1
|
Liu CH, Rethi L, Weng PW, Trung Nguyen H, Chuang AEY. Cutting-edge advances in nano/biomedicine: A review on transforming thrombolytic therapy. Biochem Pharmacol 2024; 229:116523. [PMID: 39251141 DOI: 10.1016/j.bcp.2024.116523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Thrombotic blockages within blood vessels give rise to critical cardiovascular disorders, including ischemic stroke, venous thromboembolism, and myocardial infarction. The current approach to the therapy of thrombolysis involves administering Plasminogen Activators (PA), but it is hindered by fast drug elimination, narrow treatment window, and the potential for bleeding complications. Leveraging nanomedicine to encapsulate and deliver PA offers a solution by improving the efficacy of therapy, safeguarding the medicine from proteinase biodegradation, and reducing unwanted effects in in vivo trials. In this review, we delve into the underlying venous as well as arterial thrombus pathophysiology and provide an overview of clinically approved PA used to address acute thrombotic conditions. We explore the existing challenges and potential directions within recent pivotal research on a variety of targeted nanocarriers, such as lipid, polymeric, inorganic, and biological carriers, designed for precise delivery of PA to specific sites. We also discuss the promising role of microbubbles and ultrasound-assisted Sono thrombolysis, which have exhibited enhanced thrombolysis in clinical studies. Furthermore, our review delves into approaches for the strategic development of nano-based carriers tailored for targeting thrombolytic action and efficient encapsulation of PA, considering the intricate interaction in biology systems as well as nanomaterials. In conclusion, the field of nanomedicine offers a valuable method for the exact and effective therapy of severe thrombus conditions, presenting a pathway toward improved patient outcomes and reduced complications.
Collapse
Affiliation(s)
- Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; Department of Urology, Shuang Ho Hospital, Taipei Medical University, 291 Zhongzheng Road, Zhonghe District, New Taipei City 23561, Taiwan
| | - Lekshmi Rethi
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Pei-Wei Weng
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Viet Nam
| | - Andrew E-Y Chuang
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan.
| |
Collapse
|
2
|
Zhang Q, Kuang G, Wang L, Fan L, Zhou Y, Shang L, Zhao Y, Sun W. Bio-inspired biorthogonal compartmental microparticles for tumor chemotherapy and photothermal therapy. J Nanobiotechnology 2024; 22:498. [PMID: 39164657 PMCID: PMC11337894 DOI: 10.1186/s12951-024-02778-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024] Open
Abstract
Microcarrier is a promising drug delivery system demonstrating significant value in treating cancers. One of the main goals is to devise microcarriers with ingenious structures and functions to achieve better therapeutic efficacy in tumors. Here, inspired by the nucleus-cytoplasm structure of cells and the material exchange reaction between them, we develop a type of biorthogonal compartmental microparticles (BCMs) from microfluidics that can separately load and sequentially release cyclooctene-modified doxorubicin prodrug (TCO-DOX) and tetrazine-modified indocyanine green (Tz-ICG) for tumor therapy. The Tz-ICG works not only as an activator for TCO-DOX but also as a photothermal agent, allowing for the combination of bioorthogonal chemotherapy and photothermal therapy (PTT). Besides, the modification of DOX with cyclooctene significantly decreases the systemic toxicity of DOX. As a result, the developed BCMs demonstrate efficient in vitro tumor cell eradication and exhibit notable tumor growth inhibition with favorable safety. These findings illustrate that the formulated BCMs establish a platform for bioorthogonal prodrug activation and localized delivery, holding significant potential for cancer therapy and related applications.
Collapse
Affiliation(s)
- Qingfei Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Gaizhen Kuang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Li Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Lu Fan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Yechao Zhou
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Luoran Shang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Yuanjin Zhao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China.
