1
|
Gast RK, Dittoe DK, Ricke SC. Salmonella in eggs and egg-laying chickens: pathways to effective control. Crit Rev Microbiol 2024; 50:39-63. [PMID: 36583653 DOI: 10.1080/1040841x.2022.2156772] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/05/2022] [Indexed: 12/31/2022]
Abstract
Eggs contaminated with Salmonella have been internationally significant sources of human illness for several decades. Most egg-associated illness has been attributed to Salmonella serovar Enteritidis, but a few other serovars (notably S. Heidelberg and S. Typhimurium) are also sometimes implicated. The edible interior contents of eggs typically become contaminated with S. Enteritidis because the pathogen's unique virulence attributes enable it to colonize reproductive tissues in systemically infected laying hens. Other serovars are more commonly associated with surface contamination of eggshells. Both research and field experience have demonstrated that the most effective overall Salmonella control strategy in commercial laying flocks is the application of multiple interventions throughout the egg production cycle. At the preharvest (egg production) level, intervention options of demonstrated efficacy include vaccination and gastrointestinal colonization control via treatments such as prebiotics, probiotics, and bacteriophages, Effective environmental management of housing systems used for commercial laying flocks is also essential for minimizing opportunities for the introduction, transmission, and persistence of Salmonella in laying flocks. At the postharvest (egg processing and handling) level, careful regulation of egg storage temperatures is critical for limiting Salmonella multiplication inside the interior contents.
Collapse
Affiliation(s)
- Richard K Gast
- U.S. National Poultry Research Center, USDA Agricultural Research Service, Athens, GA, USA
| | - Dana K Dittoe
- Department of Animal and Dairy Sciences, Meat Science and Animal Biologics Discovery Program, University of Wisconsin, Madison, WI, USA
| | - Steven C Ricke
- Department of Animal and Dairy Sciences, Meat Science and Animal Biologics Discovery Program, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
2
|
Raut R, Maharjan P, Fouladkhah AC. Practical Preventive Considerations for Reducing the Public Health Burden of Poultry-Related Salmonellosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6654. [PMID: 37681794 PMCID: PMC10487474 DOI: 10.3390/ijerph20176654] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023]
Abstract
With poultry products as one of the leading reservoirs for the pathogen, in a typical year in the United States, it is estimated that over one million individuals contract non-typhoidal Salmonella infections. Foodborne outbreaks associated with Salmonella infections in poultry, thus, continue to remain a significant risk to public health. Moreover, the further emergence of antimicrobial resistance among various serovars of Salmonella is an additional public health concern. Feeding-based strategies (such as use of prebiotics, probiotics, and/or phytobiotics as well as essential oils), non-feeding-based strategies (such as use of bacteriophages, vaccinations, and in ovo strategies), omics tools and surveillance for identifying antibiotic-resistance genes, post-harvest application of antimicrobials, and biosecurity measures at poultry facilities are practical interventions that could reduce the public health burden of salmonellosis and antibiotic resistance associated with poultry products. With the escalating consumption of poultry products around the globe, the fate, prevalence, and transmission of Salmonella in agricultural settings and various poultry-processing facilities are major public health challenges demanding integrated control measures throughout the food chain. Implementation of practical preventive measures discussed in the current study could appreciably reduce the public health burden of foodborne salmonellosis associated with poultry products.
Collapse
Affiliation(s)
- Rabin Raut
- Cooperative Extension Program, Tennessee State University, Nashville, TN 37209, USA;
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA
| | - Pramir Maharjan
- Cooperative Extension Program, Tennessee State University, Nashville, TN 37209, USA;
| | - Aliyar Cyrus Fouladkhah
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA
- Public Health Microbiology FoundationSM, Nashville, TN 37209, USA
| |
Collapse
|
3
|
Mishra R, Mishra B, Kim YS, Jha R. Practices and issues of moulting programs for laying hen: A review. Br Poult Sci 2022; 63:720-729. [PMID: 35363112 DOI: 10.1080/00071668.2022.2059339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. Moulting is a natural physiological process in birds when they shed their old feathers and replace them with new ones, and is followed by reproductive quiescence resulting in reduced egg production. Different birds undergo moulting at different points in their life. Some birds have seasonal moulting while some moult at the end of their breeding cycle. This review will mainly focus on moulting practices associated with commercial layer birds because, in all other bird types, this is not managed.2. Commercial farms commonly analyse the cost-benefit ratio to decide the time and method to adopt for moulting. Commercial layer farms adopt different practices to force birds out of moult and restart the production cycle. Animal welfare groups consider this as stressful and against animal welfare, raising questions about the ethics of this practice.3. Many studies have been conducted using complete or partial feed withdrawal and non-feed withdrawal programs to measure their effectiveness in maintaining animal welfare, economy, and post-moult performance in mind.4. Animal welfare should not be compromised during moulting. The United States Egg Producers and other such groups from the United Kingdom and Europe have decided to sell eggs produced only through a non-feed withdrawal moulting programs.
