1
|
Cirnigliaro CM, Kuo W, Forrest GF, Spungen AM, Parrott JS, Cardozo CP, Pal S, Bauman WA. Exoskeletal-assisted walking combined with transcutaneous spinal cord stimulation to improve bone health in persons with spinal cord injury: study protocol for a prospective randomised controlled trial. BMJ Open 2024; 14:e086062. [PMID: 39289024 PMCID: PMC11409316 DOI: 10.1136/bmjopen-2024-086062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
INTRODUCTION Persons with non-ambulatory spinal cord injury (SCI) undergo immediate unloading of the skeleton and, as a result, have marked loss of bone mineral density below the level of lesion that is directly associated with increased risk of long-bone fractures. There is a paucity of research that has successfully implemented rehabilitation and/or exercise training interventions to mitigate bone loss after acute SCI or reverse bone loss that has already occurred in chronic SCI. This paper describes a research protocol to compare the effect of exoskeletal-assisted walking (EAW) alone versus EAW plus transcutaneous spinal cord stimulation (EAW+tSCS) on bone density, geometry and strength in a cohort of chronic SCI participants. METHODS AND ANALYSIS After meeting eligibility criteria and completing baseline testing, sixteen participants will be block randomised into the EAW alone group or the EAW+tSCS combined group (n=8 each group). Each group will receive a total of 108 overground training sessions (60 min sessions, 3 times a week, for 36 weeks) for the 9-month training period. Imaging for bone density and geometry by dual-energy X-ray absorptiometry and peripheral quantitative CT will be performed prior to starting the intervention (baseline), after 72 training sessions, and again after 108 sessions in each of the intervention arms. CT imaging of both lower extremities will be performed at baseline and at the 9-month time point in each of the intervention arms. Finite element models of bone loading will be generated based on three-dimensional (3D) reconstruction of bone architecture from CT imaging prior to and 9 months after the intervention. ETHICS AND DISSEMINATION This study is currently approved by the Kessler Foundation and James J. Peters VA Medical Center Institutional Review Board. A member of the research team will review and explain the study consent form and will have all eligible participants sign prior to participation in the study. Results from this study will be disseminated to clinicians and researchers in the SCI community at national and international conferences. TRIAL REGISTRATION NUMBER NCT03096197.
Collapse
Affiliation(s)
- Christopher M Cirnigliaro
- Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, NY, USA
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, New Brunswick, NJ, USA
| | - William Kuo
- Department of Biomedical Engineering, New Jersey Institute for Technology, Newark, NJ, USA
| | - Gail F Forrest
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, New Brunswick, NJ, USA
- Center for Spinal Stimulation and Center for Mobility and Rehabilitation Engineering, Kessler Foundation, West Orange, NJ, USA
| | - Ann M Spungen
- Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, NY, USA
- Departments of Medicine and Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J Scott Parrott
- Department of Interdisciplinary Studies, School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Christopher P Cardozo
- Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, NY, USA
- Departments of Medicine and Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Saikat Pal
- Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - William A Bauman
- Departments of Medicine and Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
2
|
Scheffler MS, Martin CA, Dietz V, Faraji AH, Sayenko DG. Synergistic implications of combinatorial rehabilitation approaches using spinal stimulation on therapeutic outcomes in spinal cord injury. Clin Neurophysiol 2024; 165:166-179. [PMID: 39033698 PMCID: PMC11325878 DOI: 10.1016/j.clinph.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024]
Abstract
OBJECTIVE The objective of this narrative review was to locate and assess recent articles employing a combinatorial approach of transcutaneous spinal cord stimulation or epidural spinal cord stimulation with additional modalities. We sought to provide relevant knowledge of recent literature and advance understanding on outcomes reported, to better equip those working in neurorehabilitation and neuromodulation. METHODS Articles were selected and analyzed based on study approach, stimulation parameters, outcome measures, and presence of neurophysiological data to support findings. RESULTS This narrative review analyzed 44 recent articles employing a combinatorial approach of transcutaneous spinal cord stimulation or epidural spinal cord stimulation with additional modalities. Our findings showed that limited research exists regarding such combinatorial approaches, particularly when considering modalities beyond activity-based training. There is also limited consistency in neurophysiological and quality of life outcomes. CONCLUSION Articles involving transcutaneous spinal cord stimulation or epidural spinal cord stimulation with other modalities are limited in the current body of literature. Authors noted variety in approach, sample size, and use of participant perspective. Opportunities are present to add high quality research to this body of literature. SIGNIFICANCE Transcutaneous spinal cord stimulation and epidural spinal cord stimulation are emerging in research as viable avenues for targeting improvement of function after traumatic spinal cord injury, particularly when combined with activity-based training. This body of literature demonstrates viable areas for growth from both neurophysiological and functional perspectives. Further, exploration of novel combinatorial approaches holds potential to offer enhanced contributions to clinical and neurophysiological rehabilitation and research.
Collapse
Affiliation(s)
- Michelle S Scheffler
- Department of Neurosurgery, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Catherine A Martin
- Department of Neurosurgery, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Valerie Dietz
- Department of Neurosurgery, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Amir H Faraji
- Department of Neurosurgery, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Dimitry G Sayenko
- Department of Neurosurgery, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Thatcher KL, Nielsen KE, Sandler EB, Daliet OJ, Iddings JA, Field-Fote EC. Optimizing Transcutaneous Spinal Stimulation: Excitability of Evoked Spinal Reflexes is Dependent on Electrode Montage. RESEARCH SQUARE 2024:rs.3.rs-4719031. [PMID: 39149487 PMCID: PMC11326363 DOI: 10.21203/rs.3.rs-4719031/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Background There is growing interest in use of transcutaneous spinal stimulation (TSS) for people with neurologic conditions both to augment volitional control (by facilitating motoneuron excitability), and to decrease spasticity (by activating inhibitory networks). Various electrode montages are used during TSS, with little understanding of how electrode position influences spinal circuit activation. We sought to identify the thoracolumbar electrode montage associated with the most robust activation of spinal circuits by comparing posterior root-muscle reflexes (PRM reflexes) elicited by 6 montages. Additionally, we assessed tolerability of the stimulation during PRM reflex testing. Methods Fifteen adults with intact neurological systems participated in this randomized crossover study. PRM reflexes were evoked transcutaneously using electrode montages with dorsal-ventral (DV) or dorsal-midline (DM) current flow. DV montages included: [1] cathode over T11/T12, anodes over iliac crests (DV-I), [2] cathode over T11/T12, anodes over umbilicus (DV-U), [3] dual paraspinal cathodes at T11/12, anodes over iliac crests (DV-PI), and [4] dual paraspinal cathodes at T11/12, anodes over umbilicus (DV-PU). DM montages included: [5] cathode over T11/12, anode 5cm caudal (DM-C), and [6] cathode over T11/12, anode 5cm rostral (DM-R). PRM reflex recruitment curves were obtained in the soleus muscle of both lower extremities. Results DV-U and DV-I montages elicited bilateral reflexes with lower reflex thresholds and larger recruitment curve area than other montages. There were no differences in response amplitude at 120% of RT(1.2xRT) or tolerability among montages. Conclusions Differences in spinal circuit recruitment are reflected in the response amplitude of the PRM reflexes. DV-I and DV-U montages were associated with lower reflex thresholds, indicating that motor responses can be evoked with lower stimulation intensity. DV-I and DV-U montages therefore have the potential for lower and more tolerable interventional stimulation intensities. Our findings optimize electrode placement for interventional TSS and PRM reflex assessments.