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Weijian Sun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
3
|
Zheng H, Tai L, Xu C, Wang W, Ma Q, Sun W. Microfluidic-based cardiovascular systems for advanced study of atherosclerosis. J Mater Chem B 2024. [PMID: 38948949 DOI: 10.1039/d4tb00756e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Atherosclerosis (AS) is a significant global health concern due to its high morbidity and mortality rates. Extensive efforts have been made to replicate the cardiovascular system and explore the pathogenesis, diagnosis, and treatment of AS. Microfluidics has emerged as a valuable technology for modeling the cardiovascular system and studying AS. Here a brief review of the advances of microfluidic-based cardiovascular systems for AS research is presented. The critical pathogenetic mechanisms of AS investigated by microfluidic-based cardiovascular systems are categorized and reviewed, with a detailed summary of accurate diagnostic methods for detecting biomarkers using microfluidics represented. Furthermore, the review covers the evaluation and screening of AS drugs assisted by microfluidic systems, along with the fabrication of novel drug delivery carriers. Finally, the challenges and future prospects for advancing microfluidic-based cardiovascular systems in AS research are discussed and proposed, particularly regarding new opportunities in multi-disciplinary fundamental research and therapeutic applications for a broader range of disease treatments.
Collapse
Affiliation(s)
- Huiyuan Zheng
- School of Pharmacy, Qingdao University, Qingdao 266071, China.
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China.
| | - Lei Tai
- Pharmacy Department, Shandong Qingdao Hospital of Integrated Traditional and Western Medicine, Qingdao 266002, China
| | - Chengbin Xu
- Pharmacy Department, Shandong Qingdao Hospital of Integrated Traditional and Western Medicine, Qingdao 266002, China
| | - Weijiang Wang
- School of Pharmacy, Qingdao University, Qingdao 266071, China.
| | - Qingming Ma
- School of Pharmacy, Qingdao University, Qingdao 266071, China.
| | - Wentao Sun
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China.
| |
Collapse
|
4
|
Ji W, Zhang Y, Shao W, Kankala RK, Chen A. β-Cyclodextrin-based nanoassemblies for the treatment of atherosclerosis. Regen Biomater 2024; 11:rbae071. [PMID: 38966400 PMCID: PMC11223813 DOI: 10.1093/rb/rbae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/22/2024] [Accepted: 06/02/2024] [Indexed: 07/06/2024] Open
Abstract
Atherosclerosis, a chronic and progressive condition characterized by the accumulation of inflammatory cells and lipids within artery walls, remains a leading cause of cardiovascular diseases globally. Despite considerable advancements in drug therapeutic strategies aimed at managing atherosclerosis, more effective treatment options for atherosclerosis are still warranted. In this pursuit, the emergence of β-cyclodextrin (β-CD) as a promising therapeutic agent offers a novel therapeutic approach to drug delivery targeting atherosclerosis. The hydrophobic cavity of β-CD facilitates its role as a carrier, enabling the encapsulation and delivery of various therapeutic compounds to affected sites within the vasculature. Notably, β-CD-based nanoassemblies possess the ability to reduce cholesterol levels, mitigate inflammation, solubilize hydrophobic drugs and deliver drugs to affected tissues, making these nanocomponents promising candidates for atherosclerosis management. This review focuses on three major classes of β-CD-based nanoassemblies, including β-CD derivatives-based, β-CD/polymer conjugates-based and polymer β-CD-based nanoassemblies, highlighting a variety of formulations and assembly methods to improve drug delivery and therapeutic efficacy. These β-CD-based nanoassemblies exhibit a variety of therapeutic mechanisms for atherosclerosis and offer systematic strategies for overcoming barriers to drug delivery. Finally, we discuss the present obstacles and potential opportunities in the development and application of β-CD-based nanoassemblies as novel therapeutics for managing atherosclerosis and addressing cardiovascular diseases.
