1
|
Wei Z, Chen X, Sun Y, Zhang Y, Dong R, Wang X, Chen S. Exploring the molecular mechanisms and shared potential drugs between rheumatoid arthritis and arthrofibrosis based on large language model and synovial microenvironment analysis. Sci Rep 2024; 14:18939. [PMID: 39147768 PMCID: PMC11327321 DOI: 10.1038/s41598-024-69080-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/31/2024] [Indexed: 08/17/2024] Open
Abstract
Rheumatoid arthritis (RA) and arthrofibrosis (AF) are both chronic synovial hyperplasia diseases that result in joint stiffness and contractures. They shared similar symptoms and many common features in pathogenesis. Our study aims to perform a comprehensive analysis between RA and AF and identify novel drugs for clinical use. Based on the text mining approaches, we performed a correlation analysis of 12 common joint diseases including arthrofibrosis, gouty arthritis, infectious arthritis, juvenile idiopathic arthritis, osteoarthritis, post infectious arthropathies, post traumatic osteoarthritis, psoriatic arthritis, reactive arthritis, rheumatoid arthritis, septic arthritis, and transient arthritis. 5 bulk sequencing datasets and 4 single-cell sequencing datasets of RA and AF were integrated and analyzed. A novel drug repositioning method was found for drug screening, and text mining approaches were used to verify the identified drugs. RA and AF performed the highest gene similarity (0.77) and functional ontology similarity (0.84) among all 12 joint diseases. We figured out that they share the same key pathogenic cell including CD34 + sublining fibroblasts (CD34-SLF) and DKK3 + sublining fibroblasts (DKK3-SLF). Potential therapeutic target database (PTTD) was established with the differential expressed genes (DEGs) of these key pathogenic cells. Based on the PTTD, 15 potential drugs for AF and 16 potential drugs for RA were identified. This work provides a new perspective on AF and RA study which enhances our understanding of their pathogenesis. It also shed light on their underlying mechanism and open new avenues for drug repositioning studies.
Collapse
Affiliation(s)
- Zhaoquan Wei
- Department of Orthopaedic Surgery, North China Medical and Health Group Xingtai General Hospital, Xingtai, 054000, Hebei, People's Republic of China
| | - Xi Chen
- Department of Adult Joint Reconstructive Surgery, Beijing Jishuitan Hospital, Capital medical University, Beijing, 100035, China
| | - Youshi Sun
- Department of Clinical Medicine, Peking Union Medical College, Tsinghua University, Beijing, 100730, China
| | - Yifei Zhang
- Department of Orthopaedic Surgery, North China Medical and Health Group Xingtai General Hospital, Xingtai, 054000, Hebei, People's Republic of China
| | - Ruifang Dong
- Department of Orthopaedic Surgery, North China Medical and Health Group Xingtai General Hospital, Xingtai, 054000, Hebei, People's Republic of China
| | - Xiaojing Wang
- The Second Affiliated Hospital of Xingtai Medical College, Xingtai, 054000, Hebei Province, China
| | - Shuangtao Chen
- Department of Orthopaedic Surgery, North China Medical and Health Group Xingtai General Hospital, Xingtai, 054000, Hebei, People's Republic of China.
| |
Collapse
|
2
|
Pai P, Vijeev A, Phadke S, Shetty MG, Sundara BK. Epi-revolution in rheumatology: the potential of histone deacetylase inhibitors for targeted rheumatoid arthritis intervention. Inflammopharmacology 2024; 32:2109-2123. [PMID: 38714604 PMCID: PMC11300544 DOI: 10.1007/s10787-024-01486-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 05/10/2024]
Abstract
Autoimmune diseases hold significant importance in the realm of medical research, prompting a thorough exploration of potential therapeutic interventions. One crucial aspect of this exploration involves understanding the intricate processes of histone acetylation and deacetylation. Histone acetylation, facilitated by histone acetyl transferases (HATs), is instrumental in rendering DNA transcriptionally active. Conversely, histone deacetylases (HDACs) are responsible for the removal of acetyl groups, influencing gene expression regulation. The upregulation of HDACs, observed in various cancers, has steered attention towards histone deacetylase inhibitors (HDACi) as promising anti-cancer agents. Beyond cancer, HDACi has demonstrated anti-inflammatory properties, prompting interest in their potential therapeutic applications for inflammatory diseases such as rheumatoid arthritis (RA). RA, characterized by the immune system erroneously attacking healthy cells, leads to joint inflammation. Recent studies suggest that HDACi could offer a viable therapeutic strategy for RA, with potential mechanisms including the inhibition of synovial tissue growth and suppression of pro-inflammatory cytokines. Furthermore, HDACi may exert protective effects on bone and cartilage, common targets in RA pathology. In-depth investigations through in vivo and histopathology studies contribute to the ongoing discourse on the therapeutic benefits of HDACis in the context of RA treatment.
Collapse
Affiliation(s)
- Padmini Pai
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Aradhika Vijeev
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sharada Phadke
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Manasa Gangadhar Shetty
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Babitha Kampa Sundara
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
3
|
Watson N, Kuppuswamy S, Ledford WL, Sukumari-Ramesh S. The role of HDAC3 in inflammation: mechanisms and therapeutic implications. Front Immunol 2024; 15:1419685. [PMID: 39050859 PMCID: PMC11266039 DOI: 10.3389/fimmu.2024.1419685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/10/2024] [Indexed: 07/27/2024] Open
Abstract
Histone deacetylases (HDACs) are critical regulators of inflammatory gene expression, and the efficacy of pan-HDAC inhibitors has been implicated in various disease conditions. However, it remains largely unclear how HDACs precisely regulate inflammation. To this end, evaluating the isoform-specific function of HDACs is critical, and the isoform-specific targeting could also circumvent the off-target effects of pan-HDAC inhibitors. This review provides an overview of the roles of HDAC3, a class I HDAC isoform, in modulating inflammatory responses and discusses the molecular mechanisms by which HDAC3 regulates inflammation associated with brain pathology, arthritis, cardiovascular diseases, lung pathology, allergic conditions, and kidney disorders. The articles also identify knowledge gaps in the field for future studies. Despite some conflicting reports, the selective inhibition of HDAC3 has been demonstrated to play a beneficial role in various inflammatory pathologies. Exploring the potential of HDAC3 inhibition to improve disease prognosis is a promising avenue requiring further investigation.
Collapse
Affiliation(s)
| | | | | | - Sangeetha Sukumari-Ramesh
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
4
|
Khokhar M, Dey S, Tomo S, Jaremko M, Emwas AH, Pandey RK. Unveiling Novel Drug Targets and Emerging Therapies for Rheumatoid Arthritis: A Comprehensive Review. ACS Pharmacol Transl Sci 2024; 7:1664-1693. [PMID: 38898941 PMCID: PMC11184612 DOI: 10.1021/acsptsci.4c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic debilitating autoimmune disease, that causes joint damage, deformities, and decreased functionality. In addition, RA can also impact organs like the skin, lungs, eyes, and blood vessels. This autoimmune condition arises when the immune system erroneously targets the joint synovial membrane, resulting in synovitis, pannus formation, and cartilage damage. RA treatment is often holistic, integrating medication, physical therapy, and lifestyle modifications. Its main objective is to achieve remission or low disease activity by utilizing a "treat-to-target" approach that optimizes drug usage and dose adjustments based on clinical response and disease activity markers. The primary RA treatment uses disease-modifying antirheumatic drugs (DMARDs) that help to interrupt the inflammatory process. When there is an inadequate response, a combination of biologicals and DMARDs is recommended. Biological therapies target inflammatory pathways and have shown promising results in managing RA symptoms. Close monitoring for adverse effects and disease progression is critical to ensure optimal treatment outcomes. A deeper understanding of the pathways and mechanisms will allow new treatment strategies that minimize adverse effects and maintain quality of life. This review discusses the potential targets that can be used for designing and implementing precision medicine in RA treatment, spotlighting the latest breakthroughs in biologics, JAK inhibitors, IL-6 receptor antagonists, TNF blockers, and disease-modifying noncoding RNAs.
Collapse
Affiliation(s)
- Manoj Khokhar
- Department
of Biochemistry, All India Institute of
Medical Sciences, Jodhpur, 342005 Rajasthan, India
| | - Sangita Dey
- CSO
Department, Cellworks Research India Pvt
Ltd, Bengaluru, 560066 Karnataka, India
| | - Sojit Tomo
- Department
of Biochemistry, All India Institute of
Medical Sciences, Jodhpur, 342005 Rajasthan, India
| | - Mariusz Jaremko
- Smart-Health
Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological
and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955 Jeddah, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core
Laboratories, King Abdullah University of
Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Rajan Kumar Pandey
- Department
of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 17177, Sweden
| |
Collapse
|
5
|
Xu F, Xie L, He J, Huang Q, Shen Y, Chen L, Zeng X. Detection of common pathogenesis of rheumatoid arthritis and atherosclerosis via microarray data analysis. Heliyon 2024; 10:e28029. [PMID: 38628735 PMCID: PMC11019104 DOI: 10.1016/j.heliyon.2024.e28029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 04/19/2024] Open
Abstract
Despite extensive research reveal rheumatoid arthritis (RA) is related to atherosclerosis (AS), common pathogenesis between these two diseases still needs to be explored. In current study, we explored the common pathogenesis between rheumatoid arthritis (RA) and atherosclerosis (AS) by identifying 297 Differentially Expressed Genes (DEGs) associated with both diseases. Through KEGG and GO functional analysis, we highlighted the correlation of these DEGs with crucial biological processes such as the vesicle transport, immune system process, signaling receptor binding, chemokine signaling and many others. Employing Protein-Protein Interaction (PPI) network analysis, we elucidated the associations between DEGs, revealing three gene modules enriched in immune system process, vesicle, signaling receptor binding, Pertussis, and among others. Additionally, through CytoHubba analysis, we pinpointed 11 hub genes integral to intergrin-mediated signaling pathway, plasma membrane, phosphotyrosine binding, chemokine signaling pathway and so on. Further investigation via the TRRUST database identified two key Transcription Factors (TFs), SPI1 and RELA, closely linked with these hub genes, shedding light on their regulatory roles. Finally, leveraging the collective insights from hub genes and TFs, we proposed 10 potential drug candidates targeting the molecular mechanisms underlying RA and AS pathogenesis. Further investigation on xCell revealed that 14 types of cells were all different in both AS and RA. This study underscores the shared pathogenic mechanisms, pivotal genes, and potential therapeutic interventions bridging RA and AS, offering valuable insights for future research and clinical management strategies.
Collapse
Affiliation(s)
- Fan Xu
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian Province, China
| | - Linfeng Xie
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Medical University, Fuzhou, Fujian Province, China
| | - Jian He
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Medical University, Fuzhou, Fujian Province, China
| | - Qiuyu Huang
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian Province, China
| | - Yanming Shen
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Medical University, Fuzhou, Fujian Province, China
| | - Liangwan Chen
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian Province, China
| | - Xiaohong Zeng
- Department of Rheumatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
6
|
Yao F, Zhao Y, Yu Q, Hu W, Lin Y, Chen Y, Li L, Sun C, Li S, Wang K, Yang M, Zhou R, Hu W. Extracellular CIRP induces abnormal activation of fibroblast-like synoviocytes from patients with RA via the TLR4-mediated HDAC3 pathways. Int Immunopharmacol 2024; 128:111525. [PMID: 38218010 DOI: 10.1016/j.intimp.2024.111525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
The development of rheumatoid arthritis (RA) is closely related to the excessive activation of fibroblast-like synoviocytes (FLSs), which are regulated by a variety of endogenous proinflammatory molecules. Extracellular cold-inducible RNA-binding protein (CIRP), as a novel endogenous proinflammatory molecule, plays an important role in inflammatory diseases. More importantly, the synovial concentration of CIRP in patients with RA was significantly higher than that in patients with osteoarthritis (OA). Thus, this study aimed to investigate the role of extracellular CIRP in the abnormal activation of RA-FLSs and its related mechanisms. Our study showed that extracellular CIRP induced proliferation, migration and invasion of RA-FLSs, increased the expression of N-cadherin and MMP-3, and promoted the release of IL-1β and IL-33. However, blocking of extracellular CIRP with C23 inhibited CIRP-induced abnormal activation of RA-FLSs and alleviated the arthritis severity in AA rats. Accumulating evidence suggests that the activity and proinflammatory effects of CIRP are mediated through Toll-like receptor 4 (TLR4). Further studies demonstrated that the TLR4 knockdown inhibited CIRP-induced abnormal activation, and histone deacetylase 3 (HDAC3) expression in RA-FLSs. In addition, we found that HDAC3 knockdown and the specific inhibitor RGFP966 significantly suppressed CIRP-induced abnormal activation of RA-FLSs. We further found that treatment with HDAC3 specific inhibitor effectively alleviated the severity of arthritis in AA rats. Taken together, these findings indicate that extracellular CIRP induces abnormal activation of RA-FLSs via the TLR4-mediated HDAC3 pathways.
