1
|
Joyo Y, Kawaguchi Y, Yonezu H, Senda H, Yasuma S, Shiraga H, Nozaki M, Aoyama M, Asai K, Murakami H, Waguri-Nagaya Y. The Janus kinase inhibitor (baricitinib) suppresses the rheumatoid arthritis active marker gliostatin/thymidine phosphorylase in human fibroblast-like synoviocytes. Immunol Res 2022; 70:208-215. [PMID: 35014010 PMCID: PMC8917024 DOI: 10.1007/s12026-022-09261-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/31/2021] [Indexed: 01/04/2023]
Abstract
Gliostatin/thymidine phosphorylase (GLS/TP) is known to have angiogenic and arthritogenic activities in the pathogenesis of rheumatoid arthritis (RA). The novel oral Janus kinase (JAK) inhibitor baricitinib has demonstrated high efficacy in RA. However, the effect of baricitinib on fibroblast-like synoviocytes (FLSs), a key component of invasive synovitis, has not been still elucidated. This study investigated whether GLS/TP production could be regulated by JAK/signal transducers and activators of transcription (STAT) signaling in FLSs derived from patients with RA. FLSs were cultured and stimulated by interferon (IFN)γ in the presence of baricitinib. Expression levels of GLS/TP were determined using reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and immunocytochemistry. Phosphorylation of STAT proteins was investigated by Western blot. In cultured FLSs, GLS/TP mRNA and protein levels were significantly induced by treatment with IFNγ and these inductions were suppressed by baricitinib treatment. Baricitinib inhibited IFNγ-induced STAT1 phosphorylation, while JAK/STAT activation played a pivotal role in IFNγ-mediated GLS/TP upregulation in RA. These results suggested that baricitinib suppressed IFNγ-induced GLS/TP expression by inhibiting JAK/STAT signaling, resulting in the attenuation of neovascularization, synovial inflammation, and cartilage destruction.
Collapse
Affiliation(s)
- Yuji Joyo
- Department of Orthopaedic Surgery, Nagoya City University East Medical Center, Wakamizu 1, Chikusa-Ku, Nagoya, 464-8547, Japan.,Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Yohei Kawaguchi
- Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Mizuho-Ku, Nagoya, 467-8601, Japan.,Department of Glial Cell Biology, Nagoya City University Graduate School of Medical Sciences, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Hiroki Yonezu
- Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Hiroya Senda
- Department of Orthopaedic Surgery, Nagoya City University East Medical Center, Wakamizu 1, Chikusa-Ku, Nagoya, 464-8547, Japan
| | - Sanshiro Yasuma
- Department of Orthopaedic Surgery, Nagoya City University East Medical Center, Wakamizu 1, Chikusa-Ku, Nagoya, 464-8547, Japan
| | - Hiroo Shiraga
- Department of Orthopaedic Surgery, Nagoya City University East Medical Center, Wakamizu 1, Chikusa-Ku, Nagoya, 464-8547, Japan
| | - Masahiro Nozaki
- Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Mineyoshi Aoyama
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, Mizuho-Ku, Nagoya, 467-8603, Japan
| | - Kiyofumi Asai
- Department of Glial Cell Biology, Nagoya City University Graduate School of Medical Sciences, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Hideki Murakami
- Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Yuko Waguri-Nagaya
- Department of Orthopaedic Surgery, Nagoya City University East Medical Center, Wakamizu 1, Chikusa-Ku, Nagoya, 464-8547, Japan.
| |
Collapse
|
2
|
Tatematsu N, Waguri-Nagaya Y, Kawaguchi Y, Oguri Y, Ikuta K, Kobayashi M, Nozaki M, Asai K, Aoyama M, Otsuka T. Mithramycin has inhibitory effects on gliostatin and matrix metalloproteinase expression induced by gliostatin in rheumatoid fibroblast-like synoviocytes. Mod Rheumatol 2017; 28:495-505. [PMID: 28741989 DOI: 10.1080/14397595.2017.1350332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVES Gliostatin (GLS) has angiogenic and arthritogenic activities and enzymatic activity as thymidine phosphorylase. Aberrant GLS production has been observed in the synovial membranes of patients with rheumatoid arthritis (RA). Matrix metalloproteinases (MMPs) are involved in joint destruction. Promoters of GLS and some MMP genes contain Sp1 binding sites. We examined the inhibitory effect of the Sp1 inhibitor mithramycin on GLS-induced GLS and MMP expression in cultured fibroblast-like synoviocytes (FLSs). METHODS Synovial tissue samples were obtained from patients with RA. FLSs pretreated with mithramycin were cultured with GLS. The mRNA expression levels of GLS and MMP-1, MMP-2, MMP-3, MMP-9, and MMP-13 were determined using reverse transcription polymerase chain reactions. Protein levels were measured using enzyme immunoassay and gelatin zymography. RESULTS GLS upregulated the expression of GLS itself and of MMP-1, MMP-3, MMP-9, and MMP-13, an effect significantly reduced by treatment with mithramycin. GLS and mithramycin had no effect on MMP-2 expression. CONCLUSIONS Mithramycin downregulated the increased expression of GLS and MMP-1, MMP-3, MMP-9, and MMP-13 in FLSs treated with GLS. Because GLS plays a pathological role in RA, blocking GLS stimulation using an agent such as mithramycin may be a novel approach to antirheumatic therapy.