Collapse
Affiliation(s)
- Rajeev Mishra
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Birendra Mishra
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Yong Soo Kim
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
4
|
Ricke SC, Dittoe DK, Olson EG. Microbiome Applications for Laying Hen Performance and Egg Production. Poult Sci 2022; 101:101784. [PMID: 35346495 PMCID: PMC9079347 DOI: 10.1016/j.psj.2022.101784] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 12/05/2022] Open
Abstract
Management of laying hens has undergone considerable changes in the commercial egg industry. Shifting commercial production from cage-based systems to cage-free has impacted the housing environment and created issues not previously encountered. Sources of microorganisms that become established in the early stages of layer chick development may originate from the hen and depend on the microbial ecology of the reproductive tract. Development of the layer hen GIT microbiota appears to occur in stages as the bird matures. Several factors can impact the development of the layer hen GIT, including pathogens, environment, and feed additives such as antibiotics. In this review, the current status of the laying hen GIT microbial consortia and factors that impact the development and function of these respective microbial populations will be discussed, as well as future research directions.
Collapse
|
5
|
Olson EG, Dittoe DK, Jendza JA, Stock DA, Ricke SC. Application of Microbial Analyses to Feeds and Potential Implications for Poultry Nutrition. Poult Sci 2022; 101:101789. [PMID: 35346494 PMCID: PMC9079344 DOI: 10.1016/j.psj.2022.101789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Elena G Olson
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - Dana K Dittoe
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - Joshua A Jendza
- BASF Corporation, 100 Park Avenue, Florham Park, NJ 07932, USA
| | - David A Stock
- Biology Department, Stetson University, Deland, FL 32723, USA
| | - Steven C Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
6
|
Schreuder J, Velkers FC, Bossers A, Bouwstra RJ, de Boer WF, van Hooft P, Stegeman JA, Jurburg SD. Temporal Dynamics of Cloacal Microbiota in Adult Laying Chickens With and Without Access to an Outdoor Range. Front Microbiol 2021; 11:626713. [PMID: 33584593 PMCID: PMC7876281 DOI: 10.3389/fmicb.2020.626713] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/24/2020] [Indexed: 01/04/2023] Open
Abstract
Associations between animal health and performance, and the host’s microbiota have been recently established. In poultry, changes in the intestinal microbiota have been linked to housing conditions and host development, but how the intestinal microbiota respond to environmental changes under farm conditions is less well understood. To gain insight into the microbial responses following a change in the host’s immediate environment, we monitored four indoor flocks of adult laying chickens three times over 16 weeks, during which two flocks were given access to an outdoor range, and two were kept indoors. To assess changes in the chickens’ microbiota over time, we collected cloacal swabs of 10 hens per flock and performed 16S rRNA gene amplicon sequencing. The poultry house (i.e., the stable in which flocks were housed) and sampling time explained 9.2 and 4.4% of the variation in the microbial community composition of the flocks, respectively. Remarkably, access to an outdoor range had no detectable effect on microbial community composition, the variability of microbiota among chickens of the same flock, or microbiota richness, but the microbiota of outdoor flocks became more even over time. Fluctuations in the composition of the microbiota over time within each poultry house were mainly driven by turnover in rare, rather than dominant, taxa and were unique for each flock. We identified 16 amplicon sequence variants that were differentially abundant over time between indoor and outdoor housed chickens, however none were consistently higher or lower across all chickens of one housing type over time. Our study shows that cloacal microbiota community composition in adult layers is stable following a sudden change in environment, and that temporal fluctuations are unique to each flock. By exploring microbiota of adult poultry flocks within commercial settings, our study sheds light on how the chickens’ immediate environment affects the microbiota composition.