Collapse
Affiliation(s)
- Feng Yao
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yingjie Zhao
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Qiuxia Yu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Weirong Hu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yi Lin
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yong Chen
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Lin Li
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Anhui Medical University, China
| | - Cheng Sun
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Shufang Li
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Ke Wang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Min Yang
- The 2nd Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Renpeng Zhou
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
7
|
Nardacchione EM, Tricarico PM, Moura R, d’Adamo AP, Thasneem A, Suleman M, Marzano AV, Crovella S, Moltrasio C. Unraveling the Epigenetic Tapestry: Decoding the Impact of Epigenetic Modifications in Hidradenitis Suppurativa Pathogenesis. Genes (Basel) 2023; 15:38. [PMID: 38254928 PMCID: PMC10815754 DOI: 10.3390/genes15010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Hidradenitis suppurativa (HS) is a chronic autoinflammatory skin disorder, which typically occurs during puberty or early adulthood. The pathogenesis of HS is complex and multifactorial; a close interaction between hormonal, genetic, epigenetics factors, host-specific aspects, and environmental influences contributes to the susceptibility, onset, severity, and clinical course of this disease, although the exact molecular mechanisms are still being explored. Epigenetics is currently emerging as an interesting field of investigation that could potentially shed light on the molecular intricacies underlying HS, but there is much still to uncover on the subject. The aim of this work is to provide an overview of the epigenetic landscape involved in HS. Specifically, in this in-depth review we provide a comprehensive overview of DNA methylation/hydroxymethylation, histone modifications, and non-coding RNAs (such as microRNA-miRNA-132, miRNA-200c, miRNA-30a-3p, miRNA-100-5b, miRNA-155-5p, miRNA-338-5p) dysregulation in HS patients. An interesting element of epigenetic regulation in HS is that the persistent inflammatory milieu observed in HS lesional skin could be exacerbated by an altered methylation profile and histone acetylation pattern associated with key inflammatory genes. Deepening our knowledge on the subject could enable the development of targeted epigenetic therapies to potentially restore normal gene expression patterns, and subsequentially ameliorate, or even reverse, the progression of the disease. By deciphering the epigenetic code governing HS, we strive to usher in a new era of personalized and effective interventions for this enigmatic dermatological condition.
Collapse
Affiliation(s)
- Elena Maria Nardacchione
- Department of Advanced Diagnostics, Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 34137 Trieste, Italy; (E.M.N.); (P.M.T.); (R.M.); (A.P.d.)
| | - Paola Maura Tricarico
- Department of Advanced Diagnostics, Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 34137 Trieste, Italy; (E.M.N.); (P.M.T.); (R.M.); (A.P.d.)
| | - Ronald Moura
- Department of Advanced Diagnostics, Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 34137 Trieste, Italy; (E.M.N.); (P.M.T.); (R.M.); (A.P.d.)
| | - Adamo Pio d’Adamo
- Department of Advanced Diagnostics, Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 34137 Trieste, Italy; (E.M.N.); (P.M.T.); (R.M.); (A.P.d.)
- Department of Medical Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Ayshath Thasneem
- Laboratory of Animal Research Center (LARC), Qatar University, Doha 2713, Qatar; (A.T.); (M.S.); (S.C.)
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Muhammad Suleman
- Laboratory of Animal Research Center (LARC), Qatar University, Doha 2713, Qatar; (A.T.); (M.S.); (S.C.)
| | - Angelo Valerio Marzano
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Sergio Crovella
- Laboratory of Animal Research Center (LARC), Qatar University, Doha 2713, Qatar; (A.T.); (M.S.); (S.C.)
| | - Chiara Moltrasio
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| |
Collapse
|
8
|
Nazri JM, Oikonomopoulou K, de Araujo ED, Kraskouskaya D, Gunning PT, Chandran V. Histone deacetylase inhibitors as a potential new treatment for psoriatic disease and other inflammatory conditions. Crit Rev Clin Lab Sci 2023; 60:300-320. [PMID: 36846924 DOI: 10.1080/10408363.2023.2177251] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Collectively known as psoriatic disease, psoriasis and psoriatic arthritis (PsA) are immune-mediated inflammatory diseases in which patients present with cutaneous and musculoskeletal inflammation. Affecting roughly 2-3% of the world's total population, there remains unmet therapeutic needs in both psoriasis and PsA despite the availability of current immunomodulatory treatments. As a result, patients with psoriatic disease often experience reduced quality of life. Recently, a class of small molecules, commonly investigated as anti-cancer agents, called histone deacetylase (HDAC) inhibitors, have been proposed as a new promising anti-inflammatory treatment for immune- and inflammatory-related diseases. In inflammatory diseases, current evidence is derived from studies on diseases like rheumatoid arthritis (RA) and systematic lupus erythematosus (SLE), and while there are some reports studying psoriasis, data on PsA patients are not yet available. In this review, we provide a brief overview of psoriatic disease, psoriasis, and PsA, as well as HDACs, and discuss the rationale behind the potential use of HDAC inhibitors in the management of persistent inflammation to suggest its possible use in psoriatic disease.
Collapse
Affiliation(s)
- Jehan Mohammad Nazri
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | | | - Elvin D de Araujo
- Department of Chemical and Physical Sciences, University of Toronto, Mississauga, Canada
| | - Dziyana Kraskouskaya
- Department of Chemical and Physical Sciences, University of Toronto, Mississauga, Canada
| | - Patrick T Gunning
- Department of Chemical and Physical Sciences, University of Toronto, Mississauga, Canada.,Department of Chemistry, University of Toronto, Toronto, Canada
| | - Vinod Chandran
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Schroeder Arthritis Institute, University Health Network, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada.,Department of Medicine, Memorial University, St. John's, Canada
| |
Collapse
|
9
|
Signaling pathways in rheumatoid arthritis: implications for targeted therapy. Signal Transduct Target Ther 2023; 8:68. [PMID: 36797236 PMCID: PMC9935929 DOI: 10.1038/s41392-023-01331-9] [Citation(s) in RCA: 126] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/16/2022] [Accepted: 01/18/2023] [Indexed: 02/18/2023] Open
Abstract
Rheumatoid arthritis (RA) is an incurable systemic autoimmune disease. Disease progression leads to joint deformity and associated loss of function, which significantly impacts the quality of life for sufferers and adds to losses in the labor force. In the past few decades, RA has attracted increased attention from researchers, the abnormal signaling pathways in RA are a very important research field in the diagnosis and treatment of RA, which provides important evidence for understanding this complex disease and developing novel RA-linked intervention targets. The current review intends to provide a comprehensive overview of RA, including a general introduction to the disease, historical events, epidemiology, risk factors, and pathological process, highlight the primary research progress of the disease and various signaling pathways and molecular mechanisms, including genetic factors, epigenetic factors, summarize the most recent developments in identifying novel signaling pathways in RA and new inhibitors for treating RA. therapeutic interventions including approved drugs, clinical drugs, pre-clinical drugs, and cutting-edge therapeutic technologies. These developments will hopefully drive progress in new strategically targeted therapies and hope to provide novel ideas for RA treatment options in the future.
Collapse
|
10
|
Rheumatoid arthritis: advances in treatment strategies. Mol Cell Biochem 2023; 478:69-88. [PMID: 35725992 DOI: 10.1007/s11010-022-04492-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/31/2022] [Indexed: 01/17/2023]
Abstract
Rheumatoid arthritis (RA) is characterised by severe joint and bone damage due to heightened autoimmune response at the articular sites. Worldwide annual incidence and prevalence rate of RA is 3 cases per 10,000 population and 1%, respectively. Several genetic and environmental (microbiota, smoking, infectious agents) factors contribute to its pathogenesis. Although convention treatment strategies, predominantly Disease Modifying Anti Rheumatic Drugs (DMARDs) and Glucocorticoids (GC), are unchanged as the primary line of treatment; novel strategies consisting of biological DMARDs, are being developed and explored. Personalized approaches using biologicals targetspecific pathways associated with disease progression. However, considering the economic burden and side-effects associated with these, there is an unmet need on strategies for early stratification of the inadequate responders with cDMARDs. As RA is a complex disease with a variable remission rate, it is important not only to evaluate the current status of drugs in clinical practice but also those with the potential of personalised therapeutics. Here, we provide comprehensive data on the treatment strategies in RA, including studies exploring various combination strategies in clinical trials. Our systematic analysis of current literature found that conventional DMARDs along with glucocorticoid may be best suited for early RA cases and a combination of conventional and targeted DMARDs could be effective for treating seronegative patients with moderate to high RA activity. Clinical trials with insufficient responders to Methotrexate suggest that adding biologicals may help in such cases. However, certain adverse events associated with the current therapy advocate exploring novel therapeutic approaches such as gene therapy, mesenchymal stem cell therapy in future.
Collapse
|
11
|
Ubah UDB, Triyasakorn K, Roan B, Conlin M, Lai JCK, Awale PS. Pan HDACi Valproic Acid and Trichostatin A Show Apparently Contrasting Inflammatory Responses in Cultured J774A.1 Macrophages. EPIGENOMES 2022; 6:epigenomes6040038. [PMID: 36412793 PMCID: PMC9680436 DOI: 10.3390/epigenomes6040038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
This study was initiated as an attempt to clarify some of the apparent conflicting data regarding the so-called anti-inflammatory versus proinflammatory properties of histone deacetylase inhibitors (HDACis). In cell culture, typically, chronic pretreatment with the HDACi valproic acid (VPA) and trichostatin A (TSA) exhibits an anti-inflammatory effect. However, the effect of acute treatment with VPA and TSA on the levels of inflammatory cytokines in J774A.1 macrophage cell line is unknown. Therefore, this study investigated the effect of acute treatment with VPA and TSA on levels of key inflammatory cytokines in maximally stimulated J774A.1 cells. J774A.1 macrophages were treated with either VPA or TSA for 1 h (acute treatment), followed by maximal stimulation with LPS + IFNγ for 24 h. ELISA was used to measure the levels of proinflammatory cytokines TNFα, NO and IL-1β from the culture medium. Acute treatment with VPA showed a dose-dependent increase in levels of all three cytokines. Similar to VPA, TSA also showed a dose-dependent increase in levels of IL-1β alone. This study sheds new light on the conflicting data in the literature that may partly be explained by acute or short-term exposure versus chronic or long-term exposure to HDACi.
Collapse
Affiliation(s)
- Ubah Dominic Babah Ubah
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, 921 S 8th Avenue, Mail Stop 8288, Pocatello, ID 83209, USA
| | - Korawin Triyasakorn
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, 921 S 8th Avenue, Mail Stop 8288, Pocatello, ID 83209, USA
| | - Brandon Roan
- Division of Health Sciences, Idaho State University, 921 S 8th Avenue, Mail Stop 8288, Pocatello, ID 83209, USA
| | - Minsyusheen Conlin
- Department of Biological Sciences, Idaho State University, 921 S 8th Avenue, Mail Stop 8288, Pocatello, ID 83209, USA
| | - James C. K. Lai
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, 921 S 8th Avenue, Mail Stop 8288, Pocatello, ID 83209, USA
| | - Prabha S. Awale
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, 921 S 8th Avenue, Mail Stop 8288, Pocatello, ID 83209, USA
- Correspondence:
| |
Collapse
|
12
|
Sun S, Xiu C, Chai L, Chen X, Zhang L, Liu Q, Chen J, Zhou H. HDAC inhibitor quisinostat prevents estrogen deficiency-induced bone loss by suppressing bone resorption and promoting bone formation in mice. Eur J Pharmacol 2022; 927:175073. [PMID: 35636521 DOI: 10.1016/j.ejphar.2022.175073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 12/28/2022]
Abstract
Postmenopausal osteoporosis (PMOP) is a metabolic skeletal disorder characterized by reduced bone mass and impaired bone microarchitecture resulting in increased bone fragility and fracture risk. PMOP is primarily caused by excessive osteoclastogenesis induced by estrogen deficiency. Quisinostat (Qst) is a potent hydroxamate-based second-generation inhibitor of histone deacetylases (HDACs) that can inhibit osteoclast differentiation in vitro, and protect mice from titanium particle-induced osteolysis in vivo. However, whether Qst has therapeutic potential against PMOP remains unclear. In the present study, we evaluated the therapeutic efficacy of Qst on PMOP, using a murine model of ovariectomy (OVX)-induced osteoporosis. We examined the body weight, femur length, and histology of major organs, and showed that Qst did not cause obvious toxicity in mice. Micro-computed tomography and histological analyses revealed that Qst treatment prevented OVX-induced trabecular bone loss both in femurs and vertebrae. Moreover, ELISA showed that Qst decreased the serum levels of the osteoclastic bone resorption marker CTX-1, whereas increased the levels of the osteoblastic bone formation marker Osteocalcin in OVX mice. Consistent with the CTX-1 results, TRAP staining showed that Qst suppressed OVX-induced osteoclastogenesis. Mechanistically, we showed that Qst suppressed RANKL-induced osteoclast differentiation in part by inhibiting p65 nuclear translocation. Collectively, our results demonstrated that Qst can ameliorate estrogen deficiency-induced osteoporosis by inhibiting bone resorption and promoting bone formation in vivo. In summary, our study provided the first preclinical evidence to support Qst as a potential therapeutic agent for PMOP prevention and treatment.