Collapse
Affiliation(s)
- Naoe Tatematsu
- a Department of Orthopaedic Surgery , Nagoya City University Graduate School of Medical Sciences , Nagoya , Japan
| | - Yuko Waguri-Nagaya
- b Department of Joint Surgery for Rheumatic Diseases , Nagoya City University Graduate School of Medical Sciences , Nagoya , Japan
| | - Yohei Kawaguchi
- a Department of Orthopaedic Surgery , Nagoya City University Graduate School of Medical Sciences , Nagoya , Japan
| | - Yusuke Oguri
- a Department of Orthopaedic Surgery , Nagoya City University Graduate School of Medical Sciences , Nagoya , Japan
| | - Kenji Ikuta
- a Department of Orthopaedic Surgery , Nagoya City University Graduate School of Medical Sciences , Nagoya , Japan
| | - Masaaki Kobayashi
- a Department of Orthopaedic Surgery , Nagoya City University Graduate School of Medical Sciences , Nagoya , Japan
| | - Masahiro Nozaki
- a Department of Orthopaedic Surgery , Nagoya City University Graduate School of Medical Sciences , Nagoya , Japan
| | - Kiyofumi Asai
- c Department of Molecular Neurobiology , Nagoya City University Graduate School of Medical Sciences , Nagoya , Japan
| | - Mineyoshi Aoyama
- d Department of Pathobiology , Nagoya City University Graduate School of Pharmaceutical Sciences , Nagoya , Japan
| | - Takanobu Otsuka
- a Department of Orthopaedic Surgery , Nagoya City University Graduate School of Medical Sciences , Nagoya , Japan
| |
Collapse
|
3
|
Bera H, Dolzhenko AV, Sun L, Dutta Gupta S, Chui WK. Synthesis and in vitro evaluation of 1,2,4-triazolo[1,5-a][1,3,5]triazine derivatives as thymidine phosphorylase inhibitors. Chem Biol Drug Des 2014; 82:351-60. [PMID: 23758794 DOI: 10.1111/cbdd.12171] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 05/15/2013] [Accepted: 06/06/2013] [Indexed: 11/29/2022]
Abstract
In our lead finding program, a series of 1,2,4-triazolo[1,5-a][1,3,5]triazine derivatives were synthesized, and their in vitro thymidine phosphorylase inhibitory potential was explored. Among the different derivatives, compounds having keto group (C = O) at C7 and thioketo group (C = S) at C5 positions showed varying degrees of TP inhibitory activity comparable with positive control, 7-deazaxanthine (7-DX, 2) (IC50 value = 42.63 μm). Enzyme inhibition kinetics study suggested that compound IVn behaved as a mixed-type inhibitor of the enzyme with respect to thymidine (dThd) as a variable substrate. Compound IVn was also found to inhibit PMA-induced MMP-9 expression in MDA-MB-231 cells at sublethal concentrations. Computational docking study was performed to illustrate the enzyme inhibition kinetics and to explore the ligand-enzyme interactions.
Collapse
Affiliation(s)
- Hriday Bera
- Gokaraju Rangaraju College of Pharmacy, Bachupally, Hyderabad, 500090, India; Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | | | | | | | | |
Collapse
|
4
|
Ikuta K, Waguri-Nagaya Y, Kikuchi K, Yamagami T, Nozaki M, Aoyama M, Asai K, Otsuka T. The Sp1 transcription factor is essential for the expression of gliostatin/thymidine phosphorylase in rheumatoid fibroblast-like synoviocytes. Arthritis Res Ther 2012; 14:R87. [PMID: 22534375 PMCID: PMC3446461 DOI: 10.1186/ar3811] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 04/01/2012] [Accepted: 04/25/2012] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Gliostatin/thymidine phosphorylase (GLS/TP) has angiogenic and arthritogenic activities, and aberrant GLS production has been observed in the active synovial membranes of rheumatoid arthritis (RA) patients. The human GLS gene promoter contains at least seven consensus binding sites for the DNA binding protein Sp1. Here we examined whether Sp1 is necessary for GLS production in RA. We also studied the effects of the Sp1 inhibitor mithramycin on GLS production in RA fibroblast-like synoviocytes (FLSs). METHODS FLSs from RA patients were treated with specific inhibitors. The gene and protein expression of GLS were studied using the quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and an enzyme immunoassay. Intracellular signalling pathway activation was determined by western blotting analysis, a luciferase assay, a chromatin immunoprecipitation (ChIP) assay and a small interfering RNA (siRNA) transfection. RESULTS The luciferase and ChIP assays showed that Sp1 binding sites in the GLS promoter were essential for GLS messenger RNA (mRNA) expression. GLS production was suppressed in FLSs by siRNA against Sp1 transfection. Mithramycin decreased GLS promoter activity, mRNA and protein expression in FLSs. Tumour necrosis factor-α (TNF-α) significantly increased GLS expression in RA FLSs; this effect was reduced by pre-treatment with cycloheximide and mithramycin. CONCLUSIONS Pretreatment of mithramycin and Sp1 silencing resulted in a significant suppression of GLS production in TNF-α-stimulated FLSs compared to controls. GLS gene expression enhanced by TNF-α was partly mediated through Sp1. As physiological concentrations of mithramycin can regulate GLS production in RA, mithramycin is a promising candidate for anti-rheumatic therapy.