Collapse
Affiliation(s)
- Weihong Ji
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Yuanxing Zhang
- The Institute of Forensic Science, Xiamen Public Security Bureau, Xiamen, Fujian 361104, PR China
| | - Weichen Shao
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| |
Collapse
|
5
|
Wang H, Bo W, Feng X, Zhang J, Li G, Chen Y. Strategies and Recent Advances on Improving Efficient Antitumor of Lenvatinib Based on Nanoparticle Delivery System. Int J Nanomedicine 2024; 19:5581-5603. [PMID: 38882543 PMCID: PMC11177867 DOI: 10.2147/ijn.s460844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024] Open
Abstract
Lenvatinib (LVN) is a potentially effective multiple-targeted receptor tyrosine kinase inhibitor approved for treating hepatocellular carcinoma, metastatic renal cell carcinoma and thyroid cancer. Nonetheless, poor pharmacokinetic properties including poor water solubility and rapid metabolic, complex tumor microenvironment, and drug resistance have impeded its satisfactory therapeutic efficacy. This article comprehensively reviews the uses of nanotechnology in LVN to improve antitumor effects. With the characteristic of high modifiability and loading capacity of the nano-drug delivery system, an active targeting approach, controllable drug release, and biomimetic strategies have been devised to deliver LVN to target tumors in sequence, compensating for the lack of passive targeting. The existing applications and advances of LVN in improving therapeutic efficacy include improving longer-term efficiency, achieving higher efficiency, combination therapy, tracking and diagnosing application and reducing toxicity. Therefore, using multiple strategies combined with photothermal, photodynamic, and immunoregulatory therapies potentially overcomes multi-drug resistance, regulates unfavorable tumor microenvironment, and yields higher synergistic antitumor effects. In brief, the nano-LVN delivery system has brought light to the war against cancer while at the same time improving the antitumor effect. More intelligent and multifunctional nanoparticles should be investigated and further converted into clinical applications in the future.
Collapse
Affiliation(s)
- Haiqing Wang
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Wentao Bo
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Xielin Feng
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Jinliang Zhang
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Ge Li
- Department of Emergency, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Yan Chen
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| |
Collapse
|
6
|
Shen Y, Yu Y, Zhang X, Hu B, Wang N. Progress of nanomaterials in the treatment of thrombus. Drug Deliv Transl Res 2024; 14:1154-1172. [PMID: 38006448 DOI: 10.1007/s13346-023-01478-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 11/27/2023]
Abstract
Thrombus has long been the major contributor of death and disability because it can cause adverse effects to varying degrees on the body, resulting in vascular blockage, embolism, heart valve deformation, widespread bleeding, etc. However, clinically, conventional thrombolytic drug treatments have hemorrhagic complication risks and easy to miss the best time of treatment window. Thus, it is an urgent need to investigate newly alternative treatment strategies that can reduce adverse effects and improve treatment effectiveness. Drugs based on nanomaterials act as a new biomedical strategy and promising tools, and have already been investigated for both diagnostic and therapeutic purposes in thrombus therapy. Recent studies have some encouraging progress. In the present review, we primarily concern with the latest developments in the areas of nanomedicines targeting thrombosis therapy. We present the thrombus' formation, characteristics, and biomarkers for diagnosis, overview recent emerging nanomedicine strategies for thrombus therapy, and focus on the future design directions, challenges, and prospects in the nanomedicine application in thrombus therapy.
Collapse
Affiliation(s)
- Yetong Shen
- Department of Biochemistry and Molecular Biology, China Medical University, No. 77 Puhe Road, Shenyang, 110122, China
- College of Life and Health Sciences, Northeastern University, Shenyang, 110167, China
| | - Yang Yu
- Department of Biochemistry and Molecular Biology, China Medical University, No. 77 Puhe Road, Shenyang, 110122, China
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xin Zhang
- Department of Biochemistry and Molecular Biology, China Medical University, No. 77 Puhe Road, Shenyang, 110122, China
| | - Bo Hu
- Department of Biochemistry and Molecular Biology, China Medical University, No. 77 Puhe Road, Shenyang, 110122, China.
| | - Ning Wang
- Department of Biochemistry and Molecular Biology, China Medical University, No. 77 Puhe Road, Shenyang, 110122, China.