Collapse
Affiliation(s)
- Janneke Schreuder
- Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Francisca C Velkers
- Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Alex Bossers
- Department of Infection Biology, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | | | - Willem F de Boer
- Wildlife Ecology and Conservation Group, Wageningen University and Research, Wageningen, Netherlands
| | - Pim van Hooft
- Wildlife Ecology and Conservation Group, Wageningen University and Research, Wageningen, Netherlands
| | - J Arjan Stegeman
- Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Stephanie D Jurburg
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
7
|
Ricke SC, Rothrock MJ. Gastrointestinal microbiomes of broilers and layer hens in alternative production systems. Poult Sci 2020; 99:660-669. [PMID: 32029152 PMCID: PMC7587794 DOI: 10.1016/j.psj.2019.12.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Indexed: 02/08/2023] Open
Abstract
Alternative poultry production systems consisting of free-range or pasture flock raised poultry continues to increase in popularity. Based on the perceived benefits of poultry products generated from these alternative poultry production systems, they have commercial appeal to consumers. Several factors impact the health and well being of birds raised and maintained in these types of production systems. Exposure to foodborne pathogens and potential for colonization in the gastrointestinal tract has to be considered with these types of production systems. The gastrointestinal tract microbial composition and function of birds grown and maintained in alternative poultry operations may differ depending on diets, breed, and age of bird. Dietary variety and foraging behavior are potential influential factors on bird nutrition. The gastrointestinal tract microbiomes of birds raised under alternative poultry production systems are now being characterized with next-generation sequencing to identify individual microbial members and assess the impact of different factors on the diversity of microbial populations. In this review, the gastrointestinal tract microbiota contributions to free-range or pasture-raised broiler and egg layer production systems, subsequent applications, and potential future directions will be discussed.
Collapse
Affiliation(s)
- Steven C Ricke
- Center for Food Safety and Food Science Department, University of Arkansas, Fayetteville, AR 72704.
| | - Michael J Rothrock
- Egg Safety & Quality Research Unit, U.S. National Poultry Research Center, USDA-ARS, Athens 30605, GA
| |
Collapse
|
8
|
Shi Z, Rothrock MJ, Ricke SC. Applications of Microbiome Analyses in Alternative Poultry Broiler Production Systems. Front Vet Sci 2019; 6:157. [PMID: 31179291 PMCID: PMC6543280 DOI: 10.3389/fvets.2019.00157] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 05/07/2019] [Indexed: 01/01/2023] Open
Abstract
While most of the focus on poultry microbiome research has been directed toward conventional poultry production, there is increasing interest in characterizing microbial populations originating from alternative or non-conventional poultry production. This is in part due to the growing general popularity in locally produced foods and more specifically the attractiveness of free-range or pasture raised poultry. Most of the focus of microbiome characterization in pasture flock birds has been on live bird production, primarily on the gastrointestinal tract. Interest in environmental impacts on production responses and management strategies have been key factors for comparative microbiome studies. This has important ramifications since these birds are not only raised under different conditions, but the grower cycle can be longer and in some cases slower growing breeds used. The impact of different feed additives is also of interest with some microbiome-based studies having examined the effect of feeding these additives to birds grown under pasture flock conditions. In the future, microbiome research approaches offer unique opportunities to develop better live bird management strategies and design optimal feed additive approaches for pasture flock poultry production systems.
Collapse
Affiliation(s)
- Zhaohao Shi
- Center for Food Safety, Food Science Department, University of Arkansas, Fayetteville, AR, United States
| | - Michael J Rothrock
- Egg Safety and Quality Research Unit, U.S. National Poultry Research Center, USDA-ARS, Athens, GA, United States
| | - Steven C Ricke
- Center for Food Safety, Food Science Department, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
9
|
Abstract
ABSTRACT
Preharvest food safety in broiler production is a systematic approach to control the introduction, propagation, and dissemination of
Salmonella
and
Campylobacter
from breeder flocks to the end of their progeny (broilers) life cycle. New and revised more stringent performance standards for these pathogens at the processing plant level require continuous evaluation of the preharvest management practices and intervention strategies used by the poultry industry. The implementation of stricter biosecurity plans, vaccination of breeder flocks for
Salmonella
, and usage of feed that is free of animal by-products are some of the measures recommended to control the pathogens. Interventions shown to be effective in experimental settings need to be assessed for their cost-effectiveness and efficiency when applied at the farm level.
