1
|
Hu G, Yu Y, Ren Y, Tower RJ, Zhang GF, Karner CM. Glutaminolysis provides nucleotides and amino acids to regulate osteoclast differentiation in mice. EMBO Rep 2024; 25:4515-4541. [PMID: 39271775 PMCID: PMC11467445 DOI: 10.1038/s44319-024-00255-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Osteoclasts are bone resorbing cells that are essential to maintain skeletal integrity and function. While many of the growth factors and molecular signals that govern osteoclastogenesis are well studied, how the metabolome changes during osteoclastogenesis is unknown. Using a multifaceted approach, we identified a metabolomic signature of osteoclast differentiation consisting of increased amino acid and nucleotide metabolism. Maintenance of the osteoclast metabolic signature is governed by elevated glutaminolysis. Mechanistically, glutaminolysis provides amino acids and nucleotides which are essential for osteoclast differentiation and bone resorption in vitro. Genetic experiments in mice found that glutaminolysis is essential for osteoclastogenesis and bone resorption in vivo. Highlighting the therapeutic implications of these findings, inhibiting glutaminolysis using CB-839 prevented ovariectomy induced bone loss in mice. Collectively, our data provide strong genetic and pharmacological evidence that glutaminolysis is essential to regulate osteoclast metabolism, promote osteoclastogenesis and modulate bone resorption in mice.
Collapse
Affiliation(s)
- Guoli Hu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yilin Yu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yinshi Ren
- Center for Excellence in Hip Disorders, Texas Scottish Rite Hospital for Children, Dallas, TX, 75219, USA
- Department of Orthopedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Robert J Tower
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Guo-Fang Zhang
- Department of Medicine, Division of Endocrinology, Metabolism Nutrition, Duke University Medical Center, Durham, NC, 27701, USA
- Sarah W. Stedman Nutrition and Metabolism Center & Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA
| | - Courtney M Karner
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
2
|
He D, Jiao Y, Xu J, Luo J, Cui Y, Han X, Zhao H. mmu-miR-185 regulates osteoclasts differentiation and migration by targeting Btk. J Gene Med 2024; 26:e3687. [PMID: 38690623 DOI: 10.1002/jgm.3687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 02/29/2024] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Bones undergo a constant remodeling, a process involving osteoclast-mediated bone resorption and osteoblast-mediated bone formation, crucial for maintaining healthy bone mass. We previously observed that miR-185 depletion may promote bone formation by regulating Bgn expression and the BMP/Smad signaling pathway. However, the effects of miR-185-5p on the osteoclasts and bone remodeling have not been elucidated, warranting further exploration. METHODS Tartrate-resistant acid phosphatase staining was utilized to assess the differentiation ability of bone marrow mononuclear macrophages (BMMs) from mmu-miR-185 gene knockout (KO) mice and wild-type (WT) mice. A reverse transcriptase-quantitative PCR was conducted to compare differences in miR-185-5p and osteoclast marker molecules, including Trap, Dcstamp, Ctsk and Nfatc1, between the KO group and WT group BMMs. Western blot analysis was employed to observe the expression of osteoclast marker molecules. A cell-counting kit-8 was used to analyze cell proliferation ability. Transwell experiments were conducted to detect cell migration. Dual-luciferase reporter assays were employed to confirm whether Btk is a downstream target gene of miR-185-5p. RESULTS miR-185 depletion promoted osteoclast differentiation in bone marrow-derived monocytes/macrophages. Overexpression of miR-185-5p in RAW264.7 cells inhibited differentiation and migration of osteoclasts. Furthermore, Btk was identified as a downstream target gene of miR-185-5p, suggesting that miR-185-5p may inhibit osteoclast differentiation and migration by targeting Btk. CONCLUSIONS miR-185 regulates osteoclasts differentiation, with overexpression of miR-185-5p inhibiting osteoclast differentiation and migration in vitro. Additionally, miR-185-5p may modulate osteoclastic differentiation and migration by regulating Btk expression.