Collapse
Affiliation(s)
- Kenji Ikuta
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, MuzuhoMizuho-ku, Nagoya, 467-8601, Japan
| | | | | | | | | | | | | | | |
Collapse
|
5
|
FK506 inhibition of gliostatin/thymidine phosphorylase production induced by tumor necrosis factor-α in rheumatoid fibroblast-like synoviocytes. Rheumatol Int 2010; 31:903-9. [PMID: 20238216 DOI: 10.1007/s00296-010-1411-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 02/27/2010] [Indexed: 01/12/2023]
Abstract
Gliostatin/thymidine phosphorylase (GLS/TP) is known to have angiogenic and arthritogenic activities. The purpose of this study was to determine the inhibitory effects of FK506 (tacrolimus) on GLS production in rheumatoid arthritis (RA). We investigated the modulation of serum GLS by FK506 therapy and the effect of FK506 on the production of GLS in fibroblast-like synoviocytes (FLSs). Serum samples were collected from 11 RA patients with active disease at baseline and after 12 weeks of FK506 treatment. Serum concentrations of GLS and matrix metalloproteinase (MMP)-3 were measured by ELISA and found to be down-regulated in responders evaluated with a disease activity score. Patient FLSs were cultured and stimulated by tumor necrosis factor (TNF)-α with or without FK506. The expression levels of GLS were determined using reverse transcription-polymerase chain reaction (RT-PCR) and enzyme immunoassay and shown to be significantly increased. GLS levels in TNF-α-stimulated FLSs were reduced by FK506 treatment. Our data show a novel mechanism for the action of physiological concentrations of FK506 in RA that regulates the production of GLS in FLSs.
Collapse
|
6
|
Nagahara M, Waguri-Nagaya Y, Yamagami T, Aoyama M, Tada T, Inoue K, Asai K, Otsuka T. TNF-alpha-induced aquaporin 9 in synoviocytes from patients with OA and RA. Rheumatology (Oxford) 2010; 49:898-906. [PMID: 20181673 DOI: 10.1093/rheumatology/keq028] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To determine whether aquaporins (AQPs) are expressed in the synovial tissues of patients with OA and RA, and to examine the patterns of expression in patients with and without hydrarthrosis. METHODS AQPs were detected in synovial tissue samples from patients with OA and RA using RT-PCR and immunohistochemistry. Fibroblast-like synoviocytes (FLSs) from patients with OA and RA were cultured and stimulated with TNF-alpha. The expression of AQPs in FLSs was examined using RT-PCR and western blot analyses and the function of aquaglyceroporins was examined by a glycerol uptake assay. RESULTS AQP1, -3 and -9 mRNAs were expressed in synovial tissues from patients with OA and RA. AQP1, -3 and -9 proteins were also detected by immunohistochemistry. AQP9 mRNA was expressed more strongly in the synovial tissues of OA patients with hydrarthrosis than those without. AQP9 mRNA and protein expression were strongly induced with TNF-alpha treatment in FLSs, whereas the expression of AQP1 and -3 mRNAs was not induced with TNF-alpha treatment. AQP9 as an aquaglyceroporin was induced by TNF-alpha. CONCLUSIONS AQP9 mRNA was detected in synovial tissues from OA and RA patients with hydrarthrosis. AQP9 expression was strongly induced in FLSs with TNF-alpha. Although the functions of AQP1, -3 and -9 in synovial tissues remain to be elucidated, it suggested that AQP9 might be related to the pathogenesis of hydrarthrosis and inflammatory synovitis.
