first-week broiler performance. Poult Sci 2022; 101:102056. [PMID: 35988377 PMCID: PMC9405083 DOI: 10.1016/j.psj.2022.102056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/27/2022] [Accepted: 07/02/2022] [Indexed: 12/01/2022] Open
Abstract
This study investigated the effects of the broiler chick preplacement holding time and feeding hydration supplementation before placement on yolk sac utilization, the crop filling rate, feeding-drinking behavior and first-wk broiler performance. Broiler hatching eggs were obtained from a commercial broiler breeder flock of Ross 308 at 37 wk of age and incubated in a commercial hatchery. At 510 h of incubation, all chicks were removed from the hatcher and separated into cardboard chick boxes containing 80 chicks each. The chick boxes were randomly separated into two groups with either added commercial hydration supplementation (gel: Hydrogel-95) or the control (no gel). Then, the chicks were randomly distributed into 5 groups with different holding times across each hydration supplementation treatment (gel and control). The preplacement holding times were 6, 24, 48, 60, and 72 h from the pull time from the hatchers in the hatchery to placement in the broiler house on the farm, at which point the chicks were able to access feed and water. There were 10 subtreatment groups comprising 5 chick preplacement holding time groups × 2 hydration supplementation groups. There were 12 replicates (160 chicks per pen) per holding period × gel treatment, with a total of 19,200 chicks placed. The feed and water access time did not influence yolk sac utilization, but the absolute or relative residual yolk sac (g, %) decreased linearly with the duration after the pull time (P < 0.001). Longer preplacement holding times were associated with a higher percentage of chicks with full crops at 3 h after placement (P < 0.001). Chicks with the shortest (6 h) preplacement holding time had a lower percentage of feed-seeking activity compared to the 24, 48, and 72 h holding time groups at 3 h after placement (P < 0.001). The highest chick eating and drinking activity was observed in the 72 h group at both 3 and 8 h after placement. Chick weight at placement was significantly reduced linearly with the duration after the pull time (0.106 g/h; R2 = 0.775), and as expected, the highest and lowest BW were found in the 6 (41.51 g) and 72 h (34.50 g) preplacement holding time groups, respectively. However, BW and BW gain were higher in the 24 h group than in the other preplacement holding time groups (P < 0.001) at 7 d after placement. Mortality within the first 3 d after placement increased only when the preplacement holding time was extended to 72 h (P = 0.002). Mortality during 4 to 7 d postplacement was not affected by the holding time at all, but the 72-h holding time group still had statistically significantly higher mortality cumulatively from 0 to 7 d (P = 0.024). Neither BW nor mortality was affected by feeding the hydration supplement at placement, and the lack of effect persisted through 7 d after placement (P > 0.05). It can be concluded that the BW at 7 d after placement was greater in the 24 h holding time group than in shorter (6 h) or longer (48, 60, and 72 h) preplacement holding time groups. In the present study, a greater number of chicks were raised, and it was clearly demonstrated that mortality, as a direct indicator of flock health and welfare, was not affected by preplacement holding times up to and including a 60 h after take-off under thermal comfort conditions, but holding for a further 12 h to 72 h, mortality at 7 d of age after placement was increased. On the other hand, holding chicks in a short period (6 h) did not improve mortality and the BW at 7 d, suggesting that some delay to placement can be beneficial. In addition, feeding hydrogel during the preplacement holding period had no positive effect on BW gain and cumulative mortality during the first week of the growing period.
Collapse
Affiliation(s)
- S Özlü
- Department of Animal Science, Faculty of Agriculture, Ankara University, Ankara 06110, Türkiye
| | - T Erkuş
- Aviagen Ltd., Newbridge, Midlothian EH28 8SZ, United Kingdom
| | - S Kamanlı
- Poultry Research Institute, Ankara, Türkiye
| | - A D Nicholson
- Aviagen Ltd., Newbridge, Midlothian EH28 8SZ, United Kingdom
| | - O Elibol
- Department of Animal Science, Faculty of Agriculture, Ankara University, Ankara 06110, Türkiye.
| |
Collapse
|
4
|
Nutrition and Digestive Physiology of the Broiler Chick: State of the Art and Outlook. Animals (Basel) 2021; 11:ani11102795. [PMID: 34679817 PMCID: PMC8532940 DOI: 10.3390/ani11102795] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary The first week after hatch is the most challenging period in the life of broilers. The digestive tract of the newly hatched chick is immature and must undergo dramatic changes before it can efficiently digest and absorb nutrients. The gut is the vital organ where nutrient digestion and absorption take place. Ontogenic changes that accompany improved digestion and absorption include increased secretion of digestive enzymes, increase in the gut absorptive surface area, and enhanced nutrient transporters. The obvious limiting factors are the secretion and activities of digestive enzymes, and the surface area for absorption. These limitations are overcome as the birds grow older, with concurrent improvements in nutrient utilization. In addition, substantial changes also take place in the physical and functional development of the immune system and intestinal microbial ecology. However, the focus of the current review was on nutrition-related challenges and nutritional approaches to assist the chick during this highly demanding period. Abstract Because the intestine is the primary nutrient supply organ, early development of digestive function in newly hatched chick will enable it to better utilize nutrients, grow efficiently, and achieve the genetic potential of contemporary broilers. Published data on the growth and digestive function of the gastrointestinal tract in neonatal poultry were reviewed. Several potential strategies to improve digestive tract growth and function in newly hatched chick are available and the options include breeder nutrition, in ovo feeding, early access to feed and water, special pre-starter diets, judicious use of feed additives, and early programming.
Collapse
|
5
|
Deines JR, Clark FD, Yoho DE, Bramwell RK, Rochell SJ. Effects of hatch window and nutrient access in the hatcher on performance and processing yield of broiler chicks reared according to time of hatch. Poult Sci 2021; 100:101295. [PMID: 34332224 PMCID: PMC8339331 DOI: 10.1016/j.psj.2021.101295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 11/25/2022] Open
Abstract
The effects of hatch window and hatching basket nutrient availability on organ weights, performance, and processing yield of broilers were investigated. Eggs were hatched in illuminated hatchers. At the end of each hatch window period (HWP), hatched chicks were placed into control (CTL) hatching baskets with no nutrients or baskets providing access to feed and water (FAW). This resulted in 6 treatments in a factorial arrangement of 3 HWP (early, middle, or late) and 2 basket types (CTL or FAW). Chicks remained in experimental baskets until 504 h and were then subjected to a 4 h holding period at the hatchery without nutrient access. Subsequently, 1,500 hatched chicks were reared in floor pens for 42 d with 5 replicate pens per treatment. Common diets and water were provided ad libitum. Bird weights and feed consumption were recorded weekly. Individual bird weights were taken at 21 and 42 d. At 43 d, 14 males from each pen were processed. There was an interaction between HWP and basket type on placement BW (P = 0.028) and BW change in the hatcher (P < 0.001). The HWP influenced BW at hatch (P = 0.007), 7 d (P < 0.001), and 14 d (P < 0.001) and FI at 7 d (P < 0.001) and 14 d (P = 0.002). Chicks from FAW baskets were heavier (P < 0.001) than those from CTL baskets at 7 d; afterward, they were similar (P > 0.05) in BW. Yolk and liver weights were similar (P > 0.05) between basket treatments at 3 d posthatch. No differences (P > 0.05) in FCR, mortality, or processing were observed between basket treatments. Interestingly, early hatching chicks were lightest at hatch but subsequently had higher FI and BWG. These findings indicate that hatcher nutrient access may reduce weight loss in the hatcher, especially for early hatching chicks, but had no influence on subsequent performance or processing yields beyond 7 d.
Collapse
Affiliation(s)
- Joshua R Deines
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - F Dustan Clark
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Doug E Yoho
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | | | - Samuel J Rochell
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
6
|
Wang J, Clark DL, Jacobi SK, Velleman SG. Alpha-tocopherol acetate and alpha lipoic acid may mitigate the development of wooden breast myopathy in broilers at an early age. Br Poult Sci 2021; 62:749-758. [PMID: 33988058 DOI: 10.1080/00071668.2021.1927985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
1. The objective of this study was to identify the effects of the antioxidant alpha-tocopherol acetate (ATA) and alpha lipoic acid (ALA) which have anti-inflammatory effects on developmental onset, severity and the progression of wooden breast (WB) based on Pectoralis major (P. major) muscle morphology and expression of genes associated with WB during the first three weeks post-hatch.2. A total of 160 newly hatched Ross 708 broiler chicks were randomly assigned in a replicated trial to either a control group or three dietary treatments (ATA 160 mg/kg feed, ALA 500 mg/kg feed or in combination).3. Microscopic changes associated with WB began at one week of age in all groups. The ATA acetate and ALA fed in combination decreased WB severity at two weeks of age (P = 0.05) and ATA alone or in combination reduced severity at three weeks of age compared to the control group (P = 0.05). Expression of myogenic determination factor 1 and peroxisome proliferator-activated receptor gamma was reduced in all dietary treatments compared to the control at three weeks of age (P ≤ 0.05), which suggested reduced muscle degeneration and lipid deposition.4. ATA and ALA fed both independently and in combination had a positive effect on mitigating WB severity microscopically as early as two weeks of age.