Collapse
Affiliation(s)
- Shengxuan Sun
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Chunmei Xiu
- Orthopedic Institute, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, 215021, China
| | - Langhui Chai
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Xinyu Chen
- Suzhou High School of Jiangsu Province, Suzhou, Jiangsu, 215002, China
| | - Lei Zhang
- Orthopedic Institute, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, 215021, China
| | - Qingbai Liu
- Department of Orthopaedics, Lianshui County People's Hospital, The Affiliated Lianshui County People's Hospital of Kangda College of Nanjing Medical University, Huai'an, Jiangsu, 223400, China.
| | - Jianquan Chen
- Orthopedic Institute, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, 215021, China.
| | - Haibin Zhou
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China.
| |
Collapse
|
13
|
Samuelov L, Bochner R, Magal L, Malovitski K, Sagiv N, Nousbeck J, Keren A, Fuchs-Telem D, Sarig O, Gilhar A, Sprecher E. Vorinostat, a histone deacetylase inhibitor, as a potential novel treatment for psoriasis. Exp Dermatol 2021; 31:567-576. [PMID: 34787924 DOI: 10.1111/exd.14502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 10/05/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Psoriasis is characterized by aberrant activation of several pro-inflammatory circuits as well as abnormal hyperproliferation and dysregulated apoptosis of keratinocytes (KCs). Most currently available therapeutic options primarily target psoriasis-associated immunological defects rather than epidermal abnormalities. OBJECTIVE To investigate the efficacy of the histone deacetylase (HDAC) inhibitor, Vorinostat, in targeting hyperproliferation and impaired apoptosis in psoriatic skin. METHODS Vorinostat effect was investigated in primary KCs cell cultures using cell cycle analysis by flow cytometry, apoptosis assays (Annexin V-FICH and caspase-3/7) and antibody arrays, qRT-PCR and immunohistochemistry. Vorinostat impact on clinical manifestations of psoriasis was investigated in a chimeric mouse model. RESULTS Vorinostat was found to inhibit KCs proliferation and to induce their differentiation and apoptosis. Using a chimeric mouse model, vorinostat was found to result in marked attenuation of a psoriasiform phenotype with a significant decrease in epidermal thickness and inhibition of epidermal proliferation. CONCLUSIONS Our results support the notion that vorinostat, a prototypic HDAC inhibitor, may be of potential use in the treatment of psoriasis and other hyperproliferative skin disorders.
Collapse
Affiliation(s)
- Liat Samuelov
- Division of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ron Bochner
- Division of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Lee Magal
- Division of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Kiril Malovitski
- Division of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Nadav Sagiv
- Division of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Janna Nousbeck
- Division of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Aviad Keren
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Dana Fuchs-Telem
- Division of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Ofer Sarig
- Division of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Amos Gilhar
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Eli Sprecher
- Division of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
14
|
Sacristán-Gómez P, Serrano-Somavilla A, González-Amaro R, Martínez-Hernández R, Marazuela M. Analysis of Expression of Different Histone Deacetylases in Autoimmune Thyroid Disease. J Clin Endocrinol Metab 2021; 106:3213-3227. [PMID: 34272941 PMCID: PMC8530745 DOI: 10.1210/clinem/dgab526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Histone deacetylases (HDACs) and histone acetyltransferases (HAT) have an important role in the regulation of gene transcription as well as in the development and function of CD4+Foxp3+ T regulatory (Treg) cells. Our group and others have reported that patients with autoimmune thyroid disease (AITD) show abnormalities in the levels and function of different Treg cell subsets. OBJECTIVE We aimed to analyze the levels of expression of several HDACs and the Tip60 HAT in the thyroid gland and immune cells from patients with AITD. METHODS The expression of HDAC1-11 and the Tip60 HAT, at RNA and protein levels, were determined in thyroid tissue from 20 patients with AITD and 10 healthy controls and these findings were correlated with clinical data. HDAC9 and Tip60 levels were also analyzed in thyroid cell cultures, stimulated or not with proinflammatory cytokines, as well as in different cell subsets from peripheral blood mononuclear cells. RESULTS Altered expression of different HDACs was observed in thyroid tissue from AITD patients, including a significant increase in HDAC9, at RNA and protein levels. Likewise, HDAC9 expression was increased in peripheral blood mononuclear cells particularly in Treg cells in patients with AITD. In contrast, Tip60 expression was reduced in thyroid gland samples from patients with Hashimoto thyroiditis. CONCLUSION Our results indicate that HDAC expression is dysregulated in thyroid gland and immune cells from patients with AITD, suggesting involvement in the pathogenesis of this condition.
Collapse
Affiliation(s)
- Pablo Sacristán-Gómez
- Department of Endocrinology, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER GCV14/ER/12), Madrid, Spain
| | - Ana Serrano-Somavilla
- Department of Endocrinology, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER GCV14/ER/12), Madrid, Spain
| | - Roberto González-Amaro
- Department of Immunology, School of Medicine, UASLP, 78210 San Luis Potosí, SLP, Mexico
- Center for Applied Research in Health and Biomedicine, UASLP, 78210 San Luis Potosí, SLP, Mexico
| | - Rebeca Martínez-Hernández
- Department of Endocrinology, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER GCV14/ER/12), Madrid, Spain
- Rebeca Martínez-Hernández, PhD, Hospital de la Princesa, C/ Diego de León 62, 28006 Madrid, Spain.
| | - Mónica Marazuela
- Department of Endocrinology, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER GCV14/ER/12), Madrid, Spain
- Correspondence: Monica Marazuela, MD, PhD, Hospital de la Princesa, C/ Diego de León 62, 28006 Madrid, Spain.
| |
Collapse
|
15
|
Zhang S, Zhan L, Li X, Yang Z, Luo Y, Zhao H. Preclinical and clinical progress for HDAC as a putative target for epigenetic remodeling and functionality of immune cells. Int J Biol Sci 2021; 17:3381-3400. [PMID: 34512154 PMCID: PMC8416716 DOI: 10.7150/ijbs.62001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
Genetic changes are difficult to reverse; thus, epigenetic aberrations, including changes in DNA methylation, histone modifications, and noncoding RNAs, with potential reversibility, have attracted attention as pharmaceutical targets. The current paradigm is that histone deacetylases (HDACs) regulate gene expression via deacetylation of histone and nonhistone proteins or by forming corepressor complexes with transcription factors. The emergence of epigenetic tools related to HDACs can be used as diagnostic and therapeutic markers. HDAC inhibitors that block specific or a series of HDACs have proven to be a powerful therapeutic treatment for immune-related diseases. Here, we summarize the various roles of HDACs and HDAC inhibitors in the development and function of innate and adaptive immune cells and their implications for various diseases and therapies.
Collapse
Affiliation(s)
- Sijia Zhang
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Lingjun Zhan
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China
| | - Xue Li
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zhenhong Yang
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and National Clinical Research Center for Geriatric Disorders, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Haiping Zhao
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and National Clinical Research Center for Geriatric Disorders, Beijing, China
| |
Collapse
|
16
|
Miao X, Wu Y, Wang P, Zhang Q, Zhou C, Yu X, Cao L. Vorinostat ameliorates IL-1α-induced reduction of type II collagen by inhibiting the expression of ELF3 in chondrocytes. J Biochem Mol Toxicol 2021; 35:e22844. [PMID: 34250664 PMCID: PMC8519056 DOI: 10.1002/jbt.22844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/13/2021] [Accepted: 07/01/2021] [Indexed: 12/25/2022]
Abstract
Osteoarthritis (OA) is a common joint disease that ultimately causes physical disability and imposes an economic burden on society. Cartilage destruction plays a key role in the development of OA. Vorinostat is an oral histone deacetylase (HDAC) inhibitor and has been used for the treatment of T-cell lymphoma. Previous studies have reported the anti-inflammatory effect of HDAC inhibitors in both in vivo and in vitro models. However, it is unknown whether vorinostat exerts a protective effect in OA. In this study, our results demonstrate that treatment with vorinostat prevents interleukin 1α (IL-1α)-induced reduction of type II collagen at both gene and protein levels. Treatment with vorinostat reduced the IL-1α-induced production of mitochondrial reactive oxygen species (ROS) in T/C-28a2 cells. Additionally, vorinostat rescued the IL-1α-induced decrease in the expression of the collagen type II a1 (Col2a1) gene and the expression of Sry-related HMG box 9 (SOX-9). Importantly, we found that vorinostat inhibited the expression of matrix metalloproteinase-13 (MMP-13), which is responsible for the degradation of type II collagen. Furthermore, vorinostat suppressed the expression of E74-like factor 3 (ELF3), which is a key transcription factor that plays a pivotal role in the IL-1α-induced reduction of type II collagen. Also, the overexpression of ELF3 abolished the protective effects of vorinostat against IL-1α-induced loss of type 2 collagen by inhibiting the expression of SOX-9 whilst increasing the expression of MMP-13. In conclusion, our findings suggest that vorinostat might prevent cartilage destruction by rescuing the reduction of type II collagen, mediated by the suppression of ELF3.
Collapse
Affiliation(s)
- Xudong Miao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang UniversityKey Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouChina
| | - Yongping Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang UniversityKey Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouChina
| | - Ping Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang UniversityKey Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouChina
| | - Qiang Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang UniversityKey Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouChina
| | - Chenhe Zhou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang UniversityKey Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouChina
| | - Xinning Yu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang UniversityKey Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouChina
| | - Le Cao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang UniversityKey Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
17
|
Huang J, Fu X, Chen X, Li Z, Huang Y, Liang C. Promising Therapeutic Targets for Treatment of Rheumatoid Arthritis. Front Immunol 2021; 12:686155. [PMID: 34305919 PMCID: PMC8299711 DOI: 10.3389/fimmu.2021.686155] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic poly-articular chronic autoimmune joint disease that mainly damages the hands and feet, which affects 0.5% to 1.0% of the population worldwide. With the sustained development of disease-modifying antirheumatic drugs (DMARDs), significant success has been achieved for preventing and relieving disease activity in RA patients. Unfortunately, some patients still show limited response to DMARDs, which puts forward new requirements for special targets and novel therapies. Understanding the pathogenetic roles of the various molecules in RA could facilitate discovery of potential therapeutic targets and approaches. In this review, both existing and emerging targets, including the proteins, small molecular metabolites, and epigenetic regulators related to RA, are discussed, with a focus on the mechanisms that result in inflammation and the development of new drugs for blocking the various modulators in RA.
Collapse
Affiliation(s)
- Jie Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xuekun Fu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xinxin Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Zheng Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Yuhong Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Chao Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
18
|
Sun J, Liao W, Su K, Jia J, Qin L, Liu W, He Y, Zhang H, Ou F, Zhang Z, Sun Y. Suberoylanilide Hydroxamic Acid Attenuates Interleukin-1β-Induced Interleukin-6 Upregulation by Inhibiting the Microtubule Affinity-Regulating Kinase 4/Nuclear Factor-κB Pathway in Synovium-Derived Mesenchymal Stem Cells from the Temporomandibular Joint. Inflammation 2021; 43:1246-1258. [PMID: 32279160 DOI: 10.1007/s10753-020-01204-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Synovium-derived mesenchymal stem cells (SMSCs) can migrate to the site of destroyed condylar cartilage and differentiate into chondrocytes to repair temporomandibular joint (TMJ) damage. Interleukin (IL)-1β-induced IL-6 secretion has been shown to inhibit the chondrogenic potential of SMSCs. The histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) has recently been shown to be closely related to the inflammation induced by IL-1β. However, the relationship between SAHA and IL-6 secretion induced by IL-1β in SMSCs remains unclear. In this study, we evaluated the relationships between IL-1β and IL-6 in synovial specimens from patients with TMD and in model rats with osteoarthritis (OA). We found that IL-1β and IL-6 were positively correlated and that IL-6 expression in SMSCs increased with IL-1β stimulation in vitro. Moreover, microtubule affinity-regulating kinase 4 (MARK4) was significantly upregulated in IL-1β-stimulated SMSCs and in the synovium of rats with OA. MARK4 knockdown inhibited IL-6 secretion and nuclear factor (NF)-κB pathway activation in IL-1β-stimulated SMSCs. SAHA attenuated IL-6 secretion in IL-1β-induced SMSCs through NF-κB pathway inhibition, and MARK4 was also downregulated in SAHA-treated SMSCs. However, inhibition of the NF-κB pathway did not suppress MARK4 expression. Thus, these results showed that SAHA attenuated IL-6 secretion in IL-1β-induced SMSCs through inhibition of the MARK4/NF-κB pathway.