- Department of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang, 110122, China.
| |
Collapse
|
7
|
Zhu Y, Xu L, Kang Y, Cheng Q, He Y, Ji X. Platelet-derived drug delivery systems: Pioneering treatment for cancer, cardiovascular diseases, infectious diseases, and beyond. Biomaterials 2024; 306:122478. [PMID: 38266348 DOI: 10.1016/j.biomaterials.2024.122478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/14/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
Platelets play a critical role as circulating cells in the human body and contribute to essential physiological processes such as blood clotting, hemostasis, vascular repair, and thrombus formation. Currently, platelets are extensively employed in the development of innovative biomimetic drug delivery systems, offering significant enhancements in circulation time, biocompatibility, and targeted delivery efficiency compared to conventional drug delivery approaches. Leveraging the unique physiological functions of platelets, these platelet-derived drug delivery systems (DDSs) hold great promise for the treatment of diverse diseases, including cancer, cardiovascular diseases, infectious diseases, wound healing and other diseases. This review primarily focuses on the design and characteristics of existing platelet-derived DDSs, including their preparation and characterization methods. Furthermore, this review comprehensively outlines the applications of these materials across various diseases, offering a holistic understanding of their therapeutic potential. This study aimed to provide a comprehensive overview of the potential value of these materials in clinical treatment, serving as a valuable reference for the advancement of novel platelet-derived DDSs and their broader utilization in the field of disease treatment.
Collapse
Affiliation(s)
- Yalan Zhu
- Department of Pharmacy, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, 321000, China
| | - Lingling Xu
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Yong Kang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Qinzhen Cheng
- Department of Pharmacy, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, 321000, China.
| | - Yiling He
- Department of Pharmacy, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, 321000, China.
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China; Medical College, Linyi University, Linyi, 276000, China.
| |
Collapse
|
8
|
Beg MA, Huang M, Vick L, Rao KNS, Zhang J, Chen Y. Targeting mitochondrial dynamics and redox regulation in cardiovascular diseases. Trends Pharmacol Sci 2024; 45:290-303. [PMID: 38458847 DOI: 10.1016/j.tips.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/10/2024]
Abstract
Accumulating evidence highlights the pivotal role of mitochondria in cardiovascular diseases (CVDs). Understanding the molecular mechanisms underlying mitochondrial dysfunction is crucial for developing targeted therapeutics. Recent years have seen substantial advancements in unraveling mitochondrial regulatory pathways in both normal and pathological states and the development of potent drugs. However, specific delivery of drugs into the mitochondria is still a challenge. We present recent findings on regulators of mitochondrial dynamics and reactive oxygen species (ROS), critical factors influencing mitochondrial function in CVDs. We also discuss advancements in drug delivery strategies aimed at overcoming the technical barrier in targeting mitochondria for CVD treatment.