Collapse
Affiliation(s)
- J Wang
- Department of Animal Sciences, The Ohio State University, Wooster, OH, USA
| | - D L Clark
- Department of Animal Sciences, The Ohio State University, Wooster, OH, USA
| | - S K Jacobi
- Department of Animal Sciences, The Ohio State University, Wooster, OH, USA
| | - S G Velleman
- Department of Animal Sciences, The Ohio State University, Wooster, OH, USA
| |
Collapse
|
7
|
Wang J, Clark DL, Jacobi SK, Velleman SG. Effect of vitamin E and omega-3 fatty acids early posthatch supplementation on reducing the severity of wooden breast myopathy in broilers. Poult Sci 2020; 99:2108-2119. [PMID: 32241496 PMCID: PMC7587660 DOI: 10.1016/j.psj.2019.12.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 11/21/2022] Open
Abstract
The wooden breast (WB) myopathy is identified by the palpation of a rigid pectoralis major (P. major) muscle and is characterized as a fibrotic, necrotic P. major muscle disorder in broilers resulting in reduced breast meat quality. Breast muscle affected with WB is under severe oxidative stress and inflammation. The objectives were to identify the effects of dietary vitamin E (VE) and omega-3 (n-3) fatty acids independently or in combination when fed during the starter phase (0-10 D) or grower phase (11-24 D) on growth performance, meat yield, meat quality, and severity of WB myopathy and to determine the most beneficial dietary supplementation period. A total of 210 Ross 708 broiler chicks were randomly assigned into 7 experimental groups with 10 replicates of 3 birds each. The control group was fed with corn-soybean meal basal diet with VE (10 IU/kg) and n-3 fatty acids (n-6/n-3 ratio of 30:1) at a standard level during the entire study (0-58 D). Supplementation of VE (200 IU/kg), n-3 fatty acids (n-6/n-3 ratio of 3:1), or combination of both was performed during the starter phase or grower phase. Growth performance, meat yield, meat quality, and WB scores were obtained. There was no significant difference in final body weight and meat yield when VE was increased (P > 0.05). In contrast, n-3 fatty acids supplementation in starter diets significantly decreased final body weight, hot carcass weight, and chilled carcass weight of broilers (P ≤ 0.05). The P. major muscle from broilers supplemented with VE in starter diets had lower shear force than in grower diets (P ≤ 0.05). Supplemental VE reduced the severity of WB and in starter diets showed a more beneficial effect than those fed VE in the grower diets. These data are suggestive that additional supplementation of dietary VE may reduce the severity of WB and promote breast meat quality without adversely affecting growth performance and meat yield.
Collapse
Affiliation(s)
- Ji Wang
- Department of Animal Sciences, The Ohio State University, Wooster OH 44691, USA
| | - Daniel L Clark
- Department of Animal Sciences, The Ohio State University, Wooster OH 44691, USA
| | - Sheila K Jacobi
- Department of Animal Sciences, The Ohio State University, Wooster OH 44691, USA
| | - Sandra G Velleman
- Department of Animal Sciences, The Ohio State University, Wooster OH 44691, USA.
| |
Collapse
|
8
|
Halevy O. Timing Is Everything-The High Sensitivity of Avian Satellite Cells to Thermal Conditions During Embryonic and Posthatch Periods. Front Physiol 2020; 11:235. [PMID: 32300304 PMCID: PMC7145400 DOI: 10.3389/fphys.2020.00235] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/02/2020] [Indexed: 12/22/2022] Open
Abstract
Myofiber formation is essentially complete at hatch, but myofiber hypertrophy increases posthatch through the assimilation of satellite cell nuclei into myofibers. Satellite cell proliferation and differentiation occur during the early growth phase, which in meat-type poultry terminates at around 8 days posthatch. Thus, any factor that affects the accumulation of satellite cells during late-term embryogenesis or early posthatch will dictate long-term muscle growth. This review will focus on the intimate relationship between thermal conditions during chick embryogenesis and the early posthatch period, and satellite cell myogenesis and pectoralis growth and development. Satellite cells are highly sensitive to temperature changes, particularly when those changes occur during crucial periods of their myogenic activity. Therefore, timing, temperature, and duration of thermal treatments have a great impact on satellite cell activity and fate, affecting muscle development and growth in the long run. Short and mild thermal manipulations during embryogenesis or thermal conditioning in the early posthatch period promote myogenic cell proliferation and differentiation, and have long-term promotive effects on muscle growth. However, chronic heat stress during the first 2 weeks of life has adverse effects on these parameters and may lead to muscle myopathies.
Collapse
Affiliation(s)
- Orna Halevy
- Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
9
|
Velleman SG, Coy CS. Research Note: Effect of selection for body weight on the adipogenic conversion of turkey myogenic satellite cells by Syndecan-4 and its covalently attached N-glycosylation chains. Poult Sci 2020; 99:1209-1215. [PMID: 32029150 PMCID: PMC7587650 DOI: 10.1016/j.psj.2019.12.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/01/2019] [Indexed: 11/26/2022] Open
Abstract
Adult myoblasts, satellite cells, will proliferate, and differentiate into myotubes in vitro. However, changes in environmental and nutritional conditions will result in the satellite cells differentiating into adipocyte-like cells synthesizing lipids. Prior research has shown that levels of N-glycosylation and heparan sulfate can promote or prevent the adipogenic conversion of myogenic satellite cells. Syndecan-4, an N-glycosylated heparan sulfate proteoglycan, has been shown to play key roles in satellite cell proliferation and migration. The objective of the current study was to determine if syndecan-4, and syndecan-4 N-glycosylation and heparan sulfate chain levels altered the conversion of satellite cells to an adipogenic cell fate and if growth selection affected the response of the satellite cells. Over-expression of syndecan-4, syndecan-4 without N-glycosylated chains but with its heparan sulfate chains attached, syndecan-4 without heparan sulfate chains with its N-glycosylation chains, and syndecan-4 without N-glycosylation and heparan sulfate chains was measured for lipid accumulation in pectoralis major muscle satellite cells isolated from the Randombred Control line 2 (RBC2) and 16 wk body weight (F line) turkeys. The F line was selected from the RBC2 line for only 16 wk body weight. Results from this study demonstrated that wild type levels of syndecan-4 and its covalently attached N-glycosylation chains play a key role in regulating the conversion of pectoralis major muscle satellite cells to an adipogenic lineage while selection for body weight was not a major contributing factor in this conversion.
Collapse
Affiliation(s)
- Sandra G Velleman
- The Ohio State University/Ohio Agricultural Research and Development Center, 1680 Madison Ave, Wooster OH 44691, USA.
| | - Cynthia S Coy
- The Ohio State University/Ohio Agricultural Research and Development Center, 1680 Madison Ave, Wooster OH 44691, USA
| |
Collapse
|
10
|
Velleman SG, Clark DL, Tonniges JR. The effect of nutrient restriction and syndecan-4 or glypican-1 knockdown on the differentiation of turkey pectoralis major satellite cells differing in age and growth selection. Poult Sci 2020; 98:6078-6090. [PMID: 31180126 DOI: 10.3382/ps/pez304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/16/2019] [Indexed: 11/20/2022] Open
Abstract
Skeletal muscle growth is mediated by the proliferation and differentiation of satellite cells, whose activity is affected by both nutrition and the expression of syndecan-4 and glypican-1. Previous research has not addressed if there is an interactive effect of nutrition with the expression of syndecan-4 and glypican-1. Thus, the objective of the current study was to determine if the response of satellite cells to nutrient restriction was altered by syndecan-4 or glypican-1 knockdown and if age and growth selection are factors. Satellite cells were isolated from pectoralis major muscle of 1-day, 7-wk, and 16-wk-old turkeys selected for increased 16-wk body weight (F line) and the randombred control (RBC2) line from which the F line was selected. Syndecan-4 or glypican-1 expression was knocked down in both lines using small interfering RNAs along with nutrient restriction of 0 or 20% of the standard cell culture medium either applied during proliferation with subsequent normal differentiation medium (RN) or during differentiation with preceding normal proliferation medium (NR). For both lines, nutrient restriction and syndecan-4 or glypican-1 knockdown had an independent and additive effect on satellite cell differentiation at 72 h of differentiation except for 1 d satellite cells. The 1 d satellite cell differentiation was increased by RN treatment, but when combined with syndecan-4 or glypican-1 knockdown, the increase in differentiation was negated. At 48 h of differentiation, syndecan-4 knockdown in 7 and 16 wk satellite cells and glypican-1 knockdown in 7 wk cells cancelled the effect of the RN treatment, but enhanced the effect of NR treatment at 24 h of differentiation. Growth selection had little effect on the interaction between nutrient restriction and syndecan-4 or glypican-1 knockdown. Taken together, these data demonstrate that the satellite cell response to nutrition is dependent on the expression of syndecan-4 and glypican-1 in an age-dependent manner with growth selection having little impact.