Collapse
|
10
|
Sohail MU, Hume ME, Byrd JA, Nisbet DJ, Shabbir MZ, Ijaz A, Rehman H. Molecular analysis of the caecal and tracheal microbiome of heat-stressed broilers supplemented with prebiotic and probiotic. Avian Pathol 2015; 44:67-74. [PMID: 25564364 DOI: 10.1080/03079457.2015.1004622] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The gastrointestinal tract commensal microbiome is important for host nutrition, health and immunity. Little information is available regarding the role of these commensals at other mucosal surfaces in poultry. Tracheal mucosal surfaces offer sites for first-line health and immunity promotion in broilers, especially under stress-related conditions. The present study is aimed at elucidating the effects of feed supplementations with mannanoligosaccharides (MOS) prebiotic and a probiotic mixture (PM) on the caecal and tracheal microbiome of broilers kept under chronic heat stress (HS; 35 ± 2°C). Day-old chickens were randomly divided into five treatment groups: thermoneutral control (TN-CONT), HS-CONT, HS-MOS, HS-PM and HS synbiotic (fed MOS and PM). Caecal digesta and tracheal swabs were collected at day 42 and subjected to DNA extraction, followed by polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) and pyrosequencing. The PCR-DGGE dendrograms revealed significant (49.5% similarity coefficients) differences between caecal and tracheal microbiome. Tracheal microbiome pyrosequencing revealed 9 phyla, 17 classes, 34 orders, 68 families and 125 genera, while 11 phyla, 19 classes, 34 orders, 85 families and 165 genera were identified in caeca. An unweighted UniFrac distance metric revealed a distinct clustering pattern (analysis of similarities, P = 0.007) between caecal and tracheal microbiome. Lactobacillus was the most abundant genus in trachea and caeca and was more abundant in caeca and trachea of HS groups compared with the TN-CONT group. Distinct bacterial clades occupied the caecal and tracheal microbiomes, although some bacterial groups overlapped, demonstrating a core microbiome dominated by Lactobacillus. No positive effects of supplementations were observed on abundance of probiotic bacteria.
Collapse
Affiliation(s)
- Muhammad U Sohail
- a Food and Feed Safety Research Unit , Southern Plains Agricultural Research Center, USDA, ARS , College Station , TX , USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Application of Molecular Approaches for Understanding Foodborne Salmonella Establishment in Poultry Production. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/813275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Salmonellosis in the United States is one of the most costly foodborne diseases. Given that Salmonella can originate from a wide variety of environments, reduction of this organism at all stages of poultry production is critical. Salmonella species can encounter various environmental stress conditions which can dramatically influence their survival and colonization. Current knowledge of Salmonella species metabolism and physiology in relation to colonization is traditionally based on studies conducted primarily with tissue culture and animal infection models. Consequently, while there is some information about environmental signals that control Salmonella growth and colonization, much still remains unknown. Genetic tools for comprehensive functional genomic analysis of Salmonella offer new opportunities for not only achieving a better understanding of Salmonella pathogens but also designing more effective intervention strategies. Now the function(s) of each single gene in the Salmonella genome can be directly assessed and previously unknown genetic factors that are required for Salmonella growth and survival in the poultry production cycle can be elucidated. In particular, delineating the host-pathogen relationships involving Salmonella is becoming very helpful for identifying optimal targeted gene mutagenesis strategies to generate improved vaccine strains. This represents an opportunity for development of novel vaccine approaches for limiting Salmonella establishment in early phases of poultry production. In this review, an overview of Salmonella issues in poultry, a general description of functional genomic technologies, and their specific application to poultry vaccine developments are discussed.