Collapse
Affiliation(s)
- Dan He
- Department of Medical Genetics, Peking University School of Basic Medical Sciences, Beijing, China
| | - Yueying Jiao
- Department of Medical Genetics, Peking University School of Basic Medical Sciences, Beijing, China
| | - Jian Xu
- Department of Anatomy, Histology and Embryology, Peking University School of Basic Medical Sciences, Beijing, China
| | - Junjie Luo
- Department of Medical Genetics, Peking University School of Basic Medical Sciences, Beijing, China
| | - Yaqi Cui
- Department of Medical Genetics, Peking University School of Basic Medical Sciences, Beijing, China
| | - Xiabing Han
- Department of Medical Genetics, Peking University School of Basic Medical Sciences, Beijing, China
| | - Hongshan Zhao
- Department of Medical Genetics, Peking University School of Basic Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Chen W, Wang Q, Tao H, Lu L, Zhou J, Wang Q, Huang W, Yang X. Subchondral osteoclasts and osteoarthritis: new insights and potential therapeutic avenues. Acta Biochim Biophys Sin (Shanghai) 2024; 56:499-512. [PMID: 38439665 DOI: 10.3724/abbs.2024017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Osteoarthritis (OA) is the most common joint disease, and good therapeutic results are often difficult to obtain due to its complex pathogenesis and diverse causative factors. After decades of research and exploration of OA, it has been progressively found that subchondral bone is essential for its pathogenesis, and pathological changes in subchondral bone can be observed even before cartilage lesions develop. Osteoclasts, the main cells regulating bone resorption, play a crucial role in the pathogenesis of subchondral bone. Subchondral osteoclasts regulate the homeostasis of subchondral bone through the secretion of degradative enzymes, immunomodulation, and cell signaling pathways. In OA, osteoclasts are overactivated by autophagy, ncRNAs, and Rankl/Rank/OPG signaling pathways. Excessive bone resorption disrupts the balance of bone remodeling, leading to increased subchondral bone loss, decreased bone mineral density and consequent structural damage to articular cartilage and joint pain. With increased understanding of bone biology and targeted therapies, researchers have found that the activity and function of subchondral osteoclasts are affected by multiple pathways. In this review, we summarize the roles and mechanisms of subchondral osteoclasts in OA, enumerate the latest advances in subchondral osteoclast-targeted therapy for OA, and look forward to the future trends of subchondral osteoclast-targeted therapies in clinical applications to fill the gaps in the current knowledge of OA treatment and to develop new therapeutic strategies.
Collapse
Affiliation(s)
- Wenlong Chen
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215000, China
- Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Qiufei Wang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Huaqiang Tao
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Lingfeng Lu
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215000, China
- Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Jing Zhou
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215000, China
- Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Qiang Wang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Wei Huang
- Department of Orthopaedics, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Xing Yang
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215000, China
- Gusu School, Nanjing Medical University, Suzhou 215000, China
| |
Collapse
|
4
|
Yang M, Zhu L. Osteoimmunology: The Crosstalk between T Cells, B Cells, and Osteoclasts in Rheumatoid Arthritis. Int J Mol Sci 2024; 25:2688. [PMID: 38473934 DOI: 10.3390/ijms25052688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Rheumatoid arthritis (RA) is an ongoing inflammatory condition that affects the joints and can lead to severe damage to cartilage and bones, resulting in significant disability. This condition occurs when the immune system becomes overactive, causing osteoclasts, cells responsible for breaking down bone, to become more active than necessary, leading to bone breakdown. RA disrupts the equilibrium between osteoclasts and osteoblasts, resulting in serious complications such as localized bone erosion, weakened bones surrounding the joints, and even widespread osteoporosis. Antibodies against the receptor activator of nuclear factor-κB ligand (RANKL), a crucial stimulator of osteoclast differentiation, have shown great effectiveness both in laboratory settings and actual patient cases. Researchers are increasingly focusing on osteoclasts as significant contributors to bone erosion in RA. Given that RA involves an overactive immune system, T cells and B cells play a pivotal role by intensifying the immune response. The imbalance between Th17 cells and Treg cells, premature aging of T cells, and excessive production of antibodies by B cells not only exacerbate inflammation but also accelerate bone destruction. Understanding the connection between the immune system and osteoclasts is crucial for comprehending the impact of RA on bone health. By delving into the immune mechanisms that lead to joint damage, exploring the interactions between the immune system and osteoclasts, and investigating new biomarkers for RA, we can significantly improve early diagnosis, treatment, and prognosis of this condition.