Collapse
|
4
|
Keesey R, Hofstoetter U, Hu Z, Lombardi L, Hawthorn R, Bryson N, Rowald A, Minassian K, Seáñez I. FUNDAMENTAL LIMITATIONS OF KILOHERTZ-FREQUENCY CARRIERS IN AFFERENT FIBER RECRUITMENT WITH TRANSCUTANEOUS SPINAL CORD STIMULATION. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.603982. [PMID: 39211255 PMCID: PMC11361147 DOI: 10.1101/2024.07.26.603982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The use of kilohertz-frequency (KHF) waveforms has rapidly gained momentum in transcutaneous spinal cord stimulation (tSCS) to restore motor function after paralysis. However, the mechanisms by which these fast-alternating currents depolarize efferent and afferent fibers remain unknown. Our study fills this research gap by providing a hypothesis-and evidence-based investigation using peripheral nerve stimulation, lumbar tSCS, and cervical tSCS in 25 unimpaired participants together with computational modeling. Peripheral nerve stimulation experiments and computational modeling showed that KHF waveforms negatively impact the processes required to elicit action potentials, thereby increasing response thresholds and biasing the recruitment towards efferent fibers. While these results translate to tSCS, we also demonstrate that lumbar tSCS results in the preferential recruitment of afferent fibers, while cervical tSCS favors recruitment of efferent fibers. Given the assumed importance of proprioceptive afferents in motor recovery, our work suggests that the use of KHF waveforms should be reconsidered to maximize neurorehabilitation outcomes, particularly for cervical tSCS. We posit that careful analysis of the mechanisms that mediate responses elicited by novel approaches in tSCS is crucial to understanding their potential to restore motor function after paralysis.
Collapse
|
5
|
Tharu NS, Wong AYL, Zheng YP. Transcutaneous Electrical Spinal Cord Stimulation Increased Target-Specific Muscle Strength and Locomotion in Chronic Spinal Cord Injury. Brain Sci 2024; 14:640. [PMID: 39061380 PMCID: PMC11274661 DOI: 10.3390/brainsci14070640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND The recovery of locomotion is greatly prioritized, and neuromodulation has been emerging as a promising approach in recent times. STUDY DESIGN Single-subject research design. SETTINGS A laboratory at The Hong Kong Polytechnic University. OBJECTIVES To investigate the effects of augmenting activity-based therapy (ABT) to transcutaneous electrical spinal cord stimulation (TSCS) on enhancing specific lower limb muscle strength and improving locomotor ability in an individual with chronic incomplete spinal cord injury (iSCI). METHODS An individual with iSCI underwent two phases of treatment, ABT alone followed by combined ABT+TSCS, each for a period of 10 weeks. The TSCS stimulated T10-T11 and T12-L1 segments with a frequency of 30 Hz at an intensity between 105 mA and 130 mA. Manual muscle testing, 6 min walk test (6MWT), and surface electromyography (EMG) responses of specific lower limb muscles were measured. Additionally, spasticity and sensorimotor examinations were conducted every two weeks, while pain tolerance was recorded after each treatment session. RESULTS After the ABT+TSCS treatment, there was an increase in overall muscle strength grading (from 1.8 ± 0.3 to 2.2 ± 0.6 out of 5.0). The 6MWT showed a greater increase in walking distance (3.5 m to 10 m) after combined treatment than ABT alone. In addition, the EMG response of the anterior rectus femoris, biceps femoris, medial gastrocnemius, and tibialis anterior after ABT+TSCS increased more than after ABT alone. The spasticity grade was reduced (from 0.8 ± 0.7 to 0.5 ± 0.6) whereas the average lower limb motor score increased from 17 to 23 points. No adverse effects were reported. CONCLUSIONS ABT+TSCS increased the target-specific lower limb muscle strength and walking ability more than ABT alone in an individual with chronic iSCI.
Collapse
Affiliation(s)
- Niraj Singh Tharu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China;
| | - Arnold Yu Lok Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China;
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yong-Ping Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China;
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
6
|
Chu X, Liu S, Zhao X, Liu T, Xing Z, Li Q, Li Q. Case report: Virtual reality-based arm and leg cycling combined with transcutaneous electrical spinal cord stimulation for early treatment of a cervical spinal cord injured patient. Front Neurosci 2024; 18:1380467. [PMID: 38826775 PMCID: PMC11140104 DOI: 10.3389/fnins.2024.1380467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024] Open
Abstract
Spinal cord injury is a condition affecting the central nervous system, causing different levels of dysfunction below the point of nerve damage. A 50-year-old woman suffered a neck injury as a result of a car accident. After undergoing posterior cervical C3-C6 internal fixation with titanium plates on one side and C7 lamina decompression, the patient, who had been diagnosed with C3-C7 cervical disk herniation and spinal stenosis causing persistent compression of the spinal cord, was transferred to the rehabilitation department. After implementing the combined therapy of Virtual Reality-based arm and leg cycling along with transcutaneous electrical stimulation of the spinal cord, the patients experienced a notable enhancement in both sensory and motor abilities as per the ASIA scores. The patient's anxiety and depression were reduced as measured by the Hamilton Anxiety and Hamilton Depression Tests. As evaluated by the SCIM-III, the patient's self-reliance and capacity to carry out everyday tasks showed ongoing enhancement, leading to the restoration of their functionality. Hence, the use of Virtual Reality-based arm and leg cycling along with transcutaneous electrical spinal cord stimulation has potential to positively impact function in patients with spinal cord injury. However, as this is a case report, the small number of patients and the fact that the intervention was initiated early after the injury, we were unable to separate the recovery due to the intervention from the natural recovery that is known to occur in the initial weeks and months after SCI. Therefore, further randomized controlled trials with a large sample size is necessary.