Collapse
|
12
|
|
13
|
Foley SL, Johnson TJ, Ricke SC, Nayak R, Danzeisen J. Salmonella pathogenicity and host adaptation in chicken-associated serovars. Microbiol Mol Biol Rev 2013; 77:582-607. [PMID: 24296573 PMCID: PMC3973385 DOI: 10.1128/mmbr.00015-13] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Enteric pathogens such as Salmonella enterica cause significant morbidity and mortality. S. enterica serovars are a diverse group of pathogens that have evolved to survive in a wide range of environments and across multiple hosts. S. enterica serovars such as S. Typhi, S. Dublin, and S. Gallinarum have a restricted host range, in which they are typically associated with one or a few host species, while S. Enteritidis and S. Typhimurium have broad host ranges. This review examines how S. enterica has evolved through adaptation to different host environments, especially as related to the chicken host, and continues to be an important human pathogen. Several factors impact host range, and these include the acquisition of genes via horizontal gene transfer with plasmids, transposons, and phages, which can potentially expand host range, and the loss of genes or their function, which would reduce the range of hosts that the organism can infect. S. Gallinarum, with a limited host range, has a large number of pseudogenes in its genome compared to broader-host-range serovars. S. enterica serovars such as S. Kentucky and S. Heidelberg also often have plasmids that may help them colonize poultry more efficiently. The ability to colonize different hosts also involves interactions with the host's immune system and commensal organisms that are present. Thus, the factors that impact the ability of Salmonella to colonize a particular host species, such as chickens, are complex and multifactorial, involving the host, the pathogen, and extrinsic pressures. It is the interplay of these factors which leads to the differences in host ranges that we observe today.
Collapse
|
14
|
Feeding mice aged and fresh blackberries powder supplements result in shifts in the gastrointestinal microflora. FOOD BIOSCI 2013. [DOI: 10.1016/j.fbio.2013.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Saengkerdsub S, Ricke SC. Ecology and characteristics of methanogenic archaea in animals and humans. Crit Rev Microbiol 2013; 40:97-116. [PMID: 23425063 DOI: 10.3109/1040841x.2013.763220] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this review, the molecular techniques used in animal-based-methanogen studies will be discussed along with how methanogens interact not only with other microorganisms but with their animal hosts as well. These methods not only indicate the diversity and levels of methanogens, but also provide insight on their ecological functions. Most molecular techniques have been based on either 16S rRNA genes or methyl-coenzyme M reductase, a ubiquitous enzyme in methanogens. The most predominant methanogens in animals belong to the genus Methanobrevibacter. Besides methanogens contributing to overall H2 balance, methanogens also have mutual interactions with other bacteria. In addition to shared metabolic synergism, the host animal retrieves additional energy from the diet when methanogens are co-colonized with other normal flora. By comparing genes in methanogens with other bacteria, possible gene transfer between methanogens and other bacteria in the same environments appears to occur. Finally, diets in conjunction with the genetics of methanogens and hosts may represent the biological framework that dictate the extent of methanogen prevalence in these ecosystems. In addition, host evolution including the immune system could serve as an additional selective pressure for methanogen colonization.
Collapse
Affiliation(s)
- Suwat Saengkerdsub
- Department of Food Science, Center for Food Safety, University of Arkansas , Fayetteville, AR , USA , and
| | | |
Collapse
|
16
|
Park S, Hanning I, Perrota A, Bench B, Alm E, Ricke S. Modifying the gastrointestinal ecology in alternatively raised poultry and the potential for molecular and metabolomic assessment. Poult Sci 2013; 92:546-61. [DOI: 10.3382/ps.2012-02734] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
17
|