Collapse
Affiliation(s)
- Jiadong Sun
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, No. 56 Lingyuan West Road, Guangzhou, Guangdong, People's Republic of China
| | - Wenting Liao
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, No. 56 Lingyuan West Road, Guangzhou, Guangdong, People's Republic of China
| | - Kai Su
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, No. 56 Lingyuan West Road, Guangzhou, Guangdong, People's Republic of China
| | - Jiaxin Jia
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, No. 56 Lingyuan West Road, Guangzhou, Guangdong, People's Republic of China
| | - Lingling Qin
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, No. 56 Lingyuan West Road, Guangzhou, Guangdong, People's Republic of China
| | - Wenjing Liu
- Stomatological Hospital of Guangdong Province, Guangzhou, Guangdong, People's Republic of China
| | - Yiqing He
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, No. 56 Lingyuan West Road, Guangzhou, Guangdong, People's Republic of China
| | - Hong Zhang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, No. 56 Lingyuan West Road, Guangzhou, Guangdong, People's Republic of China
| | - Farong Ou
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, No. 56 Lingyuan West Road, Guangzhou, Guangdong, People's Republic of China
| | - Zhiguang Zhang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, No. 56 Lingyuan West Road, Guangzhou, Guangdong, People's Republic of China.
| | - Yangpeng Sun
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, No. 56 Lingyuan West Road, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
19
|
Mehndiratta S, Chen MC, Chao YH, Lee CH, Liou JP, Lai MJ, Lee HY. Effect of 3-subsitution of quinolinehydroxamic acids on selectivity of histone deacetylase isoforms. J Enzyme Inhib Med Chem 2021; 36:74-84. [PMID: 33161799 PMCID: PMC7655065 DOI: 10.1080/14756366.2020.1839446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A series of 3-subsituted quinolinehydroxamic acids has been synthesised and evaluated for their effect on human lung cancer cell line (A549), human colorectal cancer cell line (HCT116) and HDAC isoforms 1, 2, 6, and 8. The results indicated that substitution at C3 of quinoline is favoured for HDAC6 selectivity. Two compounds (25 and 26) were also found to be potent anti-proliferative compounds with IC50 values ranging from 1.29 to 2.13 µM against A549 and HCT116 cells. These compounds displayed remarkable selectivity for HDAC6 over other HDAC isoforms with nanomolar IC50 values. Western blot analysis revealed that compounds of this series activate apoptotic caspase pathway as indicated by cleavage of caspase 3, 8, and 9 and also increase phosphorylated H2AX thus inducing DNA double strand fragmentation in a concentration dependent manner. Flow cytometric analysis also displayed a dose dependent increase of cell population in sub G1 phase.
Collapse
Affiliation(s)
- Samir Mehndiratta
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Mei-Chuan Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.,Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.,Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei, Taiwan
| | - Yuh-Hsuan Chao
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Hsin Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.,Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan
| | - Mei-Jung Lai
- Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan
| | - Hsueh-Yun Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.,Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
20
|
Zhang L, Zhang L, You H, Sun S, Liao Z, Zhao G, Chen J. Inhibition of osteoclastogenesis by histone deacetylase inhibitor Quisinostat protects mice against titanium particle-induced bone loss. Eur J Pharmacol 2021; 904:174176. [PMID: 34004213 DOI: 10.1016/j.ejphar.2021.174176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
Periprosthetic osteolysis (PPO) and subsequent aseptic loosening are major long-term complications after total joint arthroplasty and have become the first causes for further revision surgery. Since PPO is primarily caused by excessive bone resorption stimulated by released wear particles, osteoclast-targeted therapy is considered to be of great potential for PPO prevention and treatment. Accumulating evidences indicated that inhibition of histone deacetylases (HDACs) may represent a novel approach to suppress osteoclast differentiation. However, different inhibitors of HDACs were shown to exhibit distinct safety profiles and efficacy in inhibiting osteoclastogenesis. Quisinostat (Qst) is a hydroxamate-based histone deacetylase inhibitor, and exerts potent anti-cancer activity. However, its effect on osteoclastogenesis and its therapeutic potential in preventing PPO are still unclear. In this study, we found that Qst suppressed RANKL-induced production of TRAP-positive mature osteoclasts, expression of osteoclast-specific genes, formation of F-actin rings, and bone resorption activity at a nanomolar concentration as low as 2 nM in vitro. Furthermore, we found that as low as 30 μg/kg of Qst was sufficient to exert preventive effect on titanium particle-induced osteolysis in the murine calvarial osteolysis model. Mechanistically, we found that Qst suppressed osteoclastogenesis by interfering with NF-κB and c-Fos/NFATc1 pathways. Thus, our study revealed that Qst may serve as a potential therapeutic agent for prevention and treatment of PPO and other osteoclast-mediated diseases.
Collapse
Affiliation(s)
- Liwei Zhang
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, 215007, China; Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Lei Zhang
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, 215007, China; Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Hongji You
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, 215007, China; Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Shengxuan Sun
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Zirui Liao
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, 215007, China; Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Gang Zhao
- Department of Hand Surgery, Wuxi No.9 People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, 214062, China.
| | - Jianquan Chen
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, 215007, China; Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China.
| |
Collapse
|
21
|
Song Z, Yang L, Hu W, Yi J, Feng F, Zhu L. Effects of histone H4 hyperacetylation on inhibiting MMP2 and MMP9 in human amniotic epithelial cells and in premature rupture of fetal membranes. Exp Ther Med 2021; 21:515. [PMID: 33815588 PMCID: PMC8014974 DOI: 10.3892/etm.2021.9946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 07/05/2019] [Indexed: 12/14/2022] Open
Abstract
Histone modification is closely associated with several diseases. The aim of the current study was to investigate the associations among histone acetylation, matrix metalloproteinases (MMPs) and premature rupture of membranes (PROM) during pregnancy. A total of 180 puerperants were divided into three groups: i) Preterm-PROM (PPROM), ii) term-PROM (TPROM) and iii) full-term labor (FTL). Enzyme-linked immunosorbent assay (ELISA) kits and western blotting were used to determine the protein concentrations of MMP2, MMP9, histone deacetylase (HDAC)1, HDAC2 and HDAC6, and the protein levels of histone H4 lysine (H4K)5 and H4K8 acetylation, respectively, in three types of fetal membranes. Additionally, human amniotic epithelial cells were used to determine the effects of the HDAC inhibitors droxinostat and chidamide on cell viability, histone acetylation and the levels of MMP2, MMP9, HDAC1, HDAC2 and HDAC6 in vitro, using the Cell Counting Kit-8 assay, western blotting and ELISA, respectively. Furthermore, the effects of droxinostat and chidamide on the invasion and migration abilities of human amniotic epithelial cells were investigated using transwell assays. In fetal membranes, the activities of MMP2 and MMP9 increased in PPROM, but decreased in TPROM. Further, the expression of HDAC1 was decreased and histone hyperacetylation was increased in both PPROM and TRPOM. In vitro experiments revealed that 5 µM droxinostat and 0.5 µM chidamide selectively decreased the level of HDAC and induced acetylation of H4K5 and H4K8. Additionally, the aforementioned HDAC inhibitors reduced human amniotic epithelial cell viability, invasion and migration, and decreased the expression levels of MMP2 and MMP9. The current study revealed a high expression level of MMP2 and MMP9 in PPROM compared with TPROM and FL tissue, which was in accordance with previously published studies. Furthermore, the in vitro tests performed in the current study revealed the effect of histone H4 hyperacetylation on inhibiting MMP2 and MMP9 levels in vitro was similar to that observed in TPROM. The results obtained in the current study may be used as a theoretical guide for clinical treatment of premature rupture of membranes.
Collapse
Affiliation(s)
- Zhihui Song
- Department of Obstetrics, Maternal and Child Health Hospital of Tangshan, Tangshan, Hebei 063021, P.R. China
| | - Lili Yang
- Department of Obstetrics, Maternal and Child Health Hospital of Tangshan, Tangshan, Hebei 063021, P.R. China
| | - Wei Hu
- Department of Obstetrics, Maternal and Child Health Hospital of Luannan, Luannan, Hebei 063210, P.R. China
| | - Jianping Yi
- Department of Obstetrics, Maternal and Child Health Hospital of Tangshan, Tangshan, Hebei 063021, P.R. China
| | - Fumin Feng
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063021, P.R. China
| | - Lingyan Zhu
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063021, P.R. China
| |
Collapse
|
22
|
Lunke S, Maxwell S, Khurana I, K N H, Okabe J, Al-Hasani K, El-Osta A. Epigenetic evidence of an Ac/Dc axis by VPA and SAHA. Clin Epigenetics 2021; 13:58. [PMID: 33743782 PMCID: PMC7981901 DOI: 10.1186/s13148-021-01050-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Valproic acid (VPA) is one of the most commonly used anti-epileptic drugs with pharmacological actions on GABA and blocking voltage-gated ion channels. VPA also inhibits histone deacetylase (HDAC) activity. Suberoylanilide hydroxamic acid is also a member of a larger class of compounds that inhibit HDACs. At the time of this article, there are 123 active international clinical trials for VPA (also known as valproate, convulex, divalproex, and depakote) and SAHA (vorinostat, zolinza). While it is well known that VPA and SAHA influence the accumulation of acetylated lysine residues on histones, their true epigenetic complexity remains poorly understood. RESULTS Primary human cells were exposed to VPA and SAHA to understand the extent of histone acetylation (H3K9/14ac) using chromatin immunoprecipitation followed by sequencing (ChIP-seq). Because histone acetylation is often associated with modification of lysine methylation, we also examined H3K4me3 and H3K9me3. To assess the influence of the HDAC inhibitors on gene expression, we used RNA sequencing (RNA-seq). ChIP-seq reveals a distribution of histone modifications that is robust and more broadly regulated than previously anticipated by VPA and SAHA. Histone acetylation is a characteristic of the pharmacological inhibitors that influenced gene expression. Surprisingly, we observed histone deacetylation by VPA stimulation is a predominant signature following SAHA exposure and thus defines an acetylation/deacetylation (Ac/Dc) axis. ChIP-seq reveals regionalisation of histone acetylation by VPA and broader deacetylation by SAHA. Independent experiments confirm H3K9/14 deacetylation of NFκB target genes by SAHA. CONCLUSIONS The results provide an important framework for understanding the Ac/Dc axis by highlighting a broader complexity of histone modifications by the most established and efficacious anti-epileptic medication in this class, VPA and comparison with the broad spectrum HDAC inhibitor, SAHA.
Collapse
Affiliation(s)
- Sebastian Lunke
- Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - Scott Maxwell
- Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia.,Epigenetics in Human Health and Disease Laboratory, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Ishant Khurana
- Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia.,Epigenetics in Human Health and Disease Laboratory, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Harikrishnan K N
- Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia.,Epigenetics in Human Health and Disease Laboratory, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia.,Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jun Okabe
- Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia.,Epigenetics in Human Health and Disease Laboratory, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Keith Al-Hasani
- Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia.,Epigenetics in Human Health and Disease Laboratory, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Assam El-Osta
- Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia. .,Epigenetics in Human Health and Disease Laboratory, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia. .,Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia. .,Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia. .,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR. .,Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong, 3/F Lui Che Woo Clinical Sciences Building, 30-32 Ngan Shing Street, Sha Tin, Hong Kong SAR. .,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR. .,Biomedical Laboratory Science, Department of Technology, Faculty of Health, University College Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
23
|
Osipyan A, Chen D, Dekker FJ. Epigenetic regulation in macrophage migration inhibitory factor (MIF)-mediated signaling in cancer and inflammation. Drug Discov Today 2021; 26:1728-1734. [PMID: 33746067 DOI: 10.1016/j.drudis.2021.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/19/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022]
Abstract
Epigenetic mechanisms are important for the regular development and maintenance of the tissue-specific expression of cytokine genes. One of the crucial cytokines involved in cancer and inflammation is macrophage migration inhibitory factor (MIF), which triggers the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) signaling pathways by binding to CD74 and other receptors. Altered expression of this cytokine and altered activity states of the connected pathways are linked to inflammatory disease and cancer. Therapeutic strategies based on epigenetic mechanisms have the potential to regulate MIF-mediated signaling in cancer and inflammation.