Collapse
Affiliation(s)
- Xiaolei Chu
- Department of Rehabilitation, Tianjin University Tianjin Hospital, Tianjin, China
| | - Shuaiyi Liu
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Xiaoxuan Zhao
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Tao Liu
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Zheng Xing
- Department of Rehabilitation, Tianjin University Tianjin Hospital, Tianjin, China
| | - Qingwen Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Qi Li
- Department of Rehabilitation, Tianjin University Tianjin Hospital, Tianjin, China
| |
Collapse
|
7
|
Tajali S, Balbinot G, Pakosh M, Sayenko DG, Zariffa J, Masani K. Modulations in neural pathways excitability post transcutaneous spinal cord stimulation among individuals with spinal cord injury: a systematic review. Front Neurosci 2024; 18:1372222. [PMID: 38591069 PMCID: PMC11000807 DOI: 10.3389/fnins.2024.1372222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/06/2024] [Indexed: 04/10/2024] Open
Abstract
Introduction Transcutaneous spinal cord stimulation (TSCS), a non-invasive form of spinal cord stimulation, has been shown to improve motor function in individuals living with spinal cord injury (SCI). However, the effects of different types of TSCS currents including direct current (DC-TSCS), alternating current (AC-TSCS), and spinal paired stimulation on the excitability of neural pathways have not been systematically investigated. The objective of this systematic review was to determine the effects of TSCS on the excitability of neural pathways in adults with non-progressive SCI at any level. Methods The following databases were searched from their inception until June 2022: MEDLINE ALL, Embase, Web of Science, Cochrane Library, and clinical trials. A total of 4,431 abstracts were screened, and 23 articles were included. Results Nineteen studies used TSCS at the thoracolumbar enlargement for lower limb rehabilitation (gait & balance) and four studies used cervical TSCS for upper limb rehabilitation. Sixteen studies measured spinal excitability by reporting different outcomes including Hoffmann reflex (H-reflex), flexion reflex excitability, spinal motor evoked potentials (SMEPs), cervicomedullay evoked potentials (CMEPs), and cutaneous-input-evoked muscle response. Seven studies measured corticospinal excitability using motor evoked potentials (MEPs) induced by transcranial magnetic stimulation (TMS), and one study measured somatosensory evoked potentials (SSEPs) following TSCS. Our findings indicated a decrease in the amplitude of H-reflex and long latency flexion reflex following AC-TSCS, alongside an increase in the amplitudes of SMEPs and CMEPs. Moreover, the application of the TSCS-TMS paired associative technique resulted in spinal reflex inhibition, manifested by reduced amplitudes in both the H-reflex and flexion reflex arc. In terms of corticospinal excitability, findings from 5 studies demonstrated an increase in the amplitude of MEPs linked to lower limb muscles following DC-TSCS, in addition to paired associative stimulation involving repetitive TMS on the brain and DC-TSCS on the spine. There was an observed improvement in the latency of SSEPs in a single study. Notably, the overall quality of evidence, assessed by the modified Downs and Black Quality assessment, was deemed poor. Discussion This review unveils the systematic evidence supporting the potential of TSCS in reshaping both spinal and supraspinal neuronal circuitries post-SCI. Yet, it underscores the critical necessity for more rigorous, high-quality investigations.
Collapse
Affiliation(s)
- Shirin Tajali
- KITE Research Institute – University Health Network, Toronto, ON, Canada
| | - Gustavo Balbinot
- KITE Research Institute – University Health Network, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application – CRANIA, University Health Network, Toronto, ON, Canada
| | - Maureen Pakosh
- Library & Information Services, University Health Network, Toronto Rehabilitation Institute, ON, Canada
| | - Dimitry G. Sayenko
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Jose Zariffa
- KITE Research Institute – University Health Network, Toronto, ON, Canada
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Kei Masani
- KITE Research Institute – University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Gordineer EA, Stokic DS, Krenn MJ. Distinguishing reflex from non-reflex responses elicited by transcutaneous spinal stimulation targeting the lumbosacral cord in healthy individuals. Exp Brain Res 2024:10.1007/s00221-024-06790-2. [PMID: 38416179 DOI: 10.1007/s00221-024-06790-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/21/2024] [Indexed: 02/29/2024]
Abstract
Transcutaneous spinal stimulation (TSS) studies rely on the depolarization of afferent fibers to provide input to the spinal cord; however, this has not been routinely ascertained. Thus, we aimed to characterize the types of responses evoked by TSS and establish paired-pulse ratio cutoffs that distinguish posterior root reflexes, evoked by stimulation of afferent nerve fibers, from motor responses, evoked by stimulation of efferent nerve fibers. Twelve neurologically intact participants (six women) underwent unipolar TSS (cathode over T11-12 spinal processes, anode paraumbilically) while resting supine. In six participants, unipolar TSS was repeated 2-3 months later and also compared to a bipolar TSS configuration (cathode 2.5 cm below T11-12, anode 5 cm above cathode). EMG signals were recorded from 16 leg muscles. A paired-pulse paradigm was applied at interstimulus intervals (ISIs) of 25, 50, 100, 200, and 400 ms. Responses were categorized by three assessors into reflexes, motor responses, or their combination (mixed responses) based on the visual presence/absence of paired-pulse suppression across ISIs. The paired-pulse ratio that best discriminated between response types was derived for each ISI. These cutoffs were validated by repeating unipolar TSS 2-3 months later and with bipolar TSS. Unipolar TSS evoked only reflexes (90%) and mixed responses (10%), which were mainly recorded in the quadriceps muscles (25-42%). Paired-pulse ratios of 0.51 (25-ms ISI) and 0.47 (50-ms ISI) best distinguished reflexes from mixed responses (100% sensitivity, > 99.2% specificity). These cutoffs performed well in the repeated unipolar TSS session (100% sensitivity, > 89% specificity). Bipolar TSS exclusively elicited reflexes which were all correctly classified. These results can be utilized in future studies to ensure that the input to the spinal cord originates from the depolarization of large afferents. This knowledge can be applied to improve the design of future neurophysiological studies and increase the fidelity of neuromodulation interventions.