Ricke S, Dunkley C, Durant J. A review on development of novel strategies for controlling Salmonella Enteritidis colonization in laying hens: Fiber-based molt diets. Poult Sci 2013; 92:502-25. [DOI: 10.3382/ps.2012-02763] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
18
|
Escarcha JF, Callaway TR, Byrd JA, Miller DN, Edrington TS, Anderson RC, Nisbet DJ. Effects of dietary alfalfa inclusion on Salmonella typhimurium populations in growing layer chicks. Foodborne Pathog Dis 2012; 9:945-51. [PMID: 22953742 DOI: 10.1089/fpd.2012.1251] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Reducing Salmonella in poultry has been a paramount goal of the poultry industry in order to improve food safety. Inclusion of high-fiber fermentable feedstuffs in chicken diets has been shown to reduce the incidence of Salmonella colonization in laying hens, but no work has been performed in growing birds. Therefore, the present study was designed to quantify differences in artificially inoculated cecal Salmonella Typhimurium populations in growing layer chicks (n = 60 in each of two replications) fed 0%, 25%, and 50% of their diet (w/w) replaced with alfalfa meal from day (d) 7 to d14 after hatch. Alfalfa supplementation reduced cecal populations of Salmonella by 0.95 and 1.25 log10 colony-forming unit per gram in the 25% and 50% alfalfa groups compared to controls. Alfalfa feeding reduced (p < 0.05) the number of cecal- and crop-positive birds compared to controls. Increasing levels of alfalfa increased (p < 0.05) total volatile fatty acids (VFA) and the proportion of acetate in the cecum. Surprisingly, alfalfa inclusion did not negatively impact average daily gain (ADG) in birds over the 7-d feeding period. Alfalfa inclusion at 50% of the diet increased (p < 0.05) the number of bacterial genera detected in the cecum compared to controls, and also altered proportions of the microbial population by reducing Ruminococcus and increasing Clostridia populations. Results support the idea that providing a fermentable substrate can increase gastrointestinal VFA production and bacterial diversity which in turn can reduce colonization by Salmonella via natural competitive barriers. However, further studies are obviously needed to more fully understand the impact of changes made in diet or management procedures on poultry production.
Collapse
Affiliation(s)
- Jacquelyn F Escarcha
- Agris Mundus-Sustainable Development in Agriculture, Montpellier SupAgro, Ministere de l'Agriculture, Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
|
21
|
Foley SL, Nayak R, Hanning IB, Johnson TJ, Han J, Ricke SC. Population dynamics of Salmonella enterica serotypes in commercial egg and poultry production. Appl Environ Microbiol 2011; 77:4273-9. [PMID: 21571882 PMCID: PMC3127710 DOI: 10.1128/aem.00598-11] [Citation(s) in RCA: 260] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Fresh and processed poultry have been frequently implicated in cases of human salmonellosis. Furthermore, increased consumption of meat and poultry has increased the potential for exposure to Salmonella enterica. While advances have been made in reducing the prevalence and frequency of Salmonella contamination in processed poultry, there is mounting pressure on commercial growers to prevent and/or eliminate these human pathogens in preharvest production facilities. Several factors contribute to Salmonella colonization in commercial poultry, including the serovar and the infectious dose. In the early 1900s, Salmonella enterica serovars Pullorum and Gallinarum caused widespread diseases in poultry, but vaccination and other voluntary programs helped eradicate pullorum disease and fowl typhoid from commercial flocks. However, the niche created by the eradication of these serovars was likely filled by S. Enteritidis, which proliferated in the bird populations. While this pathogen remains a significant problem in commercial egg and poultry production, its prevalence among poultry has been declining since the 1990s. Coinciding with the decrease of S. Enteritidis, S. Heidelberg and S. Kentucky have emerged as the predominant serovars in commercial broilers. In this review, we have highlighted bacterial genetic and host-related factors that may contribute to such shifts in Salmonella populations in commercial poultry and intervention strategies that could limit their colonization.