Collapse
Affiliation(s)
- Angelina Osipyan
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands
| | - Deng Chen
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands
| | - Frank J Dekker
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
24
|
Ullmann T, Luckhardt S, Wolf M, Parnham MJ, Resch E. High-Throughput Screening for CEBPD-Modulating Compounds in THP-1-Derived Reporter Macrophages Identifies Anti-Inflammatory HDAC and BET Inhibitors. Int J Mol Sci 2021; 22:ijms22063022. [PMID: 33809617 PMCID: PMC8002291 DOI: 10.3390/ijms22063022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 12/25/2022] Open
Abstract
This study aimed to identify alternative anti-inflammatory compounds that modulate the activity of a relevant transcription factor, CCAAT/enhancer binding protein delta (C/EBPδ). C/EBPδ is a master regulator of inflammatory responses in macrophages (Mϕ) and is mainly regulated at the level of CEBPD gene transcription initiation. To screen for CEBPD-modulating compounds, we generated a THP-1-derived reporter cell line stably expressing secreted alkaline phosphatase (SEAP) under control of the defined CEBPD promoter (CEBPD::SEAP). A high-throughput screening of LOPAC®1280 and ENZO®774 libraries on LPS- and IFN-γ-activated THP-1 reporter Mϕ identified four epigenetically active hits: two bromodomain and extraterminal domain (BET) inhibitors, I-BET151 and Ro 11-1464, as well as two histone deacetylase (HDAC) inhibitors, SAHA and TSA. All four hits markedly and reproducibly upregulated SEAP secretion and CEBPD::SEAP mRNA expression, confirming screening assay reliability. Whereas BET inhibitors also upregulated the mRNA expression of the endogenous CEBPD, HDAC inhibitors completely abolished it. All hits displayed anti-inflammatory activity through the suppression of IL-6 and CCL2 gene expression. However, I-BET151 and HDAC inhibitors simultaneously upregulated the mRNA expression of pro-inflammatory IL-1ß. The modulation of CEBPD gene expression shown in this study contributes to our understanding of inflammatory responses in Mϕ and may offer an approach to therapy for inflammation-driven disorders.
Collapse
Affiliation(s)
- Tatjana Ullmann
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (S.L.); (M.J.P.); (E.R.)
- Correspondence:
| | - Sonja Luckhardt
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (S.L.); (M.J.P.); (E.R.)
| | - Markus Wolf
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Schnackenburgallee 114, 22525 Hamburg, Germany;
| | - Michael J. Parnham
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (S.L.); (M.J.P.); (E.R.)
- EpiEndo Pharmaceuticals ehf, Eiðistorg 13-15, 170 Seltjarnarnes, Iceland
| | - Eduard Resch
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (S.L.); (M.J.P.); (E.R.)
| |
Collapse
|
25
|
Kaleem M, Alhosin M, Khan K, Ahmad W, Hosawi S, Nur SM, Choudhry H, Zamzami MA, Al-Abbasi FA, Javed MDN. Epigenetic Basis of Polyphenols in Cancer Prevention and Therapy. POLYPHENOLS-BASED NANOTHERAPEUTICS FOR CANCER MANAGEMENT 2021:189-238. [DOI: 10.1007/978-981-16-4935-6_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
|
26
|
Weiss U, Möller M, Husseini SA, Manderscheid C, Häusler J, Geisslinger G, Niederberger E. Inhibition of HDAC Enzymes Contributes to Differential Expression of Pro-Inflammatory Proteins in the TLR-4 Signaling Cascade. Int J Mol Sci 2020; 21:ijms21238943. [PMID: 33255670 PMCID: PMC7728096 DOI: 10.3390/ijms21238943] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Class I and II histone deacetylases (HDAC) are considered important regulators of immunity and inflammation. Modulation of HDAC expression and activity is associated with altered inflammatory responses but reports are controversial and the specific impact of single HDACs is not clear. We examined class I and II HDACs in TLR-4 signaling pathways in murine macrophages with a focus on IκB kinase epsilon (IKKε) which has not been investigated in this context before. Therefore, we applied the pan-HDAC inhibitors (HDACi) trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA) as well as HDAC-specific siRNA. Administration of HDACi reduced HDAC activity and decreased expression of IKKε although its acetylation was increased. Other pro-inflammatory genes (IL-1β, iNOS, TNFα) also decreased while COX-2 expression increased. HDAC 2, 3 and 4, respectively, might be involved in IKKε and iNOS downregulation with potential participation of NF-κB transcription factor inhibition. Suppression of HDAC 1–3, activation of NF-κB and RNA stabilization mechanisms might contribute to increased COX-2 expression. In conclusion, our results indicate that TSA and SAHA exert a number of histone- and HDAC-independent functions. Furthermore, the data show that different HDAC enzymes fulfill different functions in macrophages and might lead to both pro- and anti-inflammatory effects which have to be considered in therapeutic approaches.
Collapse
Affiliation(s)
- Ulrike Weiss
- Pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (U.W.); (M.M.); (S.A.H.); (C.M.); (J.H.); (G.G.)
| | - Moritz Möller
- Pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (U.W.); (M.M.); (S.A.H.); (C.M.); (J.H.); (G.G.)
| | - Sayed Adham Husseini
- Pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (U.W.); (M.M.); (S.A.H.); (C.M.); (J.H.); (G.G.)
| | - Christine Manderscheid
- Pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (U.W.); (M.M.); (S.A.H.); (C.M.); (J.H.); (G.G.)
| | - Julia Häusler
- Pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (U.W.); (M.M.); (S.A.H.); (C.M.); (J.H.); (G.G.)
| | - Gerd Geisslinger
- Pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (U.W.); (M.M.); (S.A.H.); (C.M.); (J.H.); (G.G.)
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch Translational Medicine (IME-TMP) and Fraunhofer Cluster of Excellence for Immune mediated diseases (CIMD), Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Ellen Niederberger
- Pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (U.W.); (M.M.); (S.A.H.); (C.M.); (J.H.); (G.G.)
- Correspondence: ; Tel.: +49-69-6301-7616; Fax: +49-69-6301-7636
| |
Collapse
|
27
|
Mobasheri T, Rayzan E, Shabani M, Hosseini M, Mahmoodi Chalbatani G, Rezaei N. Neuroblastoma-targeted nanoparticles and novel nanotechnology-based treatment methods. J Cell Physiol 2020; 236:1751-1775. [PMID: 32735058 DOI: 10.1002/jcp.29979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/11/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022]
Abstract
Neuroblastoma is a complicated pediatric tumor, originating from the neural crest, which is the most prevalent in adrenal glands, but may rarely be seen in some other tissues as well. Studies are focused on developing new strategies through novel chemo- and immuno-therapeutic drug targets. Different types of oncogenes such as MYCN, tumor suppressor genes such as p53, and some structural genes such as vascular endothelial growth factor are considered as targets for neuroblastoma therapy. The individual expression patterns in NB cells make them appropriate for this purpose. The combined effect of nano-drug delivery systems and specific drug targets will result in lower systemic side effects, prolonged therapeutic effects, and improvements in the pharmacokinetic properties of the drugs. Some of these novel drug delivery systems with a focus on liposomes as carriers are also discussed. In this review, genes and protein products that are beneficial as drug targets in the treatment of neuroblastoma have been discussed.
Collapse
Affiliation(s)
- Taranom Mobasheri
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Elham Rayzan
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsima Shabani
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Baltimore, Maryland
| | - Mina Hosseini
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Nima Rezaei
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
28
|
Hamminger P, Rica R, Ellmeier W. Histone deacetylases as targets in autoimmune and autoinflammatory diseases. Adv Immunol 2020; 147:1-59. [PMID: 32981634 DOI: 10.1016/bs.ai.2020.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Reversible lysine acetylation of histones is a key epigenetic regulatory process controlling gene expression. Reversible histone acetylation is mediated by two opposing enzyme families: histone acetyltransferases (HATs) and histone deacetylases (HDACs). Moreover, many non-histone targets of HATs and HDACs are known, suggesting a crucial role for lysine acetylation as a posttranslational modification on the cellular proteome and protein function far beyond chromatin-mediated gene regulation. The HDAC family consists of 18 members and pan-HDAC inhibitors (HDACi) are clinically used for the treatment of certain types of cancer. HDACi or individual HDAC member-deficient (cell lineage-specific) mice have also been tested in a large number of preclinical mouse models for several autoimmune and autoinflammatory diseases and in most cases HDACi treatment results in an attenuation of clinical disease severity. A reduction of disease severity has also been observed in mice lacking certain HDAC members. This indicates a high therapeutic potential of isoform-selective HDACi for immune-mediated diseases. Isoform-selective HDACi and thus targeted inactivation of HDAC isoforms might also overcome the adverse effects of current clinically approved pan-HDACi. This review provides a brief overview about the fundamental function of HDACs as epigenetic regulators, highlights the roles of HDACs beyond chromatin-mediated control of gene expression and summarizes the studies showing the impact of HDAC inhibitors and genetic deficiencies of HDAC members for the outcome of autoimmune and autoinflammatory diseases with a focus on rheumatoid arthritis, inflammatory bowel disease and experimental autoimmune encephalomyelitis (EAE) as an animal model of multiple sclerosis.
Collapse
Affiliation(s)
- Patricia Hamminger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ramona Rica
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
29
|
Wang H, Sové RJ, Jafarnejad M, Rahmeh S, Jaffee EM, Stearns V, Torres ETR, Connolly RM, Popel AS. Conducting a Virtual Clinical Trial in HER2-Negative Breast Cancer Using a Quantitative Systems Pharmacology Model With an Epigenetic Modulator and Immune Checkpoint Inhibitors. Front Bioeng Biotechnol 2020; 8:141. [PMID: 32158754 PMCID: PMC7051945 DOI: 10.3389/fbioe.2020.00141] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/11/2020] [Indexed: 12/16/2022] Open
Abstract
The survival rate of patients with breast cancer has been improved by immune checkpoint blockade therapies, and the efficacy of their combinations with epigenetic modulators has shown promising results in preclinical studies. In this prospective study, we propose an ordinary differential equation (ODE)-based quantitative systems pharmacology (QSP) model to conduct an in silico virtual clinical trial and analyze potential predictive biomarkers to improve the anti-tumor response in HER2-negative breast cancer. The model is comprised of four compartments: central, peripheral, tumor, and tumor-draining lymph node, and describes immune activation, suppression, T cell trafficking, and pharmacokinetics and pharmacodynamics (PK/PD) of the therapeutic agents. We implement theoretical mechanisms of action for checkpoint inhibitors and the epigenetic modulator based on preclinical studies to investigate their effects on anti-tumor response. According to model-based simulations, we confirm the synergistic effect of the epigenetic modulator and that pre-treatment tumor mutational burden, tumor-infiltrating effector T cell (Teff) density, and Teff to regulatory T cell (Treg) ratio are significantly higher in responders, which can be potential biomarkers to be considered in clinical trials. Overall, we present a readily reproducible modular model to conduct in silico virtual clinical trials on patient cohorts of interest, which is a step toward personalized medicine in cancer immunotherapy.