Collapse
Affiliation(s)
- Sandra G Velleman
- The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Daniel L Clark
- The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Jeffrey R Tonniges
- The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| |
Collapse
|
11
|
Tonniges JR, Velleman SG. Nutrient restriction and migration of turkey satellite cells. Poult Sci 2019; 98:7090-7096. [PMID: 31222280 PMCID: PMC8913961 DOI: 10.3382/ps/pez349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/11/2019] [Indexed: 11/20/2022] Open
Abstract
Post hatch muscle growth and the repair or regeneration of muscle after myofiber injury is mediated by satellite cells. Satellite cells proliferate, migrate, differentiate, and fuse with growing or regenerating myofibers. The proliferation and differentiation of satellite cells are affected by nutrition, but it is unknown how nutrition impacts satellite cell migration. The objective of the study was to determine the effect of a nutrient restriction on satellite cell migration. Satellite cells from the pectoralis major muscle of 1 and 49-day-old Randombred Control Line 2 turkeys were grown in culture, and migration was measured using a wound healing assay. Nutrient restrictions of 0, 5, 10, and 20% of the standard culture medium were applied starting immediately after scratch or 24 h prior to scratch. Nutrient restrictions of 5 and 20% increased 1 D satellite cell migration at 6 h post scratch compared to 1 D satellite cells with standard culture medium but had no effect after 12 h post scratch. Nutrient restrictions started 24 h prior to scratch increased 1 D satellite cell migration at 6 and 12 h post scratch compared to nutrient restrictions started immediately after scratch. The migration of 49 D satellite cells was not affected by the percentage or timing of the nutrient restriction. These data suggest that nutrition has only a minor effect on the migration of turkey pectoralis major muscle satellite cells. Therefore, the influence of nutrition on satellite cell migration is likely not an important factor for evaluating poultry diet formulations to optimize muscle growth and structure for improved meat protein and fat content as well as meat texture.
Collapse
Affiliation(s)
- Jeffrey R Tonniges
- The Ohio State University/Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691
| | - Sandra G Velleman
- The Ohio State University/Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691
| |
Collapse
|
12
|
|
13
|
|
14
|
Affiliation(s)
- Z. Uni
- Department of Animal Sciences, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, POB 12, Rehovot 76–100, Israel
| | - R.P. Ferket
- Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695–7608, USA
| |
Collapse
|
15
|
Omede A, Ahiwe E, Iji P. Effectiveness of Early Supplementation of a Processed Soy Protein Product and Route of Application for Broiler Chickens. J APPL POULTRY RES 2019. [DOI: 10.3382/japr/pfz003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
16
|
Velleman SG, Clark DL, Tonniges JR. The effect of nutrient restriction on the proliferation and differentiation of turkey pectoralis major satellite cells differing in age and growth rate. Poult Sci 2019; 98:1893-1902. [DOI: 10.3382/ps/pey509] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/24/2018] [Indexed: 11/20/2022] Open
|
17
|
Moran ET. Clutch formation and nest activities by the setting hen synchronize chick emergence with intestinal development to foster viability. Anim Feed Sci Technol 2019. [DOI: 10.1016/j.anifeedsci.2018.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
18
|
Velleman SG. Recent Developments in Breast Muscle Myopathies Associated with Growth in Poultry. Annu Rev Anim Biosci 2019; 7:289-308. [DOI: 10.1146/annurev-animal-020518-115311] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The functional unit in skeletal muscle is the multinucleated myofiber, which is composed of parallel arrays of microfibrils. The myofiber and sarco-mere structure of skeletal muscle are established during embryogenesis, when mononuclear myoblast cells fuse to form multinucleated myotubes and develop into muscle fibers. With the myoblasts permanently unable to enter a proliferative state again after they fuse to form the multinucleated myotube, postnatal myofiber growth, muscle homeostasis, and myofiber regeneration are dependent on a myogenic stem cell, the satellite cell. Because the satellite cell is a partially differentiated stem cell controlling the state of skeletal muscle structure throughout the life of the bird, it can impact muscle development and structure, growth, and regeneration and, subsequently, meat quality. When myofibers are damaged, muscle repair is dependent on the satellite cells. Regenerated myofibers after the repair process should be similar to the original muscle fiber. Despite significant improvements in meat-type birds, degenerative myopathies have arisen. In many of these degenerative breast muscle myopathies, like Wooden Breast, satellite cell–mediated regeneration of muscle is suppressed. Thus, the biological function of avian myogenic satellite cells and their influence on cellular mechanisms affecting breast muscle development and growth, function during degenerative myopathies, and meat quality are discussed.
Collapse
Affiliation(s)
- Sandra G. Velleman
- Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691, USA
| |
Collapse
|
19
|
Piestun Y, Patael T, Yahav S, Velleman SG, Halevy O. Early posthatch thermal stress affects breast muscle development and satellite cell growth and characteristics in broilers. Poult Sci 2018; 96:2877-2888. [PMID: 28444312 DOI: 10.3382/ps/pex065] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 03/01/2017] [Indexed: 11/20/2022] Open
Abstract
Heat or cold stress, can disrupt well-being and physiological responses in birds. This study aimed to elucidate the effects of continuous heat exposure in the first 2 wk of age on muscle development in broilers, with an emphasis on the pectoralis muscle satellite cell population. Chicks were reared for 13 d under either commercial conditions or a temperature regime that was 5°C higher. Body and muscle weights, as well as absolute muscle growth were lower in heat-exposed chicks from d 6 onward. The number of satellite cells derived from the experimental chicks was higher in the heat-treated group on d 3 but lower on d 8 and 13 compared to controls. This was reflected in a lower number of myonuclei expressing proliferating nuclear cell antigen in cross sections of pectoralis major muscle sampled on d 8. However, a TUNEL assay revealed similar cell survival in both groups. Mean myofiber diameter and distribution were lower in muscle sections sampled on d 8 and 13 in heat-treated versus control group, suggesting that the lower muscle growth is due to changes in muscle hypertrophy. Oil-Red O staining showed a higher number of satellite cells with lipids in the heat-treated compared to the control group on these days. Moreover, lipid deposition was observed in pectoralis muscle cross sections derived from the heat-treated chicks on d 13, whereas the controls barely exhibited any lipid staining. The gene and protein expression levels of CCAAT/enhancer binding protein β in pectoralis muscle from the heat-treated group were significantly higher on d 13 than in controls, while myogenin levels were similar. The results suggest high sensitivity of muscle progenitor cells in the early posthatch period at a time when they are highly active, to chronic heat exposure, leading to impaired myogenicity of the satellite cells and increased fat deposition.