Collapse
Affiliation(s)
- Masashizu Nagahara
- Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Bronckaers A, Gago F, Balzarini J, Liekens S. The dual role of thymidine phosphorylase in cancer development and chemotherapy. Med Res Rev 2009; 29:903-53. [PMID: 19434693 PMCID: PMC7168469 DOI: 10.1002/med.20159] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Thymidine phosphorylase (TP), also known as "platelet-derived endothelial cell growth factor" (PD-ECGF), is an enzyme, which is upregulated in a wide variety of solid tumors including breast and colorectal cancers. TP promotes tumor growth and metastasis by preventing apoptosis and inducing angiogenesis. Elevated levels of TP are associated with tumor aggressiveness and poor prognosis. Therefore, TP inhibitors are synthesized in an attempt to prevent tumor angiogenesis and metastasis. TP is also indispensable for the activation of the extensively used 5-fluorouracil prodrug capecitabine, which is clinically used for the treatment of colon and breast cancer. Clinical trials that combine capecitabine with TP-inducing therapies (such as taxanes or radiotherapy) suggest that increasing TP expression is an adequate strategy to enhance the antitumoral efficacy of capecitabine. Thus, TP plays a dual role in cancer development and therapy: on the one hand, TP inhibitors can abrogate the tumorigenic and metastatic properties of TP; on the other, TP activity is necessary for the activation of several chemotherapeutic drugs. This duality illustrates the complexity of the role of TP in tumor progression and in the clinical response to fluoropyrimidine-based chemotherapy.
Collapse
Affiliation(s)
| | - Federico Gago
- Departamento de Farmacología, Universidad de Alcalá, 28871 Alcalá de Henares, Spain
| | - Jan Balzarini
- Rega Institute for Medical Research, K.U.Leuven, B‐3000 Leuven, Belgium
| | - Sandra Liekens
- Rega Institute for Medical Research, K.U.Leuven, B‐3000 Leuven, Belgium
| |
Collapse
|
8
|
Liekens S, Bronckaers A, Pérez-Pérez MJ, Balzarini J. Targeting platelet-derived endothelial cell growth factor/thymidine phosphorylase for cancer therapy. Biochem Pharmacol 2007; 74:1555-67. [PMID: 17572389 DOI: 10.1016/j.bcp.2007.05.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 05/08/2007] [Indexed: 11/18/2022]
Abstract
Thymidine phosphorylase (TP) is a key enzyme in the pyrimidine nucleoside salvage pathway, but it also recognizes and inactivates various anti-cancer chemotherapeutic agents. Moreover, TP is identical to platelet-derived endothelial cell growth factor (PD-ECGF), an angiogenic factor with anti-apoptotic properties. Increased expression of PD-ECGF/TP is found in many tumor and stromal cells, and elevated TP levels are associated with aggressive disease and/or poor prognosis. Thus, progression and metastasis of TP-expressing tumors might be abrogated by TP inhibitors that are used as single agents or in combination with (TP-sensitive) nucleoside analogues. On the other hand, increased TP activity in tumors may be exploited for the tumor-specific activation of fluoropyrimidine prodrugs, such as capecitabine. This review will focus on the different biological activities of PD-ECGF/TP and their implications for cancer progression and treatment.
Collapse
Affiliation(s)
- Sandra Liekens
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, K.U. Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
9
|
Tang Y, Cai D, Chen Y. Thrombin inhibits aquaporin 4 expression through protein kinase C-dependent pathway in cultured astrocytes. J Mol Neurosci 2007; 31:83-93. [PMID: 17416972 DOI: 10.1007/bf02686120] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 08/04/2006] [Accepted: 08/04/2006] [Indexed: 10/23/2022]
Abstract
Aquaporin 4 (AQP4) is a key molecule for maintaining water balance in the central nervous system, and its dysfunction might cause brain edema. However, little is known about the regulation of AQP4 expression. Because thrombin has been implicated in brain edema formation, the purpose of this study is to determine whether thrombin affects expression of AQP4 in astrocytes. Here, the effect of thrombin on AQP4 expression in vitro was evaluated using Western blot analysis and RT-PCR. Meanwhile, we investigated whether the effect of thrombin on AQP4 expression was due to protease-activated receptor 1 (PAR-1). In addition, we examined the role of protein kinase C (PKC) in the effect of thrombin on AQP4 expression using Western blot analysis. We found that thrombin did not affect cell viability at concentrations of 0.05, 0.5, 5, or 50 nM but killed astrocytes at concentrations of 500 nM, with approx 72% of astrocytes surviving at 500 nM thrombin. Our data showed that AQP4 protein expression achieved only 28% of controls in 500 nM thrombin treatment, even if astrocytes survived approx 72% of controls at 500 nM thrombin. Thrombin significantly inhibited AQP4 in a time- and dose dependent manner in vitro (p<0.05). Cathepsin-G, a thrombin PAR-1 inhibitor, reversed significantly (p<0.05) the effect of thrombin on AQP4 mRNA and protein expression in astrocytes. We also observed that PKC inhibitor H-7 or prolonged pretreatment with TPA can rapidly increase AQP4 expression (p<0.05). Thrombin might inhibit AQP4 expression in rat astrocytes, and this effect is possibly mediated by the PKC pathway.