Collapse
Affiliation(s)
- Elizabeth A Gordineer
- School of Graduate Studies in the Health Sciences, Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, MS, USA
| | - Dobrivoje S Stokic
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, MS, USA
| | - Matthias J Krenn
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, MS, USA.
- Department of Neurosurgery, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, USA.
| |
Collapse
|
9
|
Malik RN, Samejima S, Shackleton C, Miller T, Pedrocchi ALG, Rabchevsky AG, Moritz CT, Darrow D, Field-Fote EC, Guanziroli E, Ambrosini E, Molteni F, Gad P, Mushahwar VK, Sachdeva R, Krassioukov AV. REPORT-SCS: minimum reporting standards for spinal cord stimulation studies in spinal cord injury. J Neural Eng 2024; 21:016019. [PMID: 38271712 DOI: 10.1088/1741-2552/ad2290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/25/2024] [Indexed: 01/27/2024]
Abstract
Objective.Electrical spinal cord stimulation (SCS) has emerged as a promising therapy for recovery of motor and autonomic dysfunctions following spinal cord injury (SCI). Despite the rise in studies using SCS for SCI complications, there are no standard guidelines for reporting SCS parameters in research publications, making it challenging to compare, interpret or reproduce reported effects across experimental studies.Approach.To develop guidelines for minimum reporting standards for SCS parameters in pre-clinical and clinical SCI research, we gathered an international panel of expert clinicians and scientists. Using a Delphi approach, we developed guideline items and surveyed the panel on their level of agreement for each item.Main results.There was strong agreement on 26 of the 29 items identified for establishing minimum reporting standards for SCS studies. The guidelines encompass three major SCS categories: hardware, configuration and current parameters, and the intervention.Significance.Standardized reporting of stimulation parameters will ensure that SCS studies can be easily analyzed, replicated, and interpreted by the scientific community, thereby expanding the SCS knowledge base and fostering transparency in reporting.
Collapse
Affiliation(s)
- Raza N Malik
- International Collaboration on Repair Discoveries, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Soshi Samejima
- International Collaboration on Repair Discoveries, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Claire Shackleton
- International Collaboration on Repair Discoveries, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tiev Miller
- International Collaboration on Repair Discoveries, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alessandra Laura Giulia Pedrocchi
- Nearlab, Department di Electronics, Information and Bioengineering, and We-Cobot Laboratory, Polo Territoriale di Lecco, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Alexander G Rabchevsky
- Spinal Cord & Brain Injury Research Center, Department of Physiology, University of Kentucky, Lexington, KY, United States of America
| | - Chet T Moritz
- Departments of Electrical & Computer Engineering, Rehabilitation Medicine, and Physiology & Biophysics, and the Center for Neurotechnology, University of Washington, Seattle, WA, United States of America
| | - David Darrow
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States of America
- Department of Neurosurgery, Hennepin County Medical Center, Minneapolis, MN, United States of America
| | - Edelle C Field-Fote
- Shepherd Center, Crawford Research Institute, Atlanta, Georgia, United States of America
- Emory University School of Medicine, Division of Physical Therapy, Atlanta, Georgia, United States of America
- Georgia Institute of Technology, School of Biological Sciences, Program in Applied Physiology, Atlanta, Georgia, United States of America
| | - Eleonora Guanziroli
- Villa Beretta Rehabilitation Center, Valduce Hospital, Costa Masnaga, Lecco, Italy
| | - Emilia Ambrosini
- Nearlab, Department di Electronics, Information and Bioengineering, and We-Cobot Laboratory, Polo Territoriale di Lecco, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Franco Molteni
- Villa Beretta Rehabilitation Center, Valduce Hospital, Costa Masnaga, Lecco, Italy
| | - Parag Gad
- SpineX Inc., Los Angeles, Los Angeles, CA, United States of America
| | - Vivian K Mushahwar
- Department of Medicine and Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| | - Rahul Sachdeva
- International Collaboration on Repair Discoveries, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrei V Krassioukov
- International Collaboration on Repair Discoveries, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Spinal Cord Research Program, G.F. Strong Rehabilitation Centre, Vancouver Coastal Health, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Tran K, Steele A, Crossnoe R, Martin C, Sayenko DG. Multi-site lumbar transcutaneous spinal cord stimulation: When less is more. Neurosci Lett 2024; 820:137579. [PMID: 38096973 PMCID: PMC10872491 DOI: 10.1016/j.neulet.2023.137579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/15/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Transcutaneous spinal stimulation (TSS) has become a valuable tool for facilitating rehabilitation in individuals with neurological deficits. A significant constraint arises from the need for precise knowledge of stimulation locations to effectively apply TSS for targeted functional enhancement. METHODS In this study, we investigate whether single-site or simultaneous multi-site stimulation over the lumbar spinal cord is advantageous for recruitment of specific motor pools projecting to lower limb muscles and generates higher leg extensor forces in neurologically intact individuals. Tests were performed in a supine position. TSS was delivered at T10-T11, T11-T12, T12-L1, and L1-L2 intervertebral spaces individually, then through all four locations simultaneously. The peak-to-peak amplitude of spinally evoked motor potentials and the forces generated by lower limb muscles were compared at the common motor threshold intensity level across all stimulation conditions. RESULTS Recruitment of motor pools projecting to proximal and distal lower limb muscles followed their topographical rostro-caudal arrangement along the lumbosacral enlargement. Single-site stimulation, apart from the T10-T11 location, resulted in larger responses in both proximal and distal muscles while also generating higher knee-extension and plantarflexion forces when compared to multi-site stimulation. CONCLUSIONS Both motor response and force generation were reduced when using multi-site TSS when compared to single-site stimulation. This demonstrates that the segmental effects of TSS are important to consider when performing multi-site TSS.