Collapse
Affiliation(s)
- Yogev Piestun
- Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot, Israel.,Institute of Animal Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Tomer Patael
- Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shlomo Yahav
- Institute of Animal Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Sandra G Velleman
- The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, Ohio, USA
| | - Orna Halevy
- Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
20
|
Clark DL, McCormick JL, Velleman SG. Effect of incubation temperature on neuropeptide Y and neuropeptide Y receptors in turkey and chicken satellite cells. Comp Biochem Physiol A Mol Integr Physiol 2018; 219-220:58-66. [PMID: 29505887 DOI: 10.1016/j.cbpa.2018.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/27/2018] [Accepted: 02/27/2018] [Indexed: 12/21/2022]
Abstract
Neuropeptide Y (NPY) is an appetite stimulating peptide released from the central nervous system and impacts the function of many different cell types. A recent transcriptome study showed that NPY expression was altered when turkey breast muscle satellite cells were incubated at low or high temperatures, suggesting NPY may mediate temperature effects on satellite cells. However, to date minimal information exists describing the expression and function of NPY in satellite cells. The objective of this study was to determine how temperature impacts NPY and NPY receptor gene expression in satellite cells isolated from turkeys and chickens with differing genetic lineages. Two broiler and two turkey breast muscle satellite cell lines were incubated at 35, 38 or 41 °C during proliferation and differentiation. In both turkey lines, NPY, and receptors NPY2R and NPY5R expression increased at elevated temperatures after 72 h of proliferation. During differentiation NPY and NPY5R expression increased in both turkey lines with higher temperatures, whereas NPY2R was minimally affected by temperature. In contrast, in both chicken cell lines there were few significant differences for NPY and NPY receptor expression across temperature during proliferation. During differentiation, the temperature effect was different in the two chicken cell lines. In the BPM8 chicken line, there were few differences in NPY and NPY receptors across temperature; whereas elevated temperatures increased NPY, NPY2R, and NPY5R expression in the 708 line. The differences between turkey and chicken lines suggest NPY has species specific satellite cell functions in response to heat stress.
Collapse
Affiliation(s)
- Daniel L Clark
- Department of Animal Sciences, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, OH 44691, United States.
| | - Janet L McCormick
- Department of Animal Sciences, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, OH 44691, United States
| | - Sandra G Velleman
- Department of Animal Sciences, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, OH 44691, United States
| |
Collapse
|
21
|
Reed KM, Mendoza KM, Strasburg GM, Velleman SG. Response of Turkey Muscle Satellite Cells to Thermal Challenge. II. Transcriptome Effects in Differentiating Cells. Front Physiol 2017; 8:948. [PMID: 29249977 PMCID: PMC5714890 DOI: 10.3389/fphys.2017.00948] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/08/2017] [Indexed: 01/21/2023] Open
Abstract
Background: Exposure of poultry to extreme temperatures during the critical period of post-hatch growth can seriously affect muscle development and thus compromise subsequent meat quality. This study was designed to characterize transcriptional changes induced in turkey muscle satellite cells by thermal challenge during differentiation. Our goal is to better define how thermal stress alters breast muscle ultrastructure and subsequent development. Results: Skeletal muscle satellite cells previously isolated from the Pectoralis major muscle of 7-wk-old male turkeys (Meleagris gallopavo) from two breeding lines: the F-line (16 wk body weight-selected) and RBC2 (randombred control line) were used in this study. Cultured cells were induced to differentiate at 38°C (control) or thermal challenge temperatures of 33 or 43°C. After 48 h of differentiation, cells were harvested and total RNA was isolated for RNAseq analysis. Analysis of 39.9 Gb of sequence found 89% mapped to the turkey genome (UMD5.0, annotation 101) with average expression of 18,917 genes per library. In the cultured satellite cells, slow/cardiac muscle isoforms are generally present in greater abundance than fast skeletal isoforms. Statistically significant differences in gene expression were observed among treatments and between turkey lines, with a greater number of genes affected in the F-line cells following cold treatment whereas more differentially expressed (DE) genes were observed in the RBC2 cells following heat treatment. Many of the most significant pathways involved signaling, consistent with ongoing cellular differentiation. Regulation of Ca2+ homeostasis appears to be significantly affected by temperature treatment, particularly cold treatment. Conclusions: Satellite cell differentiation is directly influenced by temperature at the level of gene transcription with greater effects attributed to selection for fast growth. At lower temperature, muscle-associated genes in the satellite cells were among the genes with the greatest down regulation consistent with slower differentiation and smaller myotubes. Fewer expression differences were observed in the differentiating cells than previously observed for proliferating cells. This suggests the impact of temperature on satellite cells occurs primarily at early points in satellite cell activation.
Collapse
Affiliation(s)
- Kent M. Reed
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Kristelle M. Mendoza
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Gale M. Strasburg
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Sandra G. Velleman
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, Ohio State University, Wooster, OH, United States
| |
Collapse
|
22
|
Clark D, Walter K, Velleman S. Incubation temperature and time of hatch impact broiler muscle growth and morphology. Poult Sci 2017; 96:4085-4095. [DOI: 10.3382/ps/pex202] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/13/2017] [Indexed: 11/20/2022] Open
|
23
|
Clark DL, Strasburg GM, Reed KM, Velleman SG. Influence of temperature and growth selection on turkey pectoralis major muscle satellite cell adipogenic gene expression and lipid accumulation. Poult Sci 2017; 96:1015-1027. [PMID: 28339556 DOI: 10.3382/ps/pew374] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022] Open
Abstract
p. major Immature poults have an inefficient thermoregulatory system, and therefore extreme ambient temperatures can impact their internal body temperature. Satellite cells, the only posthatch myonuclei source, are multipotential stem cells and sensitive to temperature. Selection for faster-growing, high-yielding birds has altered satellite-cell properties. The objective of the current study was to determine how temperature affects adipogenic properties of satellite cells isolated from the pectoralis major ( ) muscle of Randombred Control line ( ) and F line turkeys selected only for increased 16-wk body weight from the RBC2 line. Satellite cells were cultured at 2°C incremental temperatures between 33 and 43°C and compared to cells cultured at the control temperature of 38°C to ascertain temperature effects on lipid accumulation and expression of adipogenic genes: CCAAT/enhancer-binding protein-β ( ), peroxisome proliferator-activated receptor-γ ( ), and stearoyl-CoA desaturase ( ). During proliferation, the amount of quantifiable lipid in both F and RBC2 satellite cells increased at temperatures above 38°C ( P < 0.01) and decreased at temperatures below 38°C ( P < 0.01). Above 38°C, RBC2 satellite cells had more lipid ( P = 0.02) compared to the F line, whereas there were few differences between lines below 38°C. At 72 h of proliferation, expression of C/EBPβ , PPARγ , and SCD decreased ( P ≤ 0.02) as temperatures increased from 33 to 43°C in both cell lines. During differentiation expression of C/EBPβ increased ( P < 0.01) as temperatures increased from 33 to 43°C in both cell lines. In F line satellite cells, PPARγ expression decreased ( P < 0.01) with increasing temperatures during differentiation, whereas there was no linear trend in RBC2 cells. During differentiation expression of SCD increased as temperatures increased ( P < 0.01) in RBC2 cells, and there was no linear trend within the F line. Results from the current study suggest that environmental temperature can affect p. major satellite cellular fate; however, selection for increased body weight had little impact on these cellular responses.
Collapse
Affiliation(s)
- D L Clark
- Department of Animal Sciences, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster OH; 44691
| | - G M Strasburg
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824
| | - K M Reed
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108
| | - S G Velleman
- Department of Animal Sciences, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster OH; 44691
| |
Collapse
|
24
|
Reed KM, Mendoza KM, Abrahante JE, Barnes NE, Velleman SG, Strasburg GM. Response of turkey muscle satellite cells to thermal challenge. I. transcriptome effects in proliferating cells. BMC Genomics 2017; 18:352. [PMID: 28477619 PMCID: PMC5420122 DOI: 10.1186/s12864-017-3740-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/27/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Climate change poses a multi-dimensional threat to food and agricultural systems as a result of increased risk to animal growth, development, health, and food product quality. This study was designed to characterize transcriptional changes induced in turkey muscle satellite cells cultured under cold or hot thermal challenge to better define molecular mechanisms by which thermal stress alters breast muscle ultrastructure. RESULTS Satellite cells isolated from the pectoralis major muscle of 7-weeks-old male turkeys from two breeding lines (16 weeks body weight-selected and it's randombred control) were proliferated in culture at 33 °C, 38 °C or 43 °C for 72 h. Total RNA was isolated and 12 libraries subjected to RNAseq analysis. Statistically significant differences in gene expression were observed among treatments and between turkey lines with a greater number of genes altered by cold treatment than by hot and fewer differences observed between lines than between temperatures. Pathway analysis found that cold treatment resulted in an overrepresentation of genes involved in cell signaling/signal transduction and cell communication/cell signaling as compared to control (38 °C). Heat-treated muscle satellite cells showed greater tendency towards expression of genes related to muscle system development and differentiation. CONCLUSIONS This study demonstrates significant transcriptome effects on turkey skeletal muscle satellite cells exposed to thermal challenge. Additional effects on gene expression could be attributed to genetic selection for 16 weeks body weight (muscle mass). New targets are identified for further research on the differential control of satellite cell proliferation in poultry.