Collapse
Affiliation(s)
- Hanwen Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Richard J. Sové
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mohammad Jafarnejad
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sondra Rahmeh
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Elizabeth M. Jaffee
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Vered Stearns
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Evanthia T. Roussos Torres
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Roisin M. Connolly
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Aleksander S. Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
30
|
Zhao N, Yang F, Han L, Qu Y, Ge D, Zhang H. Development of Coumarin-Based Hydroxamates as Histone Deacetylase Inhibitors with Antitumor Activities. Molecules 2020; 25:E717. [PMID: 32046013 PMCID: PMC7036849 DOI: 10.3390/molecules25030717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/30/2020] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
Histone deacetylases (HDACs) have been proved to be promising targets for the treatment of cancer, and five histone deacetylase inhibitors (HDACis) have been approved on the market for the treatment of different lymphomas. In our previous work, we designed a series of novel coumarin-containing hydroxamate HDACis, among which compounds 6 and 7 displayed promising activities against tumor growth. Based on a molecular docking study, we further developed 26 additional analogues with the aim to improve activity of designed compounds. Several of these new derivatives not only showed excellent HDAC1 inhibitory effects, but also displayed significant growth inhibitory activities against four human cancer cell lines. Representative compounds, 13a and 13c, showed potent anti-proliferative activities against solid tumor cell lines with IC50 values of 0.36-2.91 M and low cytotoxicity against Beas-2B and L-02 normal cells. Immunoblot analysis revealed that 13a and 13c dose-dependently increased the acetylation of histone H3 and H4. Importantly, the two compounds displayed much better anti-metastatic effects than SAHA against the MDA-MB-231 cell line. Moreover, 13a and 13c arrested MDA-MB-231 cells at G2/M phase and induced MDA-MB-231 cell apoptosis. Finally, the molecular docking study rationalized the high potency of compound 13c.
Collapse
Affiliation(s)
- Na Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China;
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (L.H.); (Y.Q.); (D.G.)
| | - Feifei Yang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (L.H.); (Y.Q.); (D.G.)
| | - Lina Han
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (L.H.); (Y.Q.); (D.G.)
| | - Yuhua Qu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (L.H.); (Y.Q.); (D.G.)
| | - Di Ge
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (L.H.); (Y.Q.); (D.G.)
| | - Hua Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (L.H.); (Y.Q.); (D.G.)
| |
Collapse
|
31
|
Karami J, Aslani S, Tahmasebi MN, Mousavi MJ, Sharafat Vaziri A, Jamshidi A, Farhadi E, Mahmoudi M. Epigenetics in rheumatoid arthritis; fibroblast-like synoviocytes as an emerging paradigm in the pathogenesis of the disease. Immunol Cell Biol 2020; 98:171-186. [PMID: 31856314 DOI: 10.1111/imcb.12311] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 12/14/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022]
Abstract
Rheumatoid arthritis (RA) is characterized by immune dysfunctions and chronic inflammation that mainly affects diarthrodial joints. Genetics has long been surveyed in searching for the etiopathogenesis of the disease and partially clarified the conundrums within this context. Epigenetic alterations, such as DNA methylation, histone modifications, and noncoding RNAs, which have been considered to be involved in RA pathogenesis, likely explain the nongenetic risk factors. Epigenetic modifications may influence RA through fibroblast-like synoviocytes (FLSs). It has been shown that FLSs play an essential role in the onset and exacerbation of RA, and therefore, they may illustrate some aspects of RA pathogenesis. These cells exhibit a unique DNA methylation profile in the early stage of the disease that changes with disease progression. Histone acetylation profile in RA FLSs is disrupted through the imbalance of histone acetyltransferases and histone deacetylase activity. Furthermore, dysregulation of microRNAs (miRNAs) is immense. Most of these miRNAs have shown an aberrant expression in FLSs that are involved in proliferation and cytokine production. Besides, dysregulation of long noncoding RNAs in FLSs has been revealed and attributed to RA pathogenesis. Further investigations are needed to get a better view of epigenetic alterations and their interactions. We also discuss the role of these epigenetic alterations in RA pathogenesis and their therapeutic potential.
Collapse
Affiliation(s)
- Jafar Karami
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran
| | - Saeed Aslani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Naghi Tahmasebi
- Department of Orthopedics, Division of Knee Surgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Mousavi
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Sharafat Vaziri
- Department of Orthopedics, Division of Knee Surgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Farhadi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Suberoylanilide Hydroxamic Acid Attenuates Autoimmune Arthritis by Suppressing Th17 Cells through NR1D1 Inhibition. Mediators Inflamm 2019; 2019:5648987. [PMID: 31780863 PMCID: PMC6855032 DOI: 10.1155/2019/5648987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a type of systemic autoimmune arthritis that causes joint inflammation and destruction. One of the pathological mechanisms of RA is known to involve histone acetylation. Although the histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA) can attenuate arthritis in animal models of RA, the mechanism underlying this effect is poorly understood. This study was performed to examine whether SAHA has therapeutic potential in an animal model of RA and to investigate its mechanism of action. Collagen-induced arthritis (CIA) mice were orally administered SAHA daily for 8 weeks and examined for their arthritis score and incidence of arthritis. CD4+ T cell regulation following SAHA treatment was confirmed in splenocytes cultured under type 17 helper T (Th17) cell differentiation conditions. Clinical scores and the incidence of CIA were lower in mice in the SAHA treatment group compared to the controls. In addition, SAHA inhibited Th17 cell differentiation, as well as decreased expression of the Th17 cell-related transcription factors pSTAT3 Y705 and pSTAT3 S727. In vitro experiments showed that SAHA maintained regulatory T (Treg) cells but specifically reduced Th17 cells. The same results were obtained when mouse splenocytes were cultured under Treg cell differentiation conditions and then converted to Th17 cell differentiation conditions. In conclusion, SAHA was confirmed to specifically inhibit Th17 cell differentiation through nuclear receptor subfamily 1 group D member 1 (NR1D1), a factor associated with Th17 differentiation. The results of the present study suggested that SAHA can attenuate CIA development by inhibition of the Th17 population and maintenance of the Treg population through NR1D1 inhibition. Therefore, SAHA is a potential therapeutic candidate for RA.
Collapse
|
33
|
Haage V, Elmadany N, Roll L, Faissner A, Gutmann DH, Semtner M, Kettenmann H. Tenascin C regulates multiple microglial functions involving TLR4 signaling and HDAC1. Brain Behav Immun 2019; 81:470-483. [PMID: 31271872 DOI: 10.1016/j.bbi.2019.06.047] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 01/15/2023] Open
Abstract
Tenascin C (Tnc) is an extracellular matrix glycoprotein, expressed in the CNS during development, as well as in the setting of inflammation, fibrosis and cancer, which operates as an activator of Toll-like receptor 4 (TLR4). Although TLR4 is highly expressed in microglia, the effect of Tnc on microglia has not been elucidated to date. Herein, we demonstrate that Tnc regulates microglial phagocytic activity at an early postnatal age (P4), and that this process is partially dependent on microglial TLR4 expression. We further show that Tnc regulates proinflammatory cytokine/chemokine production, chemotaxis and phagocytosis in primary microglia in a TLR4-dependent fashion. Moreover, Tnc induces histone-deacetylase 1 (HDAC1) expression in microglia, such that HDAC1 inhibition by MS-275 decreases Tnc-induced microglial IL-6 and TNF-α production. Finally, Tnc-/- cortical microglia have reduced HDAC1 expression levels at P4. Taken together, these findings establish Tnc as a regulator of microglia function during early postnatal development.
Collapse
Affiliation(s)
- Verena Haage
- Cellular Neurosciences, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
| | - Nirmeen Elmadany
- Cellular Neurosciences, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
| | - Lars Roll
- Zellmorphologie und Molekulare Neurobiologie, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, Bochum, Nordrhein-Wastfalen 44801, Germany
| | - Andreas Faissner
- Zellmorphologie und Molekulare Neurobiologie, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, Bochum, Nordrhein-Wastfalen 44801, Germany
| | - David H Gutmann
- Cellular Neurosciences, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marcus Semtner
- Cellular Neurosciences, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
| | - Helmut Kettenmann
- Cellular Neurosciences, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany.
| |
Collapse
|
34
|
Blanquart C, Linot C, Cartron PF, Tomaselli D, Mai A, Bertrand P. Epigenetic Metalloenzymes. Curr Med Chem 2019; 26:2748-2785. [PMID: 29984644 DOI: 10.2174/0929867325666180706105903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 12/12/2022]
Abstract
Epigenetics controls the expression of genes and is responsible for cellular phenotypes. The fundamental basis of these mechanisms involves in part the post-translational modifications (PTMs) of DNA and proteins, in particular, the nuclear histones. DNA can be methylated or demethylated on cytosine. Histones are marked by several modifications including acetylation and/or methylation, and of particular importance are the covalent modifications of lysine. There exists a balance between addition and removal of these PTMs, leading to three groups of enzymes involved in these processes: the writers adding marks, the erasers removing them, and the readers able to detect these marks and participating in the recruitment of transcription factors. The stimulation or the repression in the expression of genes is thus the result of a subtle equilibrium between all the possibilities coming from the combinations of these PTMs. Indeed, these mechanisms can be deregulated and then participate in the appearance, development and maintenance of various human diseases, including cancers, neurological and metabolic disorders. Some of the key players in epigenetics are metalloenzymes, belonging mostly to the group of erasers: the zinc-dependent histone deacetylases (HDACs), the iron-dependent lysine demethylases of the Jumonji family (JMJ or KDM) and for DNA the iron-dependent ten-eleven-translocation enzymes (TET) responsible for the oxidation of methylcytosine prior to the demethylation of DNA. This review presents these metalloenzymes, their importance in human disease and their inhibitors.
Collapse
Affiliation(s)
- Christophe Blanquart
- CRCINA, INSERM, Universite d'Angers, Universite de Nantes, Nantes, France.,Réseau Epigénétique du Cancéropôle Grand Ouest, France
| | - Camille Linot
- CRCINA, INSERM, Universite d'Angers, Universite de Nantes, Nantes, France
| | - Pierre-François Cartron
- CRCINA, INSERM, Universite d'Angers, Universite de Nantes, Nantes, France.,Réseau Epigénétique du Cancéropôle Grand Ouest, France
| | - Daniela Tomaselli
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Antonello Mai
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy.,Pasteur Institute - Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Philippe Bertrand
- Réseau Epigénétique du Cancéropôle Grand Ouest, France.,Institut de Chimie des Milieux et Matériaux de Poitiers, UMR CNRS 7285, 4 rue Michel Brunet, TSA 51106, B27, 86073, Poitiers cedex 09, France
| |
Collapse
|
35
|
Wu Y, Dou J, Wan X, Leng Y, Liu X, Chen L, Shen Q, Zhao B, Meng Q, Hou J. Histone Deacetylase Inhibitor MS-275 Alleviates Postoperative Cognitive Dysfunction in Rats by Inhibiting Hippocampal Neuroinflammation. Neuroscience 2019; 417:70-80. [PMID: 31430527 DOI: 10.1016/j.neuroscience.2019.08.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 08/07/2019] [Accepted: 08/10/2019] [Indexed: 12/28/2022]
Abstract
Neuroinflammation in the hippocampus plays essential roles in postoperative cognitive dysfunction (POCD). Histone deacetylases (HDACs) have recently been identified as key regulators of neuroinflammation. MS-275, an inhibitor of HDAC, has been reported to have neuroprotective effects. Therefore, the present study aimed to test the hypothesis that pretreatment with MS-275 prevents POCD by inhibiting neuroinflammation in rats. In this study, anesthesia/surgery impaired cognition, demonstrated by an increase escape latency and reduction in the number of platform crossings in Morris water maze (MWM) trials, through activating microglia neuroinflammation and decreasing PSD-95 expression. However, pretreatment with MS-275 attenuated postoperative cognitive impairment severity. Furthermore, pretreatment with MS-275 decreased activated microglia levels and increased PSD95 protein expression in the hippocampus. Pretreatment with MS-275 reduced NF-κB-p65 protein expression and nuclear accumulation as well as the neuroinflammatory response (production of proinflammatory cytokines including TNF-α and IL-1β) in the hippocampus. Additionally, MS-275 reduced HDAC2 expression and HDAC activity in the hippocampus, which were enhanced in vehicle-treated rats. These results suggest that MS-275 alleviates postoperative cognitive dysfunction by reducing neuroinflammation in the hippocampus of rats via HDAC inhibition.