Collapse
Affiliation(s)
- Khue Tran
- School of Engineering Medicine, Texas A&M University, Houston, TX, USA
| | - Alexander Steele
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - Remington Crossnoe
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - Catherine Martin
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - Dimitry G Sayenko
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA.
| |
Collapse
|
11
|
Mondello SE, Young L, Dang V, Fischedick AE, Tolley NM, Wang T, Bravo MA, Lee D, Tucker B, Knoernschild M, Pedigo BD, Horner PJ, Moritz CT. Optogenetic spinal stimulation promotes new axonal growth and skilled forelimb recovery in rats with sub-chronic cervical spinal cord injury. J Neural Eng 2023; 20:056005. [PMID: 37524080 PMCID: PMC10496592 DOI: 10.1088/1741-2552/acec13] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 07/17/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
Objective.Spinal cord injury (SCI) leads to debilitating sensorimotor deficits that greatly limit quality of life. This work aims to develop a mechanistic understanding of how to best promote functional recovery following SCI. Electrical spinal stimulation is one promising approach that is effective in both animal models and humans with SCI. Optogenetic stimulation is an alternative method of stimulating the spinal cord that allows for cell-type-specific stimulation. The present work investigates the effects of preferentially stimulating neurons within the spinal cord and not glial cells, termed 'neuron-specific' optogenetic spinal stimulation. We examined forelimb recovery, axonal growth, and vasculature after optogenetic or sham stimulation in rats with cervical SCI.Approach.Adult female rats received a moderate cervical hemicontusion followed by the injection of a neuron-specific optogenetic viral vector ipsilateral and caudal to the lesion site. Animals then began rehabilitation on the skilled forelimb reaching task. At four weeks post-injury, rats received a micro-light emitting diode (µLED) implant to optogenetically stimulate the caudal spinal cord. Stimulation began at six weeks post-injury and occurred in conjunction with activities to promote use of the forelimbs. Following six weeks of stimulation, rats were perfused, and tissue stained for GAP-43, laminin, Nissl bodies and myelin. Location of viral transduction and transduced cell types were also assessed.Main Results.Our results demonstrate that neuron-specific optogenetic spinal stimulation significantly enhances recovery of skilled forelimb reaching. We also found significantly more GAP-43 and laminin labeling in the optogenetically stimulated groups indicating stimulation promotes axonal growth and angiogenesis.Significance.These findings indicate that optogenetic stimulation is a robust neuromodulator that could enable future therapies and investigations into the role of specific cell types, pathways, and neuronal populations in supporting recovery after SCI.
Collapse
Affiliation(s)
- Sarah E Mondello
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
- Center for Neurotechnology, Seattle, WA 98195, United States of America
| | - Lisa Young
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Viet Dang
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Amanda E Fischedick
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Nicholas M Tolley
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
- Center for Neurotechnology, Seattle, WA 98195, United States of America
| | - Tian Wang
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Madison A Bravo
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
- Center for Neurotechnology, Seattle, WA 98195, United States of America
| | - Dalton Lee
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Belinda Tucker
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Megan Knoernschild
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Benjamin D Pedigo
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
- Center for Neurotechnology, Seattle, WA 98195, United States of America
| | - Philip J Horner
- Center for Neuroregeneration, Department of Neurological Surgery, Houston Methodist Research Institute, Houston, TX 77030, United States of America
| | - Chet T Moritz
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
- Center for Neurotechnology, Seattle, WA 98195, United States of America
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195, United States of America
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, United States of America
| |
Collapse
|
12
|
Bryson N, Lombardi L, Hawthorn R, Fei J, Keesey R, Peiffer J, Seáñez I. Enhanced selectivity of transcutaneous spinal cord stimulation by multielectrode configuration. J Neural Eng 2023; 20:10.1088/1741-2552/ace552. [PMID: 37419109 PMCID: PMC10481387 DOI: 10.1088/1741-2552/ace552] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/07/2023] [Indexed: 07/09/2023]
Abstract
Objective.Transcutaneous spinal cord stimulation (tSCS) has been gaining momentum as a non-invasive rehabilitation approach to restore movement to paralyzed muscles after spinal cord injury (SCI). However, its low selectivity limits the types of movements that can be enabled and, thus, its potential applications in rehabilitation.Approach.In this cross-over study design, we investigated whether muscle recruitment selectivity of individual muscles could be enhanced by multielectrode configurations of tSCS in 16 neurologically intact individuals. We hypothesized that due to the segmental innervation of lower limb muscles, we could identify muscle-specific optimal stimulation locations that would enable improved recruitment selectivity over conventional tSCS. We elicited leg muscle responses by delivering biphasic pulses of electrical stimulation to the lumbosacral enlargement using conventional and multielectrode tSCS.Results.Analysis of recruitment curve responses confirmed that multielectrode configurations could improve the rostrocaudal and lateral selectivity of tSCS. To investigate whether motor responses elicited by spatially selective tSCS were mediated by posterior root-muscle reflexes, each stimulation event was a paired pulse with a conditioning-test interval of 33.3 ms. Muscle responses to the second stimulation pulse were significantly suppressed, a characteristic of post-activation depression suggesting that spatially selective tSCS recruits proprioceptive fibers that reflexively activate muscle-specific motor neurons in the spinal cord. Moreover, the combination of leg muscle recruitment probability and segmental innervation maps revealed a stereotypical spinal activation map in congruence with each electrode's position.Significance. Improvements in muscle recruitment selectivity could be essential for the effective translation into stimulation protocols that selectively enhance single-joint movements in neurorehabilitation.