Collapse
Affiliation(s)
| | - Minqi Huang
- HD Biosciences Inc. a WuXi AppTec company, San Diego, CA 92121, USA
| | - Lance Vick
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - K N Shashanka Rao
- Joint Department of Biomedical Engineering, Medical College of Wisconsin & Marquette University, Milwaukee, WI 53226, USA
| | - Jue Zhang
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | - Yiliang Chen
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
9
|
Zhang N, Sun Q, Li J, Li J, Tang L, Zhao Q, Pu Y, Liang G, He B, Gao W, Chen J. A lipid/PLGA nanocomplex to reshape tumor immune microenvironment for colon cancer therapy. Regen Biomater 2024; 11:rbae036. [PMID: 38628547 PMCID: PMC11018539 DOI: 10.1093/rb/rbae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 04/19/2024] Open
Abstract
Immune checkpoint blockade therapy provides a new strategy for tumor treatment; however, the insufficient infiltration of cytotoxic T cells and immunosuppression in tumor microenvironment lead to unsatisfied effects. Herein, we reported a lipid/PLGA nanocomplex (RDCM) co-loaded with the photosensitizer Ce6 and the indoleamine 2,3-dioxygenase (IDO) inhibitor 1MT to improve immunotherapy of colon cancer. Arginine-glycine-aspartic acid (RGD) as the targeting moiety was conjugated on 1,2-distearoyl-snglycero-3-phosphoethanolamine lipid via polyethylene glycol (PEG), and programmed cell death-ligand 1 (PD-L1) peptide inhibitor DPPA (sequence: CPLGVRGK-GGG-d(NYSKPTDRQYHF)) was immobilized on the terminal group of PEG via matrix metalloproteinase 2 sensitive peptide linker. The Ce6 and 1MT were encapsulated in PLGA nanoparticles. The drug loaded nanoparticles were composited with RGD and DPPA modified lipid and lecithin to form lipid/PLGA nanocomplexes. When the nanocomplexes were delivered to tumor, DPPA was released by the cleavage of a matrix metalloproteinase 2-sensitive peptide linker for PD-L1 binding. RGD facilitated the cellular internalization of nanocomplexes via avβ3 integrin. Strong immunogenic cell death was induced by 1O2 generated from Ce6 irradiation under 660 nm laser. 1MT inhibited the activity of IDO and reduced the inhibition of cytotoxic T cells caused by kynurenine accumulation in the tumor microenvironment. The RDCM facilitated the maturation of dendritic cells, inhibited the activity of IDO, and markedly recruited the proportion of tumor-infiltrating cytotoxic T cells in CT26 tumor-bearing mice, triggering a robust immunological memory effect, thus effectively preventing tumor metastasis. The results indicated that the RDCM with dual IDO and PD-L1 inhibition effects is a promising platform for targeted photoimmunotherapy of colon cancer.
Collapse
Affiliation(s)
- Nan Zhang
- Henan Academy of Sciences, Zhengzhou 450046, China
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Qiqi Sun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Junhua Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Jing Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Lei Tang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Quan Zhao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | | | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Wenxia Gao
- School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Jianlin Chen
- School of Laboratory Medicine, Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu 610500, China
| |
Collapse
|
10
|
Shu J, Deng H, Zhang Y, Wu F, He J. Cancer cell response to extrinsic and intrinsic mechanical cue: opportunities for tumor apoptosis strategies. Regen Biomater 2024; 11:rbae016. [PMID: 38476678 PMCID: PMC10932484 DOI: 10.1093/rb/rbae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 03/14/2024] Open
Abstract
Increasing studies have revealed the importance of mechanical cues in tumor progression, invasiveness and drug resistance. During malignant transformation, changes manifest in either the mechanical properties of the tissue or the cellular ability to sense and respond to mechanical signals. The major focus of the review is the subtle correlation between mechanical cues and apoptosis in tumor cells from a mechanobiology perspective. To begin, we focus on the intracellular force, examining the mechanical properties of the cell interior, and outlining the role that the cytoskeleton and intracellular organelle-mediated intracellular forces play in tumor cell apoptosis. This article also elucidates the mechanisms by which extracellular forces guide tumor cell mechanosensing, ultimately triggering the activation of the mechanotransduction pathway and impacting tumor cell apoptosis. Finally, a comprehensive examination of the present status of the design and development of anti-cancer materials targeting mechanotransduction is presented, emphasizing the underlying design principles. Furthermore, the article underscores the need to address several unresolved inquiries to enhance our comprehension of cancer therapeutics that target mechanotransduction.
Collapse
Affiliation(s)
- Jun Shu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Huan Deng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Yu Zhang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Fang Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Jing He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| |
Collapse
|