Collapse
Affiliation(s)
- Yang Wu
- Department of Anesthesiology, Renmin Hospital, Wuhan University, P.O. Box 430060, No. 238 Jiefang Road, Wuhan, China
| | - Juan Dou
- Sterilization and Supply Center, Renmin Hospital, Wuhan University, P.O. Box 430060, No. 238 Jiefang Road, Wuhan, China
| | - Xing Wan
- Operating Room, Renmin Hospital, Wuhan University, P.O. Box 430060, No. 238 Jiefang Road, Wuhan, China
| | - Yan Leng
- Department of Anesthesiology, Renmin Hospital, Wuhan University, P.O. Box 430060, No. 238 Jiefang Road, Wuhan, China
| | - Xuke Liu
- Department of Anesthesiology, Renmin Hospital, Wuhan University, P.O. Box 430060, No. 238 Jiefang Road, Wuhan, China
| | - Lili Chen
- Department of Anesthesiology, Renmin Hospital, Wuhan University, P.O. Box 430060, No. 238 Jiefang Road, Wuhan, China
| | - Qianni Shen
- Department of Anesthesiology, Renmin Hospital, Wuhan University, P.O. Box 430060, No. 238 Jiefang Road, Wuhan, China
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital, Wuhan University, P.O. Box 430060, No. 238 Jiefang Road, Wuhan, China
| | - Qingtao Meng
- Department of Anesthesiology, Renmin Hospital, Wuhan University, P.O. Box 430060, No. 238 Jiefang Road, Wuhan, China
| | - Jiabao Hou
- Department of Anesthesiology, Renmin Hospital, Wuhan University, P.O. Box 430060, No. 238 Jiefang Road, Wuhan, China.
| |
Collapse
|
36
|
Li X, Yuan M, Yin R, Liu X, Zhang Y, Sun S, Han L, He S. Histone deacetylase inhibitor attenuates experimental fungal keratitis in mice. Sci Rep 2019; 9:9859. [PMID: 31285488 PMCID: PMC6614500 DOI: 10.1038/s41598-019-46361-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/25/2019] [Indexed: 12/16/2022] Open
Abstract
Fungal keratitis is one of the leading causes of blindness of infected corneal diseases, but the pathogenesis of fungal keratitis is not fully understood and therefore the treatment of the disease by medication is still under investigation. In the current study, we sought to study the effect of HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) on experimental fungal keratitis in mice. SAHA (25 mg/kg) (n = 30) or vehicle (DMSO) (n = 30) was delivered through intraperitoneal injection (IP) 24 hours after the fungal inoculation, and the same amount of SAHA injection or DMSO was followed at day 2. The expression of histone H3 (H3), acetylated histone H3 (AC-H3), histone deacetylase 1 (HDAC)1, tumor necrosis factor-α (TNFα), and Toll-like receptor 4 (TLR4) in surgically excised specimens from the patients and mice with fungal keratitis were detected by immunohistochemistry. The expression of mRNAs for Interleukin-1β (IL-1β), TNFα, and TLR4 were evaluated in the corneas of the mice with fungal infection and the control corneas by real-time PCR. The quantification of IL-1β and TNFα in the corneas of the mice with fungal infection was determined by ELISA. The inhibitory effect of SAHA on mice fungal keratitis was revealed by GMS and H&E staining. We found that the downregulation of histone acetylation and upregulation of HDAC1 expression were associated with the increased inflammation response in fungal keratitis not only in humans but also in experimental animals. SAHA was able to inhibit experimental fungal keratitis in mouse by suppressing TLR4 and inflammatory cytokines such as TNFα and IL-1β; the inhibition of HDAC may be a potential therapeutic approach for the treatment of fungal keratitis.
Collapse
Affiliation(s)
- Xiaohua Li
- Henan Provincial People's Hospital, Zhengzhou, 450003, China. .,Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003, China. .,People's Hospital of Zhengzhou University, Zhengzhou, 450003, China. .,People's Hospital of Henan University, Zhengzhou, 450003, China.
| | - Min Yuan
- Henan Provincial People's Hospital, Zhengzhou, 450003, China.,Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003, China.,People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.,People's Hospital of Henan University, Zhengzhou, 450003, China
| | - Ruijie Yin
- Henan Provincial People's Hospital, Zhengzhou, 450003, China.,Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003, China.,People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.,People's Hospital of Henan University, Zhengzhou, 450003, China
| | - Xiaohui Liu
- Henan Provincial People's Hospital, Zhengzhou, 450003, China.,Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003, China.,People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.,People's Hospital of Henan University, Zhengzhou, 450003, China
| | - Yu Zhang
- Henan Provincial People's Hospital, Zhengzhou, 450003, China.,Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003, China.,People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.,People's Hospital of Henan University, Zhengzhou, 450003, China
| | - Shengtao Sun
- Henan Provincial People's Hospital, Zhengzhou, 450003, China.,Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003, China.,People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.,People's Hospital of Henan University, Zhengzhou, 450003, China
| | - Lei Han
- Henan Provincial People's Hospital, Zhengzhou, 450003, China.,Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003, China.,People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.,People's Hospital of Henan University, Zhengzhou, 450003, China
| | - Shikun He
- Departments of Pathology and Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
37
|
Guo CJ, Xie JJ, Hong RH, Pan HS, Zhang FG, Liang YM. Puerarin alleviates streptozotocin (STZ)-induced osteoporosis in rats through suppressing inflammation and apoptosis via HDAC1/HDAC3 signaling. Biomed Pharmacother 2019; 115:108570. [DOI: 10.1016/j.biopha.2019.01.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 01/06/2019] [Accepted: 01/08/2019] [Indexed: 11/15/2022] Open
|
38
|
Nijhuis L, Peeters JGC, Vastert SJ, van Loosdregt J. Restoring T Cell Tolerance, Exploring the Potential of Histone Deacetylase Inhibitors for the Treatment of Juvenile Idiopathic Arthritis. Front Immunol 2019; 10:151. [PMID: 30792714 PMCID: PMC6374297 DOI: 10.3389/fimmu.2019.00151] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/17/2019] [Indexed: 12/24/2022] Open
Abstract
Juvenile Idiopathic Arthritis (JIA) is characterized by a loss of immune tolerance. Here, the balance between the activity of effector T (Teff) cells and regulatory T (Treg) cells is disturbed resulting in chronic inflammation in the joints. Presently, therapeutic strategies are predominantly aimed at suppressing immune activation and pro-inflammatory effector mechanisms, ignoring the opportunity to also promote tolerance by boosting the regulatory side of the immune balance. Histone deacetylases (HDACs) can deacetylate both histone and non-histone proteins and have been demonstrated to modulate epigenetic regulation as well as cellular signaling in various cell types. Importantly, HDACs are potent regulators of both Teff cell and Treg cell function and can thus be regarded as attractive therapeutic targets in chronic inflammatory arthritis. HDAC inhibitors (HDACi) have proven therapeutic potential in the cancer field, and are presently being explored for their potential in the treatment of autoimmune diseases. Specific HDACi have already been demonstrated to reduce the secretion of pro-inflammatory cytokines by Teff cells, and promote Treg numbers and suppressive capacity in vitro and in vivo. In this review, we outline the role of the different classes of HDACs in both Teff cell and Treg cell function. Furthermore, we will review the effect of different HDACi on T cell tolerance and explore their potential as a therapeutic strategy for the treatment of oligoarticular and polyarticular JIA.
Collapse
Affiliation(s)
- Lotte Nijhuis
- Laboratory of Translational Immunology, Department of Pediatric Immunology & Rheumatology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Janneke G C Peeters
- Laboratory of Translational Immunology, Department of Pediatric Immunology & Rheumatology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Sebastiaan J Vastert
- Laboratory of Translational Immunology, Department of Pediatric Immunology & Rheumatology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Jorg van Loosdregt
- Laboratory of Translational Immunology, Department of Pediatric Immunology & Rheumatology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| |
Collapse
|
39
|
Strategies toward rheumatoid arthritis therapy; the old and the new. J Cell Physiol 2018; 234:10018-10031. [DOI: 10.1002/jcp.27860] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/14/2018] [Indexed: 12/12/2022]
|
40
|
Mohammadi A, Sharifi A, Pourpaknia R, Mohammadian S, Sahebkar A. Manipulating macrophage polarization and function using classical HDAC inhibitors: Implications for autoimmunity and inflammation. Crit Rev Oncol Hematol 2018; 128:1-18. [DOI: 10.1016/j.critrevonc.2018.05.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/18/2018] [Accepted: 05/10/2018] [Indexed: 02/06/2023] Open
|
41
|
Kim DS, Kwon JE, Lee SH, Kim EK, Ryu JG, Jung KA, Choi JW, Park MJ, Moon YM, Park SH, Cho ML, Kwok SK. Attenuation of Rheumatoid Inflammation by Sodium Butyrate Through Reciprocal Targeting of HDAC2 in Osteoclasts and HDAC8 in T Cells. Front Immunol 2018; 9:1525. [PMID: 30034392 PMCID: PMC6043689 DOI: 10.3389/fimmu.2018.01525] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/20/2018] [Indexed: 01/14/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease caused by both genetic and environmental factors. Recently, investigators have focused on the gut microbiota, which is thought to be an environmental factor that affects the development of RA. Metabolites secreted by the gut microbiota maintain homeostasis in the gut through various mechanisms [e.g., butyrate, which is one of the major metabolites of gut microbiota, exerts an anti-inflammatory effect by activating G-protein-coupled receptors and inhibiting histone deacetylases (HDACs)]. Here, we focused on the inhibition of the HDACs by butyrate in RA. To this end, we evaluated the therapeutic effects of butyrate in an animal model of autoimmune arthritis. The arthritis score and incidence were lower in the butyrate-treated group compared to the control group. Also, butyrate inhibited HDAC2 in osteoclasts and HDAC8 in T cells, leading to the acetylation of glucocorticoid receptors and estrogen-related receptors α, respectively. Additionally, control of the TH17/Treg cell balance and inhibition of osteoclastogenesis were confirmed by the changes in target gene expression. Interleukin-10 (IL-10) produced by butyrate-induced expanded Treg cells was critical, as treatment with butyrate did not affect inflammatory arthritis in IL-10-knockout mice. This immune-cell regulation of butyrate was also detected in humans. These findings suggest that butyrate is a candidate agent for the treatment of RA.
Collapse
Affiliation(s)
- Da Som Kim
- The Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Jeong-Eun Kwon
- The Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Seung Hoon Lee
- The Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea.,Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States
| | - Eun Kyung Kim
- The Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Jun-Geol Ryu
- The Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | | | - Jeong-Won Choi
- The Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Min-Jung Park
- The Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Young-Mee Moon
- The Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Hwan Park
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Mi-La Cho
- The Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea.,Laboratory of Immune Network, Conversant Research Consortium in Immunologic Disease, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,College of Medicine, The Institute for Aging and Metabolic Diseases, The Catholic University of Korea, Seoul, South Korea
| | - Seung-Ki Kwok
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
42
|
Dobreva ZG, Grigorov BG, Stanilova SA. Effect of a Histone Deacetylases Inhibitor of IL-18 and TNF-Alpha Secretion in Vitro. Open Access Maced J Med Sci 2018. [PMID: 29531586 PMCID: PMC5839430 DOI: 10.3889/oamjms.2018.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND: Interleukin-18 (IL-18) and Tumor Necrosis Factor-alpha (TNF-α) are proinflammatory cytokines that increased the development of Th1 immune response, but have a different type of regulation of the gene expression. Whereas TNF-α has an inducible expression, IL-18 is translated as an inactive protein and required proteolytic cleavage by Casp-1 in inflammasome complexes. AIM: To investigate the effect of the histone deacetylases inhibitor Suberoylanilide Hydroxamic Acid (SAHA) on the gene expression and secretion of both cytokines, IL-18 and TNF-α, according to their contribution to the cancer development and anticancer immunity. METHODS: Isolated peripheral blood mononuclear cells (PBMC) were stimulated with LPS and C3bgp with or without SAHA. Cytokine production was assessed by ELISA at 6 and 24h. RESULTS: IL-18 and TNF-α secretion was significantly increased at 6h and 24h in response to stimulation. TNF-α production from stimulated PBMC was downregulated by SAHA at 6 and 24h. Treatment with SAHA does not inhibit the secretion of IL-18 significantly either at 6 or 24h of stimulation. CONCLUSION: The inhibition of histone deacetylases by SAHA does not influence the inflammasome-dependent production of immunologically active IL-18. In contrast, the production of proinflammatory TNF-α in cultures was mediated by the activity of HDAC class I and class II enzymes.
Collapse
Affiliation(s)
- Zlatka Georgieva Dobreva
- Department of Molecular Biology, Immunology and Medical Genetics, Medical Faculty, Trakia University, Armeiska 11, Stara Zagora 6000, Bulgaria
| | - Boncho Grigorov Grigorov
- Department of Molecular Biology, Immunology and Medical Genetics, Medical Faculty, Trakia University, Armeiska 11, Stara Zagora 6000, Bulgaria
| | - Spaska Angelova Stanilova
- Department of Molecular Biology, Immunology and Medical Genetics, Medical Faculty, Trakia University, Armeiska 11, Stara Zagora 6000, Bulgaria
| |
Collapse
|
43
|
Hou F, Li D, Yu H, Kong Q. The mechanism and potential targets of class II HDACs in angiogenesis. J Cell Biochem 2017; 119:2999-3006. [PMID: 29091298 DOI: 10.1002/jcb.26476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/31/2017] [Indexed: 12/21/2022]
Abstract
Angiogenesis refers to the new blood vessels deriving from the existing blood vessels, and it is a complex regulatory process. Angiogenesis is associated with the normal development of the body and tumor growth and migration. The imbalance of histone deacetylase, as an epigenetic modification, could induce the production of diseases, such as cancer, metabolic diseases, etc., and it also plays an important role in angiogenesis. Many researches indicate that class II HDACs nuclear shuttle and its phosphorylation are necessary for the diseases and the protection of the collective itself. This paper will make a review for the relationship between II HDACs and angiogenesis under physiological and pathologic categories, looking forward to the disease treatment in the future.