Collapse
Affiliation(s)
- Noah Bryson
- Biomedical Engineering, Washington University in St. Louis
- Division of Neurotechnology, Washington University School of Medicine in St. Louis
| | - Lorenzo Lombardi
- Biomedical Engineering, Washington University in St. Louis
- Division of Neurotechnology, Washington University School of Medicine in St. Louis
| | - Rachel Hawthorn
- Biomedical Engineering, Washington University in St. Louis
- Division of Neurotechnology, Washington University School of Medicine in St. Louis
| | - Jie Fei
- Biomedical Engineering, Washington University in St. Louis
- Division of Neurotechnology, Washington University School of Medicine in St. Louis
| | - Rodolfo Keesey
- Biomedical Engineering, Washington University in St. Louis
- Division of Neurotechnology, Washington University School of Medicine in St. Louis
| | - J.D. Peiffer
- Biomedical Engineering, Washington University in St. Louis
- Division of Neurotechnology, Washington University School of Medicine in St. Louis
- Biomedical Engineering, Northwestern University
| | - Ismael Seáñez
- Biomedical Engineering, Washington University in St. Louis
- Division of Neurotechnology, Washington University School of Medicine in St. Louis
- Neurosurgery, Washington University School of Medicine in St. Louis
| |
Collapse
|
13
|
Shackleton C, Samejima S, Williams AM, Malik RN, Balthazaar SJ, Alrashidi A, Sachdeva R, Elliott SL, Nightingale TE, Berger MJ, Lam T, Krassioukov AV. Motor and autonomic concomitant health improvements with neuromodulation and exercise (MACHINE) training: a randomised controlled trial in individuals with spinal cord injury. BMJ Open 2023; 13:e070544. [PMID: 37451734 PMCID: PMC10351300 DOI: 10.1136/bmjopen-2022-070544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
INTRODUCTION Motor and autonomic dysfunctions are widespread among people with spinal cord injury (SCI), leading to poor health and reduced quality of life. Exercise interventions, such as locomotor training (LT), can promote sensorimotor and autonomic recovery post SCI. Recently, breakthroughs in SCI research have reported beneficial effects of electrical spinal cord stimulation (SCS) on motor and autonomic functions. Despite literature supporting the independent benefits of transcutaneous SCS (TSCS) and LT, the effect of pairing TSCS with LT is unknown. These therapies are non-invasive, customisable and have the potential to simultaneously benefit both sensorimotor and autonomic functions. The aim of this study is to assess the effects of LT paired with TSCS in people with chronic SCI on outcomes of sensorimotor and autonomic function. METHODS AND ANALYSIS Twelve eligible participants with chronic (>1 year) motor-complete SCI, at or above the sixth thoracic segment, will be enrolled in this single-blinded, randomised sham-controlled trial. Participants will undergo mapping for optimisation of stimulation parameters and baseline assessments of motor and autonomic functions. Participants will then be randomly assigned to either LT+TSCS or LT+Sham stimulation for 12 weeks, after which postintervention assessments will be performed to determine the effect of TSCS on motor and autonomic functions. The primary outcome of interest is attempted voluntary muscle activation using surface electromyography. The secondary outcomes relate to sensorimotor function, cardiovascular function, pelvic organ function and health-related quality of life. Statistical analysis will be performed using two-way repeated measures Analysis of variance (ANOVAs) or Kruskal-Wallis and Cohen's effect sizes. ETHICS AND DISSEMINATION This study has been approved after full ethical review by the University of British Columbia's Research Ethics Board. The stimulator used in this trial has received Investigation Testing Authorisation from Health Canada. Trial results will be disseminated through peer-reviewed publications, conference presentations and seminars. TRIAL REGISTRATION NUMBER NCT04726059.
Collapse
Affiliation(s)
- Claire Shackleton
- International Collaboration on Repair Discoveries, Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, Division of Physical Medicine and Rehabilitation, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Soshi Samejima
- International Collaboration on Repair Discoveries, Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, Division of Physical Medicine and Rehabilitation, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Alison Mm Williams
- International Collaboration on Repair Discoveries, Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- School of Kinesiology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Raza N Malik
- International Collaboration on Repair Discoveries, Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, Division of Physical Medicine and Rehabilitation, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Shane Jt Balthazaar
- International Collaboration on Repair Discoveries, Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- Division of Cardiology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Abdullah Alrashidi
- International Collaboration on Repair Discoveries, Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Physical Therapy, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Rahul Sachdeva
- International Collaboration on Repair Discoveries, Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, Division of Physical Medicine and Rehabilitation, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Stacy L Elliott
- International Collaboration on Repair Discoveries, Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- GF Strong Rehabilitation Centre, Vancouver Coastal Health Authority, Vancouver, British Columbia, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Thomas E Nightingale
- International Collaboration on Repair Discoveries, Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- School of Sport, Exercise and Rehabilitation Sciences and Centre for Trauma Science Research, University of Birmingham, Birmingham, UK
- Centre for Trauma Science Research, University of Birmingham, Birmingham, UK
| | - Michael J Berger
- International Collaboration on Repair Discoveries, Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, Division of Physical Medicine and Rehabilitation, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Tania Lam
- International Collaboration on Repair Discoveries, Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- School of Kinesiology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrei V Krassioukov
- International Collaboration on Repair Discoveries, Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, Division of Physical Medicine and Rehabilitation, The University of British Columbia, Vancouver, British Columbia, Canada
- GF Strong Rehabilitation Centre, Vancouver Coastal Health Authority, Vancouver, British Columbia, Canada
| |
Collapse
|
14
|
Finn HT, Bye EA, Elphick TG, Boswell-Ruys CL, Gandevia SC, Butler JE, Héroux ME. Transcutaneous spinal stimulation in people with and without spinal cord injury: Effect of electrode placement and trains of stimulation on threshold intensity. Physiol Rep 2023; 11:e15692. [PMID: 37269156 PMCID: PMC10238786 DOI: 10.14814/phy2.15692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/03/2023] [Indexed: 06/04/2023] Open
Abstract
Transcutaneous spinal cord stimulation (TSS) is purported to improve motor function in people after spinal cord injury (SCI). However, several methodology aspects are yet to be explored. We investigated whether stimulation configuration affected the intensity needed to elicit spinally evoked motor responses (sEMR) in four lower limb muscles bilaterally. Also, since stimulation intensity for therapeutic TSS (i.e., trains of stimulation, typically delivered at 15-50 Hz) is sometimes based on the single-pulse threshold intensity, we compared these two stimulation types. In non-SCI participants (n = 9) and participants with a SCI (n = 9), three different electrode configurations (cathode-anode); L1-midline (below the umbilicus), T11-midline and L1-ASIS (anterior superior iliac spine; non-SCI only) were compared for the sEMR threshold intensity using single pulses or trains of stimulation which were recorded in the vastus medialis, medial hamstring, tibialis anterior, medial gastrocnemius muscles. In non-SCI participants, the L1-midline configuration showed lower sEMR thresholds compared to T11-midline (p = 0.002) and L1-ASIS (p < 0.001). There was no difference between T11-midline and L1-midline for participants with SCI (p = 0.245). Spinally evoked motor response thresholds were ~13% lower during trains of stimulation compared to single pulses in non-SCI participants (p < 0.001), but not in participants with SCI (p = 0.101). With trains of stimulation, threshold intensities were slightly lower and the incidence of sEMR was considerably lower. Overall, stimulation threshold intensities were generally lower with the L1-midline electrode configuration and is therefore preferred. While single-pulse threshold intensities may overestimate threshold intensities for therapeutic TSS, tolerance to trains of stimulation will be the limiting factor in most cases.