Collapse
Affiliation(s)
- Kent M. Reed
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN USA
| | - Kristelle M. Mendoza
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN USA
| | - Juan E. Abrahante
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN USA
| | - Natalie E. Barnes
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN USA
| | - Sandra G. Velleman
- Department of Animal Sciences, The Ohio State University, Columbus, OH USA
- Ohio Agricultural Research and Development Center, Wooster, OH USA
| | - Gale M. Strasburg
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI USA
| |
Collapse
|
25
|
Abousaad S, Lassiter K, Piekarski A, Chary P, Striplin K, Christensen K, Bielke L, Hargis B, Dridi S, Bottje W. Effect of in ovo feeding of dextrin-iodinated casein in broilers: II. Hatch window and growth performance. Poult Sci 2017; 96:1478-1484. [DOI: 10.3382/ps/pew439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 11/21/2016] [Indexed: 11/20/2022] Open
|
26
|
Powell DJ, Velleman SG, Cowieson AJ, Muir WI. Methionine concentration in the pre-starter diet: its effect on broiler breast muscle development. ANIMAL PRODUCTION SCIENCE 2017. [DOI: 10.1071/an15479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The effect of feeding diets of variable methionine concentration on breast muscle development was assessed in Ross 308 broiler chicks. Four isonitrogenous and isoenergetic starter diets were formulated to contain 7.8, 5.9, 4.6, and 3.4 g methionine/kg diet, and were provided for the first 7 days post-hatch. At 7 days of age all birds were placed on an industry standard starter diet with 5.9 g methionine/kg diet until 14 days, and then provided standard broiler grower (until 28 days) and finisher (until 42 days) diets. Birds were weighed periodically throughout the study and feed intake and feed conversion ratio were determined. Ten birds per treatment were sacrificed and weighed on 0, 1, 4, 7, 14, 21, 28, 35, and 42 days. The pectoralis major (breast muscle) was then removed from the carcass and weighed. Samples of breast muscle were collected for genetic and histological analysis. Expression of the myogenic marker genes, myogenic differentiation factor 1 and myogenin, which regulate satellite cell activity, and the adipogenic marker gene, peroxisome proliferator-activated receptor gamma (PPARγ), was measured. Histological assessment of breast muscle morphology and fat deposition morphology was also performed. No effect of dietary treatment was observed on body or breast muscle weight, feed intake or feed conversion ratio. Marker gene expression was also similar in all treatment groups, except for PPARγ. Significantly higher expression of PPARγ was observed at 0 days in the 5.9 g methionine/kg diet treatment, before dietary treatments were provided. Expression of PPARγ did not differ among treatment groups on any subsequent day. Methionine dietary treatment had no effect on the morphological structure of the breast muscle, or intramuscular fat deposition. These results suggest that under the conditions of this study, satellite cell activity in the early post-hatch chick, and subsequent muscle development, were not responsive to the variable methionine manipulations tested in the pre-starter period.
Collapse
|
27
|
Powell D, Velleman S, Cowieson A, Singh M, Muir W. Influence of chick hatch time and access to feed on broiler muscle development. Poult Sci 2016; 95:1433-48. [DOI: 10.3382/ps/pew047] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/10/2016] [Indexed: 11/20/2022] Open
|
28
|
Harding RL, Halevy O, Yahav S, Velleman SG. The effect of temperature on proliferation and differentiation of chicken skeletal muscle satellite cells isolated from different muscle types. Physiol Rep 2016; 4:4/8/e12770. [PMID: 27125667 PMCID: PMC4848725 DOI: 10.14814/phy2.12770] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/31/2016] [Indexed: 11/24/2022] Open
Abstract
Skeletal muscle satellite cells are a muscle stem cell population that mediate posthatch muscle growth and repair. Satellite cells respond differentially to environmental stimuli based upon their fiber-type of origin. The objective of this study was to determine how temperatures below and above the in vitro control of 38°C affected the proliferation and differentiation of satellite cells isolated from the chicken anaerobic pectoralis major (p. major) or mixed fiber biceps femoris (b.femoris) muscles. The satellite cells isolated from the p. major muscle were more sensitive to both cold and hot temperatures compared to the b.femoris satellite cells during both proliferation and differentiation. The expressions of myogenic regulatory transcription factors were also different between satellite cells from different fiber types. MyoD expression, which partially regulates proliferation, was generally expressed at higher levels in p. major satellite cells compared to the b.femoris satellite cells from 33 to 43°C during proliferation and differentiation. Similarly, myogenin expression, which is required for differentiation, was also expressed at higher levels in p. major satellite cells in response to both cold and hot temperatures during proliferation and differentiation than b. femoris satellite cells. These data demonstrate that satellite cells from the anaerobic p. major muscle are more sensitive than satellite cells from the aerobic b. femoris muscle to both hot and cold thermal stress during myogenic proliferation and differentiation.
Collapse
Affiliation(s)
- Rachel L Harding
- Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio
| | - Orna Halevy
- Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shlomo Yahav
- Institute of Animal Sciences, Agricultural Research Organization The Volcani Center, Bet Dagan, Israel
| | - Sandra G Velleman
- Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio
| |
Collapse
|
29
|
Velleman SG. Relationship of Skeletal Muscle Development and Growth to Breast Muscle Myopathies: A Review. Avian Dis 2016; 59:525-31. [PMID: 26629627 DOI: 10.1637/11223-063015-review.1] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Selection in meat-type birds has focused on growth rate, muscling, and feed conversion. These strategies have made substantial improvements but have affected muscle structure, repair mechanisms, and meat quality, especially in the breast muscle. The increase in muscle fiber diameters has reduced available connective tissue spacing, reduced blood supply, and altered muscle metabolism in the breast muscle. These changes have increased muscle fiber degeneration and necrosis but have limited muscle repair mechanisms mediated by the adult myoblast (satellite cell) population of cells, likely resulting in the onset of myopathies. This review focuses on muscle growth mechanisms and how changes in the cellular development of the breast muscle may be associated with breast muscle myopathies occurring in meat-type birds.
Collapse
Affiliation(s)
- Sandra G Velleman
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691
| |
Collapse
|
30
|
Clark DL, Coy CS, Strasburg GM, Reed KM, Velleman SG. Temperature effect on proliferation and differentiation of satellite cells from turkeys with different growth rates. Poult Sci 2016; 95:934-47. [PMID: 26769270 DOI: 10.3382/ps/pev437] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 11/05/2015] [Indexed: 11/20/2022] Open
Abstract
Poultry selected for growth have an inefficient thermoregulatory system and are more sensitive to temperature extremes. Satellite cells are precursors to skeletal muscle and mediate all posthatch muscle growth. Their physiological functions are affected by temperature. The objective of the current study was to determine how temperature affects satellite cells isolated from the pectoralis major (p. major) muscle (breast muscle) of turkeys selected for increased 16 wk body weight (F line) in comparison to a randombred control line (RBC2) from which the F line originated. Pectoralis major muscle satellite cells were thermally challenged by culturing between 33°C and 43°C to analyze the effects of cold and heat on proliferation and differentiation as compared to control temperature of 38°C. Expression levels of myogenic regulatory factors: myogenic differentiation factor 1 (MYOD1) and myogenin (MYOG) were quantified by quantitative polymerase chain reaction (qPCR). At all sampling times, proliferation increased at a linear rate across temperature in both the RBC2 and F lines. Differentiation also increased at a linear rate across temperature from 33 to 41°C at all sampling times in both the F and RBC2 lines. Satellite cells isolated from F line turkeys were more sensitive to both hot and cold temperatures as proliferation and differentiation increased to a greater extent across temperature (33 to 43°C) when compared with the RBC2 line. Expression of MYOD1 and MYOG increased as temperatures increased from 33 to 41°C at all sampling times in both the F and RBC2 lines. These results demonstrate that satellite cell function is sensitive to both cold and hot temperatures and p. major muscle satellite cells from F line turkeys are more sensitive to temperature extremes than RBC2 satellite cells.