Collapse
Affiliation(s)
- Yuping Tang
- Laboratory of Neurology, Institute of Integrative Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | | | | |
Collapse
|
10
|
Tanikawa T, Waguri-Nagaya Y, Kusabe T, Aoyama M, Asai K, Otsuka T. Gliostatin/thymidine phosphorylase-regulated vascular endothelial growth-factor production in human fibroblast-like synoviocytes. Rheumatol Int 2006; 27:553-9. [PMID: 17103175 DOI: 10.1007/s00296-006-0258-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Accepted: 09/28/2006] [Indexed: 11/24/2022]
Abstract
Gliostatin/thymidine phosphorylase (GLS/TP) is known to have angiogenic and arthritogenic activities. The purpose of this study was to elucidate whether GLS/TP is involved in the regulation of the angiogenic cytokine vascular endothelial growth factor (VEGF) in rheumatoid arthritis (RA). Fibroblast-like synoviocytes (FLSs) from patients with RA were cultured and stimulated with recombinant human GLS (rHuGLS) and interleukin (IL)-1beta. Immunohistochemistry showed that GLS/TP and VEGF were detectable in the synovial lining cells. In cultured FLSs, both VEGF mRNA and protein levels were markedly increased by rHuIL-1beta treatment. rHuGLS increased VEGF mRNA expression in a dose-dependent manner. We detected high concentrations of VEGF165 protein in culture supernatants from FLSs treated with rHuGLS (300 ng/ml), which were comparable to GLS levels found in synovial fluid of RA patients. These findings indicate that GLS/TP and VEGF have synergistic effects on angiogenesis in rheumatoid synovitis, and that GLS/TP has a role in regulating VEGF.
Collapse
Affiliation(s)
- Tomohiro Tanikawa
- Department of Musculoskeletal Medicine, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho chou, Mizuho-Ku, Nagoya, 467-8601, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Kusabe T, Waguri-Nagaya Y, Tanikawa T, Aoyama M, Fukuoka M, Kobayashi M, Otsuka T, Asai K. The inhibitory effect of disease-modifying anti-rheumatic drugs and steroids on gliostatin/platelet-derived endothelial cell growth factor production in human fibroblast-like synoviocytes. Rheumatol Int 2005; 25:625-30. [PMID: 15990992 DOI: 10.1007/s00296-005-0624-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Accepted: 03/23/2005] [Indexed: 12/12/2022]
Abstract
Gliostatin/platelet-derived endothelial cell growth factor (GLS/PD-ECGF) is known to have both angiogenic and arthritogenic activities. The purpose of this study was to investigate whether disease-modifying anti-rheumatic drugs (DMARDs) and steroids are involved in the regulation of GLS expression. Fibroblast-like synoviocytes (FLSs) obtained from patients with rheumatoid arthritis (RA) were cultured and stimulated by interleukin (IL)-1beta with or without DMARDs and steroids. The expression levels of GLS were determined using the reverse transcription-polymerase chain reaction and an ELISA. In cultured rheumatoid FLSs, the expression of GLS mRNA was significantly increased by stimulation with IL-1beta. By contrast, GLS mRNA levels in IL-1beta-stimulated FLSs were reduced by treatment with aurothioglucose (AuTG) and dexamethasone (DEX). These findings indicate that AuTG and DEX have anti-rheumatic activity, which is mediated via the suppression of GLS production. Neither methotrexate (MTX) nor sulfasalazine (SSZ) had a significant influence on GLS levels in our study.
Collapse
Affiliation(s)
- Takuma Kusabe
- Department of Musculoskeletal Medicine, Nagoya City University Graduate School of Medical Sciences, Mizuho-Ku, Nagoya , 467-8601, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Nakajima Y, Gotanda T, Uchimiya H, Furukawa T, Haraguchi M, Ikeda R, Sumizawa T, Yoshida H, Akiyama SI. Inhibition of metastasis of tumor cells overexpressing thymidine phosphorylase by 2-deoxy-L-ribose. Cancer Res 2004; 64:1794-801. [PMID: 14996742 DOI: 10.1158/0008-5472.can-03-2597] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Thymidine phosphorylase (TP) catalyzes the reversible conversion of thymidine to thymine, thereby generating 2-deoxy-D-ribose-1-phosphate, which upon dephosphorylation forms 2-deoxy-D-ribose (D-dRib), a degradation product of thymidine. We have previously shown that D-dRib promotes angiogenesis and chemotaxis of endothelial cells and also confers resistance to hypoxia-induced apoptosis in some cancer cell lines. 2-Deoxy-L-ribose (L-dRib), a stereoisomer of D-dRib, can inhibit D-dRib anti-apoptotic effects and suppressed the growth of KB cells overexpressing TP (KB/TP cells) transplanted into nude mice. In this study, we examined the ability of L-dRib to suppress metastasis of KB/TP cells using two different models of metastasis. The antimetastatic effect of L-dRib was first investigated in a liver-metastasis model in nude mice inoculated with KB/TP cells. Oral administration of L-dRib for 28 days at a dose of 20 mg/kg/day significantly reduced the number of metastatic nodules in the liver and suppressed angiogenesis and enhanced apoptosis in KB/TP metastatic nodules. Next, we compared the ability of L-dRib and tegafur alone or in combination to decrease the number of metastatic nodules in organs in the abdominal cavity in nude mice receiving s.c. of KB/TP cells into their backs. L-dRib (20 mg/kg/day) was significantly (P < 0.05) more efficient than tegafur (100 mg/kg/day) in decreasing the number of metastatic nodules in organs in the abdominal cavity. By in vitro invasion assay, L-dRib also reduced the number of invading KB/TP cells. L-dRib anti-invasive activity may be mediated by its ability to suppress the enhancing effect of TP and D-dRib on both mRNA and protein expression of vascular endothelial growth factor and interleukin-8 in cultured KB cells. These findings suggest that L-dRib may be useful in a clinical setting for the suppression of metastasis of tumor cells expressing TP.