Collapse
Affiliation(s)
- Harrison T Finn
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- School of Biomedical Sciences, University of New South Wales, New South Wales, Kensington, Australia
| | - Elizabeth A Bye
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- School of Biomedical Sciences, University of New South Wales, New South Wales, Kensington, Australia
- Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Thomas G Elphick
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- School of Biomedical Sciences, University of New South Wales, New South Wales, Kensington, Australia
| | - Claire L Boswell-Ruys
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- School of Biomedical Sciences, University of New South Wales, New South Wales, Kensington, Australia
- Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Simon C Gandevia
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- Prince of Wales Hospital, Randwick, New South Wales, Australia
- School of Clinical Medicine, University of New South Wales, New South Wales, Kensington, Australia
| | - Jane E Butler
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- School of Biomedical Sciences, University of New South Wales, New South Wales, Kensington, Australia
| | - Martin E Héroux
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- School of Biomedical Sciences, University of New South Wales, New South Wales, Kensington, Australia
| |
Collapse
|
15
|
Bryson N, Lombardi L, Hawthorn R, Fei J, Keesey R, Peiffer JD, Seáñez I. Enhanced selectivity of transcutaneous spinal cord stimulation by multielectrode configuration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534835. [PMID: 37034788 PMCID: PMC10081184 DOI: 10.1101/2023.03.30.534835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Objective Transcutaneous spinal cord stimulation (tSCS) has been gaining momentum as a non-invasive rehabilitation approach to restore movement to paralyzed muscles after spinal cord injury (SCI). However, its low selectivity limits the types of movements that can be enabled and, thus, its potential applications in rehabilitation. Approach In this cross-over study design, we investigated whether muscle recruitment selectivity of individual muscles could be enhanced by multielectrode configurations of tSCS in 16 neurologically intact individuals. We hypothesized that due to the segmental innervation of lower limb muscles, we could identify muscle-specific optimal stimulation locations that would enable improved recruitment selectivity over conventional tSCS. We elicited leg muscle responses by delivering biphasic pulses of electrical stimulation to the lumbosacral enlargement using conventional and multielectrode tSCS. Results Analysis of recruitment curve responses confirmed that multielectrode configurations could improve the rostrocaudal and lateral selectivity of tSCS. To investigate whether motor responses elicited by spatially selective tSCS were mediated by posterior root-muscle reflexes, each stimulation event was a paired pulse with a conditioning-test interval of 33.3 ms. Muscle responses to the second stimulation pulse were significantly suppressed, a characteristic of post-activation depression suggesting that spatially selective tSCS recruits proprioceptive fibers that reflexively activate muscle-specific motor neurons in the spinal cord. Moreover, the combination of leg muscle recruitment probability and segmental innervation maps revealed a stereotypical spinal activation map in congruence with each electrode's position. Significance Improvements in muscle recruitment selectivity could be essential for the effective translation into stimulation protocols that selectively enhance single-joint movements in neurorehabilitation.
Collapse
|
16
|
Rehman MU, Sneed D, Sutor TW, Hoenig H, Gorgey AS. Optimization of Transspinal Stimulation Applications for Motor Recovery after Spinal Cord Injury: Scoping Review. J Clin Med 2023; 12:854. [PMID: 36769503 PMCID: PMC9917510 DOI: 10.3390/jcm12030854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
Spinal cord injury (SCI) is a debilitating condition that can significantly affect an individual's life, causing paralysis, autonomic dysreflexia, and chronic pain. Transspinal stimulation (TSS) is a non-invasive form of neuromodulation that activates the underlying neural circuitries of the spinal cord. Application of TSS can be performed through multiple stimulation protocols, which may vary in the electrodes' size or position as well as stimulation parameters, and which may influence the response of motor functions to the stimulation. Due to the novelty of TSS, it is beneficial to summarize the available evidence to identify the range of parameters that may provide the best outcomes for motor response. The PubMed and Google Scholar databases were searched for studies examining the effects of TSS on limb motor function. A literature search yielded 34 studies for analysis, in which electrode placement and stimulation parameters varied considerably. The stimulation protocols from each study and their impact on limb motor function were summarized. Electrode placement was variable based on the targeted limb. Studies for the upper limbs targeted the cervical enlargement with anatomical placement of the cathode over the cervical vertebral region. In lower-limb studies, the cathode(s) were placed over the thoracic and lumbar vertebral regions, to target the lumbar enlargement. The effects of carrier frequency were inconclusive across the studies. Multisite cathodal placements yielded favorable motor response results compared to single-site placement. This review briefly summarized the current mechanistic evidence of the effect of TSS on motor response after SCI. Our findings indicate that optimization of stimulation parameters will require future randomized controlled studies to independently assess the effects of different stimulation parameters under controlled circumstances.
Collapse
Affiliation(s)
- Muhammad Uzair Rehman
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, VA 23249, USA
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Dustin Sneed
- Department of Physical Medicine and Rehabilitation, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Tommy W. Sutor
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, VA 23249, USA
| | - Helen Hoenig
- Physical Medicine & Rehabilitation Service, Durham VA Health Care System, Durham, NC 27705, USA
- Geriatrics Division, Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Ashraf S. Gorgey
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, VA 23249, USA
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
17
|
Dalrymple AN, Hooper CA, Kuriakose MG, Capogrosso M, Weber DJ. Using a high-frequency carrier does not improve comfort of transcutaneous spinal cord stimulation. J Neural Eng 2023; 20. [PMID: 36595241 DOI: 10.1088/1741-2552/acabe8] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Objective.Spinal cord neuromodulation has gained much attention for demonstrating improved motor recovery in people with spinal cord injury, motivating the development of clinically applicable technologies. Among them, transcutaneous spinal cord stimulation (tSCS) is attractive because of its non-invasive profile. Many tSCS studies employ a high-frequency (10 kHz) carrier, which has been reported to reduce stimulation discomfort. However, these claims have come under scrutiny in recent years. The purpose of this study was to determine whether using a high-frequency carrier for tSCS is more comfortable at therapeutic amplitudes, which evoke posterior root-muscle (PRM) reflexes.Approach.In 16 neurologically intact participants, tSCS was delivered using a 1 ms long monophasic pulse with and without a high-frequency carrier. Stimulation amplitude and pulse duration were varied and PRM reflexes were recorded from the soleus, gastrocnemius, and tibialis anterior muscles. Participants rated their discomfort during stimulation from 0 to 10 at PRM reflex threshold.Main Results.At PRM reflex threshold, the addition of a high-frequency carrier (0.87 ± 0.2) was equally comfortable as conventional stimulation (1.03 ± 0.18) but required approximately double the charge to evoke the PRM reflex (conventional: 32.4 ± 9.2µC; high-frequency carrier: 62.5 ± 11.1µC). Strength-duration curves for tSCS with a high-frequency carrier had a rheobase that was 4.8× greater and a chronaxie that was 5.7× narrower than the conventional monophasic pulse, indicating that the addition of a high-frequency carrier makes stimulation less efficient in recruiting neural activity in spinal roots.Significance.Using a high-frequency carrier for tSCS is equally as comfortable and less efficient as conventional stimulation at amplitudes required to stimulate spinal dorsal roots.