Collapse
Affiliation(s)
- D L Clark
- Department of Animal Sciences, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster OH; 44691
| | - C S Coy
- Department of Animal Sciences, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster OH; 44691
| | - G M Strasburg
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824
| | - K M Reed
- Department of Veterinary and Biomedical Sciences University of Minnesota, St. Paul, MN 55108
| | - S G Velleman
- Department of Animal Sciences, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster OH; 44691
| |
Collapse
|
31
|
Harding RL, Clark DL, Halevy O, Coy CS, Yahav S, Velleman SG. The effect of temperature on apoptosis and adipogenesis on skeletal muscle satellite cells derived from different muscle types. Physiol Rep 2015; 3:3/9/e12539. [PMID: 26341996 PMCID: PMC4600383 DOI: 10.14814/phy2.12539] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Satellite cells are multipotential stem cells that mediate postnatal muscle growth and respond differently to temperature based upon aerobic versus anaerobic fiber-type origin. The objective of this study was to determine how temperatures below and above the control, 38°C, affect the fate of satellite cells isolated from the anaerobic pectoralis major (p. major) or mixed fiber biceps femoris (b. femoris). At all sampling times, p. major and b. femoris cells accumulated less lipid when incubated at low temperatures and more lipid at elevated temperatures compared to the control. Satellite cells isolated from the p. major were more sensitive to temperature as they accumulated more lipid at elevated temperatures compared to b. femoris cells. Expression of adipogenic genes, CCAAT/enhancer-binding protein β (C/EBPβ) and proliferator-activated receptor gamma (PPARγ) were different within satellite cells isolated from the p. major or b. femoris. At 72 h of proliferation, C/EBPβ expression increased with increasing temperature in both cell types, while PPARγ expression decreased with increasing temperature in p. major satellite cells. At 48 h of differentiation, both C/EBPβ and PPARγ expression increased in the p. major and decreased in the b. femoris, with increasing temperature. Flow cytometry measured apoptotic markers for early apoptosis (Annexin-V-PE) or late apoptosis (7-AAD), showing less than 1% of apoptotic satellite cells throughout all experimental conditions, therefore, apoptosis was considered biologically not significant. The results support that anaerobic p. major satellite cells are more predisposed to adipogenic conversion than aerobic b. femoris cells when thermally challenged.
Collapse
Affiliation(s)
- Rachel L Harding
- Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio
| | - Daniel L Clark
- Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio
| | - Orna Halevy
- Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Cynthia S Coy
- Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio
| | - Shlomo Yahav
- Institute of Animal Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Sandra G Velleman
- Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio
| |
Collapse
|
32
|
Velleman SG. Effect of Growth Selection on Adipogenic Gene Expression During the Development of the Turkey Breast Muscle. ACTA ACUST UNITED AC 2014. [DOI: 10.3923/ijps.2014.680.684] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
Alway SE, Myers MJ, Mohamed JS. Regulation of satellite cell function in sarcopenia. Front Aging Neurosci 2014; 6:246. [PMID: 25295003 PMCID: PMC4170136 DOI: 10.3389/fnagi.2014.00246] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 09/01/2014] [Indexed: 01/08/2023] Open
Abstract
The mechanisms contributing to sarcopenia include reduced satellite cell (myogenic stem cell) function that is impacted by the environment (niche) of these cells. Satellite cell function is affected by oxidative stress, which is elevated in aged muscles, and this along with changes in largely unknown systemic factors, likely contribute to the manner in which satellite cells respond to stressors such as exercise, disuse, or rehabilitation in sarcopenic muscles. Nutritional intervention provides one therapeutic strategy to improve the satellite cell niche and systemic factors, with the goal of improving satellite cell function in aging muscles. Although many elderly persons consume various nutraceuticals with the hope of improving health, most of these compounds have not been thoroughly tested, and the impacts that they might have on sarcopenia and satellite cell function are not clear. This review discusses data pertaining to the satellite cell responses and function in aging skeletal muscle, and the impact that three compounds: resveratrol, green tea catechins, and β-Hydroxy-β-methylbutyrate have on regulating satellite cell function and therefore contributing to reducing sarcopenia or improving muscle mass after disuse in aging. The data suggest that these nutraceutical compounds improve satellite cell function during rehabilitative loading in animal models of aging after disuse (i.e., muscle regeneration). While these compounds have not been rigorously tested in humans, the data from animal models of aging provide a strong basis for conducting additional focused work to determine if these or other nutraceuticals can offset the muscle losses, or improve regeneration in sarcopenic muscles of older humans via improving satellite cell function.
Collapse
Affiliation(s)
- Stephen E. Alway
- Laboratory of Muscle Biology and Sarcopenia, Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- West Virginia Clinical and Translational Science Institute, Morgantown, WV, USA
- Center for Cardiovascular and Respiratory Sciences, Morgantown, WV, USA
| | - Matthew J. Myers
- Laboratory of Muscle Biology and Sarcopenia, Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Junaith S. Mohamed
- Laboratory of Muscle Biology and Sarcopenia, Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
34
|
Powell D, McFarland D, Cowieson A, Muir W, Velleman S. The effect of nutritional status on myogenic gene expression of satellite cells derived from different muscle types. Poult Sci 2014; 93:2278-88. [DOI: 10.3382/ps.2013-03810] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
35
|
Velleman SG, Coy CS, Emmerson DA. Effect of the timing of posthatch feed restrictions on the deposition of fat during broiler breast muscle development. Poult Sci 2014; 93:2622-7. [PMID: 25085937 DOI: 10.3382/ps.2014-04206] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effect of the timing of posthatch feed restriction on adipose deposition and adipogenic gene expression in the broiler pectoralis major muscle was studied by applying a 20% feed restriction either the first or second week after hatch. Broiler chicks at hatch were divided into a full-fed (control) group and a 20% feed restriction group. The expression of adipogenic genes, peroxisome proliferator-activated receptor gamma (PPARγ), and CCAAT/enhancer-binding protein alpha (C/EBPα) were measured. The expression of both PPARγ and C/EBPα was affected by the wk 1 feed restriction with expression significantly increased during the first week posthatch. The deposition of fat within the pectoralis major muscle was affected by the timing of the feed restriction. Extensive fat depots were present by 27 d of age in the pectoralis major muscle of the wk 1 restricted group compared with the control. Fat deposition was eliminated when the 20% feed restriction occurred in wk 2. Taken together, these results demonstrate that the timing of early posthatch feed restrictions in chicks is critical in the deposition of fat in the pectoralis major muscle and expression of adipogenic genes.
Collapse
Affiliation(s)
- S G Velleman
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Ave, Wooster 44691
| | - C S Coy
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Ave, Wooster 44691
| | - D A Emmerson
- Aviagen Incorporated, 5015 Bradford Dr, Huntsville, AL 35805
| |
Collapse
|
36
|
Velleman SG, Coy CS, Emmerson DA. Effect of the timing of posthatch feed restrictions on broiler breast muscle development and muscle transcriptional regulatory factor gene expression. Poult Sci 2014; 93:1484-94. [PMID: 24879698 DOI: 10.3382/ps.2013-03813] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effect of the timing of an immediate posthatch feed restriction on broiler pectoralis major muscle development was studied by applying a 20% feed restriction either the first or second week after hatch. Pectoralis major muscle morphological structure and the expression of the myogenic transcriptional regulatory factors, myogenic determination factor 1 (MyoD), myogenic regulatory factor 4 (MRF4), and myogenin, were measured. Broiler chicks at hatch were divided into a full-fed (control) group and a 20% feed restriction treatment administered either the first or second week posthatch. At the end of the feed restriction, the chicks were placed on a full feed ad libitum diet with no further restrictions. Muscle fiber diameter and fiber bundle size of the pectoralis major muscle were smaller in the wk 1 restricted group than the control group by 7 d of age. By 15 d of age through the duration of the study, d 43, both endomysial and perimysial connective tissue spacing were diminished in the wk 1 feed-restricted group. The expression of MyoD, MRF4, and myogenin was affected by the wk 1 feed restriction. The expression of MyoD and MRF4 was significantly increased during the first week posthatch. Both of the genes have been shown to be expressed during proliferation especially MyoD, which is required for muscle cell proliferation. In contrast, myogenin expression was significantly decreased. Myogenin expression is required for differentiation to occur. The morphological changes and gene expression changes observed with the wk 1 feed restriction were eliminated by moving the 20% feed restriction to wk 2, which is after the period of maximal myogenic satellite cell mitotic activity. Taken together, these results demonstrate that the timing of early posthatch feed restrictions to chicks is critical for the morphological development of the pectoralis major muscle and the expression of genes required for muscle satellite cell proliferation and differentiation.