Collapse
Affiliation(s)
- Yuichi Nakajima
- Department of Molecular Oncology, Graduate School of Medical and Dental Science, Kagoshima University, Kagoshima Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhu GH, Schwartz EL. Expression of the Angiogenic Factor Thymidine Phosphorylase in THP-1 Monocytes: Induction by Autocrine Tumor Necrosis Factor-α and Inhibition by Aspirin. Mol Pharmacol 2003; 64:1251-8. [PMID: 14573775 DOI: 10.1124/mol.64.5.1251] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The angiogenic factor thymidine phosphorylase (TP) is highly expressed in human monocytes and macrophages, and its expression has been linked to the pathology and progression of solid tumors, rheumatoid arthritis, and gastric ulcers. In this study, TP mRNA and enzyme activity were found to be up-regulated upon the induction of differentiation of the human monocyte cell line THP-1 by phorbol 12-myristate 13-acetate (PMA). TP expression in THP-1 cells was similarly increased by tumor necrosis factor-alpha (TNFalpha). Because monocytes and macrophages are a predominant source of TNFalpha, the up-regulation of TP upon THP-1 differentiation could have been caused by the autocrine production of TNFalpha. In support of this hypothesis, PMA increased TNFalpha mRNA levels; furthermore, the increase in TP expression with PMA treatment was partially blocked by a neutralizing antibody to TNFalpha, particularly at the earlier time points. This data also suggested there may be additional mechanisms regulating TP expression upon PMA treatment of the cells. The induction of TP by TNFalpha was mimicked by an antibody to the TNFalpha receptor R2 (TNF-R2; p75), but not by an antibody to TNF-R1 (p55), suggesting that the TNF-R2 plays a role in the regulation of TP expression. The PMA-induced increase in TP expression was blocked by aspirin but not by the related agent indomethacin, suggesting that aspirin's effect was not caused by the inhibition of cellular cyclooxygenases. An alternative mechanism by which aspirin inhibits gene expression is the modulation of the transcription factor NFkappaB, and the TNFalpha-induced increase in TP mRNA was blocked by a cell-permeable NFkappaB inhibitory peptide. Furthermore, TNFalpha increased and aspirin (but not indomethacin) decreased NFkappaB DNA-binding activity in THP-1 cells. In conclusion, the modulation of TP expression in monocytes by pro- and anti-inflammatory agents suggests that its angiogenic-related actions could contribute to the inflammatory response associated with a number of pathophysiological conditions.
Collapse
Affiliation(s)
- Geng Hui Zhu
- Deptartment of Oncology, Albert Einstein Cancer Center, Montefiore Medical Center, 111 East 210th Street, Bronx, NY 10467, USA
| | | |
Collapse
|
14
|
Hasui K, Li F, Jia XS, Nakagawa M, Nakamura T, Yonezawa S, Izumo S, Akiyama SI, Sato E, Murata F. An Immunohistochemical Analysis of Gastric B-cell Lymphomas: Stromal Cells Exhibit Peculiar Histogenesis in Gastric B-cell Lymphomas. Acta Histochem Cytochem 2003. [DOI: 10.1267/ahc.36.153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Kazuhisa Hasui
- The Second Department of Anatomy, Kagoshima University Faculty of Medicine
| | - Fang Li
- Department of Pathology, China Medical University
| | - Xin-Shan Jia
- Department of Pathology, China Medical University
| | - Masanori Nakagawa
- Department of Neurology and Gerontology, Research Institute for Neurological Diseases and Geriatrics, Kyoto Prefectural University of Medicine
| | | | - Suguru Yonezawa
- The Second Department of Pathology, Kagoshima University Faculty of Medicine
| | - Shuji Izumo
- Division of Molecular Pathology and Genetic Epidemiology, Center for Chronic Viral Diseases, Kagoshima University Faculty of Medicine
| | - Shin-ichi Akiyama
- The Institute of Chemotherapy, Kagoshima University Faculty of Medicine
| | | | - Fusayoshi Murata
- The Second Department of Anatomy, Kagoshima University Faculty of Medicine
| |
Collapse
|
15
|
Yamamoto N, Sobue K, Fujita M, Katsuya H, Asai K. Differential regulation of aquaporin-5 and -9 expression in astrocytes by protein kinase A. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 104:96-102. [PMID: 12117555 DOI: 10.1016/s0169-328x(02)00322-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aquaporins (AQPs) transport water through the membranes of numerous tissues, but the molecular mechanisms for regulating water balance in brain are unknown. In this study, we investigated the effects of a protein kinase A (PKA) activator on the expression of AQP4, 5 and 9 in cultured rat astrocytes. Treatment of the cells with dbcAMP caused decreases in AQP5 mRNA and protein and increases in AQP9 mRNA and protein in time- and concentration-dependent manners. However, AQP4 mRNA and protein were not changed by treatment with dbcAMP. The dbcAMP-induced effects on AQP5 and AQP9 mRNAs were inhibited by PKA inhibitors. In addition, pretreating the cells with an inhibitor of protein synthesis, cycloheximide, inhibited the increase in AQP9 mRNA induced by dbcAMP, but not the decrease in AQP5 mRNA. These results suggest that signal transduction via PKA may play important roles in regulating the expression of AQP5 and AQP9, and the effect on AQP9 may be mediated by some factors induced by dbcAMP.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, 467-8601, Nagoya, Japan.