Collapse
Affiliation(s)
- Ashley N Dalrymple
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States of America.,NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, PA, United States of America
| | - Charli Ann Hooper
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States of America.,NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, PA, United States of America.,Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States of America
| | - Minna G Kuriakose
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America.,Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Marco Capogrosso
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America.,Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America.,Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, United States of America.,Center for Neural Basis of Cognition, Pittsburgh, PA, United States of America
| | - Douglas J Weber
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States of America.,NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, PA, United States of America.,Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States of America
| |
Collapse
|
18
|
Samejima S, Shackleton C, McCracken L, Malik RN, Miller T, Kavanagh A, Ghuman A, Elliott S, Walter M, Nightingale TE, Berger MJ, Lam T, Sachdeva R, Krassioukov AV. Effects of non-invasive spinal cord stimulation on lower urinary tract, bowel, and sexual functions in individuals with chronic motor-complete spinal cord injury: Protocol for a pilot clinical trial. PLoS One 2022; 17:e0278425. [PMID: 36512558 PMCID: PMC9746997 DOI: 10.1371/journal.pone.0278425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Electrical spinal cord neuromodulation has emerged as a leading intervention for restoring autonomic functions, such as blood pressure, lower urinary tract (LUT), bowel, and sexual functions, following spinal cord injury (SCI). While a few preliminary studies have shown the potential effect of non-invasive transcutaneous spinal cord stimulation (tSCS) on autonomic recovery following SCI, the optimal stimulation parameters, as well as real-time and long-term functional benefits of tSCS are understudied. This trial entitled "Non-invasive Neuromodulation to Treat Bladder, Bowel, and Sexual Dysfunction following Spinal Cord Injury" is a pilot trial to examine the feasibility, dosage effect and safety of tSCS on pelvic organ function for future large-scale randomized controlled trials. METHODS AND ANALYSIS Forty eligible participants with chronic cervical or upper thoracic motor-complete SCI will undergo stimulation mapping and assessment batteries to determine the real-time effect of tSCS on autonomic functions. Thereafter, participants will be randomly assigned to either moderate or intensive tSCS groups to test the dosage effect of long-term stimulation on autonomic parameters. Participants in each group will receive 60 minutes of tSCS per session either twice (moderate) or five (intensive) times per week, over a period of six weeks. Outcome measures include: (a) changes in bladder capacity through urodynamic studies during real-time and after long-term tSCS, and (b) resting anorectal pressure determined via anorectal manometry during real-time tSCS. We also measure assessments of sexual function, neurological impairments, and health-related quality of life using validated questionnaires and semi-structured interviews. ETHICS AND DISSEMINATION Ethical approval has been obtained (CREB H20-01163). All primary and secondary outcome data will be submitted to peer-reviewed journals and disseminated among the broader scientific community and stakeholders.
Collapse
Affiliation(s)
- Soshi Samejima
- Faculty of Medicine, International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Claire Shackleton
- Faculty of Medicine, International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Laura McCracken
- Faculty of Medicine, International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Raza N. Malik
- Faculty of Medicine, International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Tiev Miller
- Faculty of Medicine, International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Alex Kavanagh
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Amandeep Ghuman
- Department of Surgery, St. Paul’s Hospital, Vancouver, BC, Canada
| | - Stacy Elliott
- Faculty of Medicine, International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Urology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Matthias Walter
- Faculty of Medicine, International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- Department of Urology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Tom E. Nightingale
- Faculty of Medicine, International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Michael J. Berger
- Faculty of Medicine, International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- GF Strong Rehabilitation Centre, Vancouver Coastal Health, Vancouver, BC, Canada
| | - Tania Lam
- Faculty of Medicine, International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Rahul Sachdeva
- Faculty of Medicine, International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Andrei V. Krassioukov
- Faculty of Medicine, International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- GF Strong Rehabilitation Centre, Vancouver Coastal Health, Vancouver, BC, Canada
- * E-mail:
| |
Collapse
|
19
|
Samejima S, Henderson R, Pradarelli J, Mondello SE, Moritz CT. Activity-dependent plasticity and spinal cord stimulation for motor recovery following spinal cord injury. Exp Neurol 2022; 357:114178. [PMID: 35878817 DOI: 10.1016/j.expneurol.2022.114178] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/22/2022] [Accepted: 07/16/2022] [Indexed: 02/07/2023]
Abstract
Spinal cord injuries lead to permanent physical impairment despite most often being anatomically incomplete disruptions of the spinal cord. Remaining connections between the brain and spinal cord create the potential for inducing neural plasticity to improve sensorimotor function, even many years after injury. This narrative review provides an overview of the current evidence for spontaneous motor recovery, activity-dependent plasticity, and interventions for restoring motor control to residual brain and spinal cord networks via spinal cord stimulation. In addition to open-loop spinal cord stimulation to promote long-term neuroplasticity, we also review a more targeted approach: closed-loop stimulation. Lastly, we review mechanisms of spinal cord neuromodulation to promote sensorimotor recovery, with the goal of advancing the field of rehabilitation for physical impairments following spinal cord injury.
Collapse
Affiliation(s)
- Soshi Samejima
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Medicine, Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Richard Henderson
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA; Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Jared Pradarelli
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Sarah E Mondello
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Chet T Moritz
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA; Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA; Center for Neurotechnology, Seattle, WA, USA; Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA.
| |
Collapse
|