Collapse
Affiliation(s)
- Steven L Foley
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Anderson P, Hume M, Byrd J, Hernandez C, Stevens S, Stringfellow K, Caldwell D. Evaluation of repetitive extragenic palindromic-polymerase chain reaction and denatured gradient gel electrophoresis in identifying Salmonella serotypes isolated from processed turkeys. Poult Sci 2010; 89:1293-300. [DOI: 10.3382/ps.2009-00390] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
23
|
McReynolds J, Genovese K, He H, Swaggerty C, Byrd J, Ricke S, Nisbet D, Kogut M. Alfalfa as a nutritive modulator in maintaining the innate immune response during the molting process. J APPL POULTRY RES 2009. [DOI: 10.3382/japr.2008-00044] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
24
|
Jarquin R, Hanning I, Ahn S, Ricke SC. Development of rapid detection and genetic characterization of salmonella in poultry breeder feeds. SENSORS (BASEL, SWITZERLAND) 2009; 9:5308-23. [PMID: 22346699 PMCID: PMC3274138 DOI: 10.3390/s90705308] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 06/21/2009] [Accepted: 06/25/2009] [Indexed: 11/17/2022]
Abstract
Salmonella is a leading cause of foodborne illness in the United States, with poultry and poultry products being a primary source of infection to humans. Poultry may carry some Salmonella serovars without any signs or symptoms of disease and without causing any adverse effects to the health of the bird. Salmonella may be introduced to a flock by multiple environmental sources, but poultry feed is suspected to be a leading source. Detecting Salmonella in feed can be challenging because low levels of the bacteria may not be recovered using traditional culturing techniques. Numerous detection methodologies have been examined over the years for quantifying Salmonella in feeds and many have proven to be effective for Salmonella isolation and detection in a variety of feeds. However, given the potential need for increased detection sensitivity, molecular detection technologies may the best candidate for developing rapid sensitive methods for identifying small numbers of Salmonella in the background of large volumes of feed. Several studies have been done using polymerase chain reaction (PCR) assays and commercial kits to detect Salmonella spp. in a wide variety of feed sources. In addition, DNA array technology has recently been utilized to track the dissemination of a specific Salmonella serotype in feed mills. This review will discuss the processing of feeds and potential points in the process that may introduce Salmonella contamination to the feed. Detection methods currently used and the need for advances in these methods also will be discussed. Finally, implementation of rapid detection for optimizing control methods to prevent and remove any Salmonella contamination of feeds will be considered.
Collapse
Affiliation(s)
- Robin Jarquin
- Dept. of Poultry Science, University of Arkansas, Fayetteville, AR 72704, USA; E-Mail:
- Research and Development, Cobb-Vantress Incorporated, P.O. BOX 1030, Siloam Springs, AR 72761, USA
| | - Irene Hanning
- Dept. of Food Science, University of Arkansas, Fayetteville, AR 72704, USA; E-Mail:
| | - Soohyoun Ahn
- Food Science and Technology Program, Arkansas State University, State University, AR 72467, USA; E-Mail:
| | - Steven C. Ricke
- Dept. of Poultry Science, University of Arkansas, Fayetteville, AR 72704, USA; E-Mail:
- Dept. of Food Science, University of Arkansas, Fayetteville, AR 72704, USA; E-Mail:
| |
Collapse
|
25
|
Callaway TR, Dowd SE, Wolcott RD, Sun Y, McReynolds JL, Edrington TS, Byrd JA, Anderson RC, Krueger N, Nisbet DJ. Evaluation of the bacterial diversity in cecal contents of laying hens fed various molting diets by using bacterial tag-encoded FLX amplicon pyrosequencing. Poult Sci 2009; 88:298-302. [PMID: 19151343 DOI: 10.3382/ps.2008-00222] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Laying hens are typically induced to molt to begin a new egg-laying cycle by withdrawing feed for up to 12 to 14 d. Fasted hens are more susceptible to colonization and tissue invasion by Salmonella enterica serovar Enteritidis. Much of this increased incidence in fasted hens is thought to be due to changes in the native intestinal microflora. An alternative to feed withdrawal involves feeding alfalfa meal crumble to hens, which is indigestible by poultry but provides fermentable substrate to the intestinal microbial population and reduces Salmonella colonization of hens compared with feed withdrawal. The present study was designed to quantify differences in the cecal microbial population of hens (n=12) fed a typical layer ration, undergoing feed withdrawal, or being fed alfalfa crumble by using a novel tag bacterial diversity amplification method. Bacteroides, Prevotella, and Clostridium were the most common genera isolated from all treatment groups. Only the ceca of hens undergoing feed withdrawal (n=4) contained Salmonella. The number of genera present was greatest in the alfalfa crumble-fed group and least in the feed withdrawal group (78 vs. 54 genera, respectively). Overall, the microbial diversity was least and Lactobacillius populations were not found in the hens undergoing feed withdrawal, which could explain much of these hens' sensitivity to colonization by Salmonella.