| | | | | | | | | |
Collapse
|
16
|
Matsui N, Waguri-Nagaya Y, Taneda Y. Diagnosis and therapy of rheumatoid arthritis in the future. Mod Rheumatol 2001; 11:286-91. [PMID: 24383771 DOI: 10.3109/s10165-001-8057-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract Rheumatoid arthritis (RA) is a chronic, inflammatory, systemic disease characterized by joint pain and destruction. We describe the importance of early diagnosis, recording magnetic resonance images images at an early stage, monitoring disease progression using gliostatin purified in our laboratory, and sugar-chain analysis of RA serum IgG. For treatment of RA, cyclooxygenase-2-selective inhibitors, disease-modifying antirheumatic drugs, biological products, and the possibility of gene therapy are discussed. The development of therapeutic methods based on the elucidation of the pathology of RA has progressed markedly in the past decade, and further progress and the development of an early diagnostic method are expected.
Collapse
Affiliation(s)
- N Matsui
- Department of Orthopedic Surgery, Nagoya City University, Medical School , 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 , Japan
| | | | | |
Collapse
|
17
|
Klein RS, Lenzi M, Lim TH, Hotchkiss KA, Wilson P, Schwartz EL. Novel 6-substituted uracil analogs as inhibitors of the angiogenic actions of thymidine phosphorylase. Biochem Pharmacol 2001; 62:1257-63. [PMID: 11705459 DOI: 10.1016/s0006-2952(01)00783-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thymidine phosphorylase (TP) catalyzes the reversible phosphorolysis of thymidine and other pyrimidine 2'-deoxyribonucleosides. In addition, TP has been shown to possess angiogenic activity in a number of in vitro and in vivo assays, and its angiogenic activity has been linked to its catalytic activity. A series of 5- and 6-substituted uracil derivatives were synthesized and evaluated for their abilities to inhibit TP activity. Among the most active compounds was a 6-amino-substituted uracil analog, 6-(2-aminoethyl)amino-5-chlorouracil (AEAC), which was a competitive inhibitor with a K(i) of 165 nM. The inhibitory activity of AEAC was selective for TP, as it did not inhibit purine nucleoside phosphorylase or uridine phosphorylase at concentrations up to 1 mM. Human recombinant TP induced human umbilical vein endothelial cell (HUVEC) migration in a modified Boyden chamber assay in vitro, and this action could be abrogated by the TP inhibitors. The actions of the inhibitors were specific for TP, as they had no effect on the chemotactic actions of vascular endothelial growth factor (VEGF). HUVEC migration was also induced when TP-transfected human colon and breast carcinoma cells were co-cultured in the Boyden chamber assay in place of the purified angiogenic factors, and a TP inhibitor blocked the tumor cell-mediated migration almost completely. These studies suggest that inhibitors of TP may be useful in pathological conditions that are dependent upon TP-driven angiogenesis.