Collapse
Affiliation(s)
- S G Velleman
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Ave, Wooster 44691
| | - C S Coy
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Ave, Wooster 44691
| | - D A Emmerson
- Aviagen Incorporated, 5015 Bradford Dr, Huntsville, AL 35805
| |
Collapse
|
37
|
Powell DJ, McFarland DC, Cowieson AJ, Muir WI, Velleman SG. The effect of nutritional status and muscle fiber type on myogenic satellite cell fate and apoptosis. Poult Sci 2014; 93:163-73. [PMID: 24570436 DOI: 10.3382/ps.2013-03450] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Satellite cells (SC) are multipotential stem cells that can be induced by nutrition to alter their cellular developmental fate, which may vary depending on their fiber type origin. The objective of the current study was to determine the effect of restricting protein synthesis on inducing adipogenic transdifferentiation and apoptosis of SC originating from fibers of the fast glycolytic pectoralis major (p. major) and fast oxidative and glycolytic biceps femoris (b. femoris) muscles of the chicken. The availability of the essential sulfur amino acids Met and Cys was restricted to regulate protein synthesis during SC proliferation and differentiation. The SC were cultured and treated with 1 of 6 Met/Cys concentrations: 60/192, 30/96 (control), 7.5/24, 3/9.6, 1/3.2, or 0/0 mg/L. Reductions in Met/Cys concentrations from the control level resulted in increased lipid staining and expression of the adipogenic marker genes peroxisome proliferator-activated receptor gamma and stearoyl-CoA desaturase during differentiation in the p. major SC. Although b. femoris SC had increased lipid staining at lower Met/Cys concentrations, there was no increase in expression of either adipogenic gene. For both muscle types, SC Met/Cys, concentration above the control increased the expression of peroxisome proliferator-activated receptor gamma and stearoyl-CoA desaturase during differentiation. As Met/Cys concentration was decreased during proliferation, a dose-dependent decline in all apoptotic cells occurred except for early apoptotic cells in the p. major, which had no treatment effect (P < 0.05). During differentiation, decreasing Met/Cys concentration caused an increase in early apoptotic cells in both fiber types and no effect on late apoptotic cells except for an increase in the p. major 7.5/24 mg/L of Met/Cys treatment. In general, the viability of the SC was unaffected by the Met/Cys concentration except during proliferation in the p. major 0/0 mg/L of Met/Cys treatment, which increased SC viability. These data demonstrate the effect of nutrition on SC transdifferentiation to an adipogenic lineage and apoptosis, and the effect of fiber type on this response in an in vitro context.
Collapse
Affiliation(s)
- D J Powell
- Faculty of Veterinary Science, The University of Sydney, Camden, NSW 2750, Australia
| | | | | | | | | |
Collapse
|
38
|
Harthan LB, McFarland DC, Velleman SG. The effect of nutritional status and myogenic satellite cell age on turkey satellite cell proliferation, differentiation, and expression of myogenic transcriptional regulatory factors and heparan sulfate proteoglycans syndecan-4 and glypican-1. Poult Sci 2014; 93:174-86. [PMID: 24570437 DOI: 10.3382/ps.2013-03570] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Posthatch satellite cell mitotic activity is a critical component of muscle development and growth. Satellite cells are myogenic stem cells that can be induced by nutrition to follow other cellular developmental pathways, and whose mitotic activity declines with age. The objective of the current study was to determine the effect of restricting protein synthesis on the proliferation and differentiation, expression of myogenic transcriptional regulatory factors myogenic determination factor 1, myogenin, and myogenic regulatory factor 4, and expression of the heparan sulfate proteoglycans syndecan-4 and glypican-1 in satellite cells isolated from 1-d-, 7-wk-, and 16-wk-old turkey pectoralis major muscle (1 d, 7 wk, and 16 wk cells, respectively) by using variable concentrations of Met and Cys. Four Met concentrations-30 (control), 7.5, 3, or 0 mg/L with 3.2 mg/L of Cys per 1 mg/L of Met-were used for culture of satellite cells to determine the effect of nutrition and age on satellite cell behavior during proliferation and differentiation. Proliferation was reduced by lower Met and Cys concentrations in all ages at 96 h of proliferation. Differentiation was increased in the 1 d Met-restricted cells, whereas the 7 wk cells treated with 3 mg/L of Met had decreased differentiation. Reduced Met and Cys levels from the control did not significantly affect the 16 wk cells at 72 h of differentiation. However, medium with no Met or Cys suppressed differentiation at all ages. The expression of myogenic determination factor 1, myogenin, myogenic regulatory factor 4, syndecan-4, and glypican-1 was differentially affected by age and Met or Cys treatment. These data demonstrate the age-specific manner in which turkey pectoralis major muscle satellite cells respond to nutritional availability and the importance of defining optimal nutrition to maximize satellite cell proliferation and differentiation for subsequent muscle mass accretion.
Collapse
Affiliation(s)
- Laura B Harthan
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster 44691
| | | | | |
Collapse
|
39
|
Stimulation with monochromatic green light during incubation alters satellite cell mitotic activity and gene expression in relation to embryonic and posthatch muscle growth of broiler chickens. Animal 2014; 8:86-93. [DOI: 10.1017/s1751731113001882] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
40
|
Powell DJ, McFarland DC, Cowieson AJ, Muir WI, Velleman SG. The effect of nutritional status on myogenic satellite cell proliferation and differentiation. Poult Sci 2013; 92:2163-73. [PMID: 23873565 DOI: 10.3382/ps.2013-03107] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Early posthatch satellite cell (SC) mitotic activity is a critical component of muscle development and growth. Satellite cells are stem cells that can be induced by nutrition to follow other cellular developmental pathways. The objective of the current study was to determine the effect of restricting protein synthesis on the proliferation and differentiation of SC, using variable concentrations of Met and Cys to modulate protein synthesis. Broiler pectoralis major SC were cultured and treated with 1 of 6 different Met/Cys concentrations: 60/192, 30/96 (control), 7.5/24, 3/9.6, 1/3.2, or 0/0 mg/L. The effect of Met/Cys concentration on SC proliferation and differentiation was measured, and myonuclear accretion was measured by counting the number of nuclei per myotube during differentiation. The 30/96 mg/L Met/Cys treatment resulted in the highest rate of proliferation compared with all other treatments by 72 h of proliferation (P < 0.05). Differentiation was measured with Met/Cys treatments only during proliferation and the cultures receiving normal differentiation medium (R/N), normal proliferation medium and differentiation medium with variable Met/Cys (N/R), or both proliferation and differentiation receiving variable Met/Cys treatments (R/R). Differentiation responded in a dose-dependent manner to Met/Cys concentration under all 3 of these treatment regimens, with a degree of recovery in the R/N regimen cells following reinstatement of the control medium. Reductions in both proliferation and differentiation were more pronounced as Met/Cys concentrations were further reduced, whereas increased differentiation was observed under the increased Met/Cys concentration treatment when applied during differentiation in the N/R and R/R regimens. The number of nuclei per myotube was significantly decreased in the severely Met/Cys restricted treatments (P < 0.05). These data demonstrate the sensitivity of pectoralis major SC to nutritional availability and the importance of optimal nutrition during both proliferation and differentiation for maximizing SC activity, which will affect subsequent muscle mass accretion.