Collapse
Affiliation(s)
- T R Callaway
- Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center, Agricultural Research Service, USDA, College Station, TX 77845, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kogut M. Impact of nutrition on the innate immune response to infection in poultry. J APPL POULTRY RES 2009. [DOI: 10.3382/japr.2008-00081] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
27
|
Donalson LM, McReynolds JL, Kim WK, Chalova VI, Woodward CL, Kubena LF, Nisbet DJ, Ricke SC. The influence of a fructooligosaccharide prebiotic combined with alfalfa molt diets on the gastrointestinal tract fermentation, Salmonella enteritidis infection, and intestinal shedding in laying hens. Poult Sci 2008; 87:1253-62. [PMID: 18577603 DOI: 10.3382/ps.2007-00166] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Molting is a natural process, which birds undergo to rejuvenate their reproductive organs. The US poultry egg production industry has used feed withdrawal to effectively induce molt; however, susceptibility of Salmonella Enteritidis has encouraged the development of alternative methods. Previous research conducted in our laboratory showed that alfalfa is effective at molt induction and provides equivalent postmolt production numbers and quality when compared with feed withdrawal. In the attempt to further increase the efficacy of alfalfa molt diet and decrease the chicken susceptibility to Salmonella Enteritidis during molt, fructooligosaccharide (FOS) was added to a combination of 90% alfalfa and 10% layer ration in 2 levels (0.750 and 0.375%). Ovary and liver colonization by Salmonella Enteritidis in 3 and 2 of the 4 trials, respectively, were reduced (P <or= 0.05) in hens fed FOS-containing diets compared with hens subjected to feed withdrawal. Significant decreases in ce-cal Salmonella Enteritidis counts were also observed in 2 of the 4 trials. In 3 of the 4 trials, the same diets did not affect (P > 0.05) the production of cecal total volatile fatty acids when compared with hens undergoing feed withdrawal. However, in all 3 alfalfa molt diets, the concentrations of lactic acid were greater (P <or= 0.05) than hens with feed withdrawal, but no differences (P > 0.05) were observed among hens fed alfalfa combined with FOS and hens fed alfalfa/layer ration without FOS. Overall, given the similarities between hens fed 0.750% FOS (H) and 0.375% FOS (L), molt diets combined with the lower level of FOS should be sufficient.
Collapse
Affiliation(s)
- L M Donalson
- Department of Poultry Science, Texas A&M University, College Station, TX 77843-2472, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Dunkley KD, Callaway TR, Chalova VI, McReynolds JL, Hume ME, Dunkley CS, Kubena LF, Nisbet DJ, Ricke SC. Foodborne Salmonella ecology in the avian gastrointestinal tract. Anaerobe 2008; 15:26-35. [PMID: 18577459 DOI: 10.1016/j.anaerobe.2008.05.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 05/29/2008] [Accepted: 05/30/2008] [Indexed: 11/26/2022]
Abstract
Foodborne Salmonella continues to be a major cause of salmonellosis with Salmonella Enteritidis and S. Typhimurium considered to be responsible for most of the infections. Investigation of outbreaks and sporadic cases has indicated that food vehicles such as poultry and poultry by-products including raw and uncooked eggs are among the most common sources of Salmonella infections. The dissemination and infection of the avian intestinal tract remain somewhat unclear. In vitro incubation of Salmonella with mammalian tissue culture cells has shown that invasion into epithelial cells is complex and involves several genetic loci and host factors. Several genes are required for the intestinal phase of Salmonella invasion and are located on Salmonella pathogenicity island 1 (SPI 1). Salmonella pathogenesis in the gastrointestinal (GI) tract and the effects of environmental stimuli on gene expression influence bacterial colonization and invasion. Furthermore, significant parameters of Salmonella including growth physiology, nutrient availability, pH, and energy status are considered contributing factors in the GI tract ecology. Approaches for limiting Salmonella colonization have been primarily based on the microbial ecology of the intestinal tract. In vitro studies have shown that the toxic effects of short chain fatty acids (SCFA) to some Enterobacteriaceae, including Salmonella, have resulted in a reduction in population. In addition, it has been established that native intestinal microorganisms such as Lactobacilli provide protective mechanisms against Salmonella in the ceca. A clear understanding of the key factors involved in Salmonella colonization in the avian GI tract has the potential to lead to better approach for more effective control of this foodborne pathogen.
Collapse
Affiliation(s)
- K D Dunkley
- Department of Poultry Science, Texas A&M University, College Station, 77843-2472, USA
| | | | | | | | | | | | | | | | | |
Collapse
|