Collapse
Affiliation(s)
- R S Klein
- Department of Oncology, Albert Einstein Cancer Center, 111 East 210th St., Bronx, NY 10467, USA
| | | | | | | | | | | |
Collapse
|
18
|
Yamamoto N, Sobue K, Miyachi T, Inagaki M, Miura Y, Katsuya H, Asai K. Differential regulation of aquaporin expression in astrocytes by protein kinase C. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 95:110-6. [PMID: 11687282 DOI: 10.1016/s0169-328x(01)00254-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aquaporins (AQPs) are a family of water-selective transporting proteins with homology to the major intrinsic protein (MIP) of lens, that increase plasma membrane water permeability in secretory and absorptive cells. In astrocytes of the central nervous system (CNS), using the reverse transcription-polymerase chain reaction (RT-PCR), we previously detected AQP3, 5 and 8 mRNAs in addition to the reported AQP4 and 9. However the mechanisms regulating the expression of these AQPs are not known. In this study, we investigated the effects of a protein kinase C (PKC) activator on the expression of AQP4, 5 and 9 in cultured rat astrocytes. Treatment of the cells with TPA caused decreases in AQP4 and 9 mRNAs and proteins in time- and concentration-dependent manners. The TPA-induced decreases in AQP4 and 9 mRNAs were inhibited by PKC inhibitors. Moreover, prolonged treatment of the cells with TPA eliminated the subsequent decreases in AQP4 and 9 mRNAs caused by TPA. Pretreatment of cells with an inhibitor of protein synthesis, cycloheximide, did not inhibit the decreases in AQP4 and 9 mRNAs induced by TPA. These results suggest that signal transduction via PKC may play important roles in regulating the expression of AQP4 and 9.
Collapse
Affiliation(s)
- N Yamamoto
- Department of Bioregulation Research, Nagoya City University Medical School, Mizuho-ku, 467-8601, Nagoya, Japan.
| | | | | | | | | | | | | |
Collapse
|
19
|
Yamamoto N, Yoneda K, Asai K, Sobue K, Tada T, Fujita Y, Katsuya H, Fujita M, Aihara N, Mase M, Yamada K, Miura Y, Kato T. Alterations in the expression of the AQP family in cultured rat astrocytes during hypoxia and reoxygenation. ACTA ACUST UNITED AC 2001; 90:26-38. [PMID: 11376853 DOI: 10.1016/s0169-328x(01)00064-x] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aquaporins (AQPs) are a family of water-selective transporting proteins with homology to the major intrinsic protein (MIP) of lens [Cell 39 (1984) 49], that increase plasma membrane water permeability in secretory and absorptive cells. In the central nervous system (CNS), we detected the transcripts of AQP3, 5 and 8 in addition to the previously reported transcripts of AQP4 and 9 in astrocytes, of AQP3, 5 and 8 in neurons, of AQP8 in oligodendrocytes, and none of them in microglia using RNase protection assay and the reverse transcription-polymerase chain reaction (RT-PCR). Hypoxia evoked a marked decrease in the expression levels of AQP4, 5 and 9, but not of AQP3 and 8 mRNAs, and in astrocytes in vitro subsequent reoxygenation elicited the restoration of the expression of AQP4 and 9 to their basal levels. Interestingly, AQP5 showed a transient up-regulation (about 3-fold) and subsequent down-regulation of its expression within 20 h of reoxygenation after hypoxia. The changes in the profiles of AQP expression during hypoxia and reoxygenation were also observed by Western blot analysis. These results suggest that AQP5 may be one of the candidates for inducing the intracranial edema in the CNS after ischemia injury.
Collapse
Affiliation(s)
- N Yamamoto
- Department of Bioregulation Research, Nagoya City University Medical School, Mizuho-ku, 467-8601, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Morikawa M, Asai K, Kokubo M, Fujita K, Yoneda K, Yamamoto N, Inoue Y, Iida J, Kishimoto T, Kato T. Isolation and characterization of a new immortal rat astrocyte with a high expression of NGF mRNA. Neurosci Res 2001; 39:205-12. [PMID: 11223466 DOI: 10.1016/s0168-0102(00)00217-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have established a new line of immortalized rat astrocytes through transfection of plasmid pSV3-neo encoding the large T antigen of simian virus 40 into normal astrocytes. One of these immortalized astrocytes (ACT-57) with a flat and polygonal cell shape, exhibited stable growth in a chemically defined medium (modified N-2 medium) as well as in medium containing ordinary serum. ACT-57, retained a detectable level of expression of glial fibrillary acidic protein (GFAP) and its mRNA, and exhibited a stronger expression of nerve growth factor (NGF) mRNA than that of normal rat astrocytes or C6 glioma cells. NGF mRNA was significantly up-regulated by phorbol ester (12-O-tetradecanoylphorbol 13-acetate, TPA) and gamma-amino-n-butyric acid (GABA) but not by hydrocortisone. None of stimulants (TPA, dibutyryl cyclic AMP (db-cAMP), hydrocortisone, L-glutamate, carbacol, GABA, dopamine, or isoproterenol) changed the expression level of either brain-derived neurotrophic factor (BDNF) or neurotrophin-3 (NT-3). There was a discrete difference between ACT-57 and normal astrocytes in the response to GABA and isoproterenol. These findings imply that normal cortical astrocytes possess a functional heterogeneity whereas the clonal astrocyte, ACT-57, does not, indicating that ACT-57 cells may be useful for in vitro studies of neuron-astrocyte interactions involving the induction of neurotrophic factors such as NGF.
Collapse
Affiliation(s)
- M Morikawa
- Department of Bioregulation Research, Nagoya City University Medical School, Mizuho-ku, 467-8601, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|