Collapse
Affiliation(s)
- Fei Hou
- Department of Basic Medical College, Jining Medical University, Jining, Shandong, China.,College of Science, Qufu Normal University, Qufu, Shandong, China
| | - Dandan Li
- Department of Basic Medical College, Jining Medical University, Jining, Shandong, China.,College of Science, Qufu Normal University, Qufu, Shandong, China
| | - Honglian Yu
- Department of Basic Medical College, Jining Medical University, Jining, Shandong, China.,Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining, Shandong, China
| | - Qingsheng Kong
- Department of Basic Medical College, Jining Medical University, Jining, Shandong, China.,Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining, Shandong, China
| |
Collapse
|
44
|
Bombardo M, Saponara E, Malagola E, Chen R, Seleznik GM, Haumaitre C, Quilichini E, Zabel A, Reding T, Graf R, Sonda S. Class I histone deacetylase inhibition improves pancreatitis outcome by limiting leukocyte recruitment and acinar-to-ductal metaplasia. Br J Pharmacol 2017; 174:3865-3880. [PMID: 28832971 DOI: 10.1111/bph.13984] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 08/08/2017] [Accepted: 08/10/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Pancreatitis is a common inflammation of the pancreas with rising incidence in many countries. Despite improvements in diagnostic techniques, the disease is associated with high risk of severe morbidity and mortality and there is an urgent need for new therapeutic interventions. In this study, we evaluated whether histone deacetylases (HDACs), key epigenetic regulators of gene transcription, are involved in the development of the disease. EXPERIMENTAL APPROACH We analysed HDAC regulation during cerulein-induced acute, chronic and autoimmune pancreatitis using different transgenic mouse models. The functional relevance of class I HDACs was tested with the selective inhibitor MS-275 in vivo upon pancreatitis induction and in vitro in activated macrophages and primary acinar cell explants. KEY RESULTS HDAC expression and activity were up-regulated in a time-dependent manner following induction of pancreatitis, with the highest abundance observed for class I HDACs. Class I HDAC inhibition did not prevent the initial acinar cell damage. However, it effectively reduced the infiltration of inflammatory cells, including macrophages and T cells, in both acute and chronic phases of the disease, and directly disrupted macrophage activation. In addition, MS-275 treatment reduced DNA damage in acinar cells and limited acinar de-differentiation into acinar-to-ductal metaplasia in a cell-autonomous manner by impeding the EGF receptor signalling axis. CONCLUSIONS AND IMPLICATIONS These results demonstrate that class I HDACs are critically involved in the development of acute and chronic forms of pancreatitis and suggest that blockade of class I HDAC isoforms is a promising target to improve the outcome of the disease.
Collapse
Affiliation(s)
- Marta Bombardo
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Enrica Saponara
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Ermanno Malagola
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Rong Chen
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Gitta M Seleznik
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Cecile Haumaitre
- CNRS, UMR7622, Institut de Biologie Paris-Seine (IBPS), France Sorbonne Universités, UPMC Université Paris 06, UMR7622-IBPS, France INSERM U969, Paris, France
| | - Evans Quilichini
- CNRS, UMR7622, Institut de Biologie Paris-Seine (IBPS), France Sorbonne Universités, UPMC Université Paris 06, UMR7622-IBPS, France INSERM U969, Paris, France
| | - Anja Zabel
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Theresia Reding
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Rolf Graf
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital of Zurich, Zurich, Switzerland.,Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Sabrina Sonda
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital of Zurich, Zurich, Switzerland.,Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| |
Collapse
|
45
|
Jan JS, Chou YC, Cheng YW, Chen CK, Huang WJ, Hsiao G. The Novel HDAC8 Inhibitor WK2-16 Attenuates Lipopolysaccharide-Activated Matrix Metalloproteinase-9 Expression in Human Monocytic Cells and Improves Hypercytokinemia In Vivo. Int J Mol Sci 2017; 18:ijms18071394. [PMID: 28661460 PMCID: PMC5535887 DOI: 10.3390/ijms18071394] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/19/2017] [Accepted: 06/26/2017] [Indexed: 12/29/2022] Open
Abstract
Dysregulated human monocytes/macrophages can synthesize and secrete matrix metalloproteinases (MMPs), which play important roles in the progression of sepsis. In this study, we investigated the effects and mechanism of a novel histone deacetylase (HDAC8) inhibitor, (E)-N-hydroxy-4-methoxy-2-(biphenyl-4-yl)cinnamide (WK2-16), on MMP-9 production and activation in stimulated human monocytic THP-1 cells. Our results demonstrated that the acetylation level of structural maintenance of chromosomes 3 (SMC3) was up-regulated by WK2-16 in THP-1 cells. Consistently, an in vitro enzyme study demonstrated that WK2-16 selectively inhibited HDAC8 activity. Moreover, the WK2-16 concentration dependently suppressed MMP-9-mediated gelatinolysis induced by tumor necrosis factor-α (TNF-α) or lipopolysaccharide (LPS). Additionally, WK2-16 significantly inhibited both MMP-9 protein and mRNA expression without cellular toxicity. Nevertheless, WK2-16 suppressed the extracellular levels of interleukin (IL)-6 from LPS-stimulated THP-1 cells. For the signaling studies, WK2-16 had no effect on LPS/TLR4 downstream signaling pathways, such as the NF-κB and ERK/JNK/P38 MAPK pathways. On the other hand, WK2-16 enhanced the recruitment of acetylated Yin Yang 1 (YY1) with HDAC1. Finally, in vivo studies indicated that WK2-16 could reduce the serum levels of TNF-α and IL-6 in endotoxemic mice. These results suggested that HDAC8 inhibition might provide a novel therapeutic strategy of hypercytokinemia in sepsis.
Collapse
Affiliation(s)
- Jing-Shiun Jan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Yung-Chen Chou
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Yu-Wen Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan.
| | - Chih-Kuang Chen
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
- School of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Wei-Jan Huang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan.
| | - George Hsiao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
46
|
van den Bosch T, Kwiatkowski M, Bischoff R, Dekker FJ. Targeting transcription factor lysine acetylation in inflammatory airway diseases. Epigenomics 2017; 9:1013-1028. [PMID: 28617138 DOI: 10.2217/epi-2017-0027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Asthma and chronic obstructive pulmonary disease are inflammatory airway diseases for which alternative therapeutic strategies are urgently needed. Interestingly, HDAC inhibitors show anti-inflammatory effects in mouse models for these diseases. Here we explore underlying mechanisms that may explain these effects. In previous studies, effects of HDAC inhibitors on histone acetylation are often correlated with their effects on gene expression. However, effects of HDAC inhibitors on transcription factors and their acetylation status may be particularly important in explaining these effects. These effects are also cell type-specific. Recent developments (including chemoproteomics and acetylomics) allow for a more detailed understanding of the selectivity of HDAC inhibitors, which will drive their further development into applications in inflammatory airway diseases.
Collapse
Affiliation(s)
- Thea van den Bosch
- University of Groningen, Groningen Research Institute of Pharmacy (GRIP), Department of Chemical & Pharmaceutical Biology, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Marcel Kwiatkowski
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases & Tuberculosis, Hanzeplein 1, 9713 AV, Groningen, The Netherlands
| | - Rainer Bischoff
- University of Groningen, Groningen Research Institute of Pharmacy (GRIP), Department of Analytical Biochemistry, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Frank J Dekker
- University of Groningen, Groningen Research Institute of Pharmacy (GRIP), Department of Chemical & Pharmaceutical Biology, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
47
|
HDAC1-3 inhibitor MS-275 enhances IL10 expression in RAW264.7 macrophages and reduces cigarette smoke-induced airway inflammation in mice. Sci Rep 2017; 7:45047. [PMID: 28344354 PMCID: PMC5366870 DOI: 10.1038/srep45047] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/20/2017] [Indexed: 12/28/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) constitutes a major health burden. Studying underlying molecular mechanisms could lead to new therapeutic targets. Macrophages are orchestrators of COPD, by releasing pro-inflammatory cytokines. This process relies on transcription factors such as NF-κB, among others. NF-κB is regulated by lysine acetylation; a post-translational modification installed by histone acetyltransferases and removed by histone deacetylases (HDACs). We hypothesized that small molecule HDAC inhibitors (HDACi) targeting class I HDACs members that can regulate NF-κB could attenuate inflammatory responses in COPD via modulation of the NF-κB signaling output. MS-275 is an isoform-selective inhibitor of HDAC1-3. In precision-cut lung slices and RAW264.7 macrophages, MS-275 upregulated the expression of both pro- and anti-inflammatory genes, implying mixed effects. Interestingly, anti-inflammatory IL10 expression was upregulated in these model systems. In the macrophages, this was associated with increased NF-κB activity, acetylation, nuclear translocation, and binding to the IL10 promoter. Importantly, in an in vivo model of cigarette smoke-exposed C57Bl/6 mice, MS-275 robustly attenuated inflammatory expression of KC and neutrophil influx in the lungs. This study highlights for the first time the potential of isoform-selective HDACi for the treatment of inflammatory lung diseases like COPD.
Collapse
|
48
|
Doody KM, Bottini N, Firestein GS. Epigenetic alterations in rheumatoid arthritis fibroblast-like synoviocytes. Epigenomics 2017; 9:479-492. [PMID: 28322585 DOI: 10.2217/epi-2016-0151] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Rheumatoid arthritis is an immune-mediated disease that primarily affects diarthrodial joints. Susceptibility and severity of this disease are influenced by nongenetic factors, such as environmental stress, suggesting an important role of epigenetic changes. In this review, we summarize the epigenetic changes (DNA methylation, histone modification and miRNA expression) in fibroblast-like synoviocytes, which are the joint-lining mesenchymal cells that play an important role in joint inflammation and damage. We also review the effects of these epigenetic changes on rheumatoid arthritis pathogenesis and discuss their therapeutic potential.
Collapse
Affiliation(s)
- Karen M Doody
- Grenfell Campus, Memorial University of Newfoundland, Corner Brook, Newfoundland, Canada
| | - Nunzio Bottini
- Division of Rheumatology, Allergy & Immunology, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Gary S Firestein
- Division of Rheumatology, Allergy & Immunology, University of California, San Diego School of Medicine, La Jolla, CA, USA
| |
Collapse
|
49
|
Ahmadi M, Gharibi T, Dolati S, Rostamzadeh D, Aslani S, Baradaran B, Younesi V, Yousefi M. Epigenetic modifications and epigenetic based medication implementations of autoimmune diseases. Biomed Pharmacother 2017; 87:596-608. [DOI: 10.1016/j.biopha.2016.12.072] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023] Open
|
50
|
Histone deacetylase 3 (HDAC 3) as emerging drug target in NF-κB-mediated inflammation. Curr Opin Chem Biol 2016; 33:160-8. [PMID: 27371876 DOI: 10.1016/j.cbpa.2016.06.019] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 12/17/2022]
Abstract
Activation of inflammatory gene expression is regulated, among other factors, by post-translational modifications of histone proteins. The most investigated type of histone modifications is lysine acetylations. Histone deacetylases (HDACs) remove acetylations from lysines, thereby influencing (inflammatory) gene expression. Intriguingly, apart from histones, HDACs also target non-histone proteins. The nuclear factor κB (NF-κB) pathway is an important regulator in the expression of numerous inflammatory genes, and acetylation plays a crucial role in regulating its responses. Several studies have shed more light on the role of HDAC 1-3 in inflammation with a particular pro-inflammatory role for HDAC 3. Nevertheless, the HDAC-NF-κB interactions in inflammatory signalling have not been fully understood. An important challenge in targeting the regulatory role of HDACs in the NF-κB pathway is the development of highly potent small molecules that selectively target HDAC iso-enzymes. This review focuses on the role of HDAC 3 in (NF-κB-mediated) inflammation and NF-κB lysine acetylation. In addition, we address the application of frequently used small molecule HDAC inhibitors as an approach to attenuate inflammatory responses, and their potential as novel therapeutics. Finally, recent progress and future directions in medicinal chemistry efforts aimed at HDAC 3-selective inhibitors are discussed.
Collapse
|