Collapse
Affiliation(s)
- D J Powell
- The University of Sydney, Camden, New South Wales, Australia
| | | | | | | | | |
Collapse
|
41
|
Henn J, Bockor L, Vieira M, Ribeiro A, Kessler A, Albino L, Rostagno H, Crenshaw J, Campbell J, Rangel L. Inclusion of porcine spray-dried plasma in broiler diets. J APPL POULTRY RES 2013. [DOI: 10.3382/japr.2012-00613] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
42
|
Li Y, Yang X, Ni Y, Decuypere E, Buyse J, Everaert N, Grossmann R, Zhao R. Early-age feed restriction affects viability and gene expression of satellite cells isolated from the gastrocnemius muscle of broiler chicks. J Anim Sci Biotechnol 2012; 3:33. [PMID: 23127173 PMCID: PMC3546929 DOI: 10.1186/2049-1891-3-33] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 11/01/2012] [Indexed: 11/10/2022] Open
Abstract
Background Muscle growth depends on the fusion of proliferate satellite cells to existing myofibers. We reported previously that 0–14 day intermittent feeding led to persistent retardation in myofiber hypertrophy. However, how satellite cells respond to such nutritional insult has not been adequately elucidated. Results One-day-old broiler chicks were allocated to control (Con, ad libitum feeding), intermittent feeding (IF, feed provided on alternate days) and re-feeding (RF, 2 days ad libitum feeding after 12 days of intermittent feeding) groups. Chickens were killed on Day 15 and satellite cells were isolated. When cultured, satellite cells from the IF group demonstrated significant retardation in proliferation and differentiation potential, while RF partly restored the proliferation rate and differentiation potential of the satellite cells. Significant up-regulation of insulin like growth factor I receptor (IGF-IR) (P<0.05) and thyroid hormone receptor α (TRα) (P<0.05), and down-regulation of growth hormone receptor (GHR) (P<0.01) and IGF-I (P<0.01) mRNA expression was observed in freshly isolated IF satellite cells when compared with Con cells. In RF cells, the mRNA expression of IGF-I was higher (P<0.05) and of TRα was lower (P<0.01) than in IF cells, suggesting that RF restored the mRNA expression of TRα and IGF-I, but not of GHR and IGF-IR. The Bax/Bcl-2 ratio tended to increase in the IF group, which was reversed in the RF group (P<0.05), indicating that RF reduced the pro-apoptotic influence of IF. Moreover, no significant effect of T3 was detected on cell survival in IF cells compared with Con (P<0.001) or RF (P<0.05) cells. Conclusions These data suggest that early-age feed restriction inhibits the proliferation and differentiation of satellite cells, induces changes in mRNA expression of the GH/IGF-I and thyroid hormone receptors in satellite cells, as well as blunted sensitivity of satellite cells to T3, and that RF partially reverses these effects. Thus, a moderate nutritional strategy for feed restriction should be chosen in early chick rearing systems.
Collapse
Affiliation(s)
- Yue Li
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, China.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Kornasio R, Halevy O, Kedar O, Uni Z. Effect of in ovo feeding and its interaction with timing of first feed on glycogen reserves, muscle growth, and body weight. Poult Sci 2011; 90:1467-77. [PMID: 21673162 DOI: 10.3382/ps.2010-01080] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chicks are commonly fasted for the first 36 to 72 h posthatch because of the logistics of commercial production. Fasting for 48 to 72 h posthatch results in retarded BW, delayed intestinal development, and lower pectoral muscle weight. This study is focused on the first 36 h of fasting and its interaction with feeding before hatch. Four treatment groups, differing in time of first feed, 6 h [early feeding (EF)] or 36 h [standard feeding procedure (SP)] posthatch, with or without in ovo feeding (IOF) with dextrin and β-hydroxy-β-methylbutyrate-calcium salt in a saline solution, were examined for glycogen status in the liver and pectoral muscle, myogenic cell proliferation, and myofiber diameter in embryos and chickens on various days posthatch. In addition, chicken BW, ADG, pectoral muscle weight, and pectoral muscle percentage of BW until 35 d of age were recorded. Results showed that delaying the first feed for 36 h posthatch (SP group) led to an irreversibly reduced growth rate compared with the EF group. However, IOF affected the growth of chickens in the SP group, whereas the control embryos had depleted glycogen reserves in the liver; IOF-treated embryos had elevated hepatic glycogen contents on embryonic day (E) 19, E20, and the day of hatch. In addition, on d 2 posthatch, although hatchlings in the SP group showed the predicted low levels of glycogen in their livers, birds in the EF group exhibited more than 30-fold and 3-fold increases in liver and muscle glycogen, respectively. In ovo-fed birds in the SP group also exhibited higher glycogen reserves, BW, pectoral muscle weight, and BW gain than control birds in the SP group. In ovo feeding had an immediate effect on promoting myoblast proliferation on E19, whereas on d 3 posthatch, the effect was pronounced only in the EF groups. On d 5, although myoblast proliferation in all groups declined, it remained higher in both IOF groups. These effects were expressed on d 3 and 35 by myofiber diameter. Together, IOF had a long-term supportive effect on BW and posthatch muscle growth when first feed was delayed by 36 h.
Collapse
Affiliation(s)
- R Kornasio
- Department of Animal Science, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
44
|
Işik H, Sezgin E, Avunduk MC. A new software program for pathological data analysis. Comput Biol Med 2010; 40:715-22. [DOI: 10.1016/j.compbiomed.2010.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 05/26/2010] [Accepted: 06/19/2010] [Indexed: 10/19/2022]
|
45
|
Velleman SG, Zhang X, Coy CS, Song Y, McFarland DC. Changes in satellite cell proliferation and differentiation during turkey muscle development. Poult Sci 2010; 89:709-15. [PMID: 20308402 DOI: 10.3382/ps.2009-00467] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Posthatch muscle growth is determined by the activation, differentiation, and fusion of satellite cells. Satellite cells composing an individual muscle are heterogeneous, which will differentially affect muscle growth. The proliferation and differentiation of turkey primary pectoralis major muscle cells were investigated in vitro at 1 d of age and at 4, 8, 16, 26, 35, 45, and 54 wk of age. The turkey was selected for these studies because turkey skeletal muscle fibroblasts do not grow in primary muscle cell cultures. Results from the proliferation analysis showed a decrease in proliferation by 8 wk of age. Differentiation into myotubes was significantly decreased by 4 wk of age and myotube diameter was decreased. The changes in muscle weight relative to total BW were measured for the anterior latissimus dorsi, biceps brachii, pectoralis major, sartorius, biceps femoris, and gastrocnemius muscles to compare the relative growth of different muscles. The age at which the muscles reached their maximum relative weight was muscle-dependent, with the biceps brachii plateauing the earliest at 4 wk and the sartorius the latest at 45 wk of age. These data suggested that changes in myogenic cells begin to occur early in muscle development and the activity of the satellite cells during these initial stages of posthatch growth is critical in overall muscle mass accumulation.
Collapse
Affiliation(s)
- S G Velleman
- Department of Animal Sciences, The Ohio State University, 1680 Madison Ave., Wooster, OH 44691, USA.
| | | | | | | | | |
Collapse
|
46
|
|
47
|
Tabedian S, Samie A, Pourreza J, Sadeghi G. Effect of Fasting or Post-Hatch Diet’s Type on Chick Development. ACTA ACUST UNITED AC 2010. [DOI: 10.3923/javaa.2010.406.413] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
48
|
Corzo A, Loar R, Kidd M. Limitations of dietary isoleucine and valine in broiler chick diets. Poult Sci 2009; 88:1934-8. [DOI: 10.3382/ps.2009-00109] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
49
|
Nierobisz LS, Felts JV, Mozdziak PE. Apoptosis and macrophage infiltration occur simultaneously and present a potential sign of muscle injury in skeletal muscle of nutritionally compromised, early post-hatch turkeys. Comp Biochem Physiol B Biochem Mol Biol 2009; 153:61-5. [PMID: 19416697 DOI: 10.1016/j.cbpb.2009.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 01/21/2009] [Accepted: 01/21/2009] [Indexed: 12/24/2022]
Abstract
Physical stress and malnutrition may cause elimination of myonuclei and produce inflammatory response in muscle. The objective of this study was to histochemically determine the association of apoptosis and/or macrophage infiltration with changes in muscle satellite cell mitotic activity in pectoralis thoracicus muscle of early post-hatch turkey toms. Feed-deprived birds and birds provided with three different levels of crude protein and amino acids (0.88 NRC, 1.00 NRC, and 1.12 NRC) were used in this model. The number of apoptotic nuclei was significantly elevated (P<0.05) and presence of macrophage infiltration was readily detectable in feed-deprived and 0.88 NRC treatment groups 72 h and 96 h post-hatch suggesting potential muscle injury and/or muscle remodeling. The number of apoptotic nuclei was the same (P>0.05), and there was no detectable macrophage infiltration present in birds placed on 1.00 NRC and 1.12 NRC diet 72 h, 96 h, and 120 h post-hatch. At 120 h post-hatch, feed-deprived and 0.88 NRC birds were characterized by no detectable levels of macrophage infiltration and a significant drop (P<0.05) in apoptotic nuclei. Understanding mechanisms that correlate early nutrition with skeletal muscle growth and development may present a useful tool in optimizing muscle health and improving meat quality and yield.
Collapse
Affiliation(s)
- L S Nierobisz
- Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | |
Collapse
|
50
|
Longo F, Menten J, Pedroso A, Figueiredo A, Racanicci A, Sorbara J. Performance and Carcass Composition of Broilers Fed Different Carbohydrate and Protein Sources in the Prestarter Phase. J APPL POULTRY RES 2007. [DOI: 10.1093/japr/16.2.171] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|