Collapse
Affiliation(s)
- Mei Yang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Lei Zhu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| |
Collapse
|
5
|
Takegahara N, Kim H, Choi Y. Unraveling the intricacies of osteoclast differentiation and maturation: insight into novel therapeutic strategies for bone-destructive diseases. Exp Mol Med 2024; 56:264-272. [PMID: 38297158 PMCID: PMC10907717 DOI: 10.1038/s12276-024-01157-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/20/2023] [Accepted: 11/07/2023] [Indexed: 02/02/2024] Open
Abstract
Osteoclasts are the principal cells that efficiently resorb bone. Numerous studies have attempted to reveal the molecular pathways leading to the differentiation and activation of osteoclasts to improve the treatment and prevention of osteoporosis and other bone-destructive diseases. While the cumulative knowledge of osteoclast regulatory molecules, such as receptor activator of nuclear factor-kB ligand (RANKL) and nuclear factor of activated T cells 1 (NFATc1), contributes to the understanding of the developmental progression of osteoclasts, little is known about how the discrete steps of osteoclastogenesis modify osteoclast status but not the absolute number of osteoclasts. The regulatory mechanisms involved in osteoclast maturation but not those involved in differentiation deserve special attention due to their potential use in establishing a more effective treatment strategy: targeting late-phase differentiation while preserving coupled bone formation. Recent studies have shed light on the molecules that govern late-phase osteoclast differentiation and maturation, as well as the metabolic changes needed to adapt to shifting metabolic demands. This review outlines the current understanding of the regulation of osteoclast differentiation, as well as osteoclast metabolic adaptation as a differentiation control mechanism. Additionally, this review introduces molecules that regulate the late-phase osteoclast differentiation and thus minimally impact coupled bone formation.
Collapse
Affiliation(s)
- Noriko Takegahara
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Hyunsoo Kim
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
6
|
Hansen MS, Madsen K, Price M, Søe K, Omata Y, Zaiss MM, Gorvin CM, Frost M, Rauch A. Transcriptional reprogramming during human osteoclast differentiation identifies regulators of osteoclast activity. Bone Res 2024; 12:5. [PMID: 38263167 PMCID: PMC10806178 DOI: 10.1038/s41413-023-00312-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/08/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
Enhanced osteoclastogenesis and osteoclast activity contribute to the development of osteoporosis, which is characterized by increased bone resorption and inadequate bone formation. As novel antiosteoporotic therapeutics are needed, understanding the genetic regulation of human osteoclastogenesis could help identify potential treatment targets. This study aimed to provide an overview of transcriptional reprogramming during human osteoclast differentiation. Osteoclasts were differentiated from CD14+ monocytes from eight female donors. RNA sequencing during differentiation revealed 8 980 differentially expressed genes grouped into eight temporal patterns conserved across donors. These patterns revealed distinct molecular functions associated with postmenopausal osteoporosis susceptibility genes based on RNA from iliac crest biopsies and bone mineral density SNPs. Network analyses revealed mutual dependencies between temporal expression patterns and provided insight into subtype-specific transcriptional networks. The donor-specific expression patterns revealed genes at the monocyte stage, such as filamin B (FLNB) and oxidized low-density lipoprotein receptor 1 (OLR1, encoding LOX-1), that are predictive of the resorptive activity of mature osteoclasts. The expression of differentially expressed G-protein coupled receptors was strong during osteoclast differentiation, and these receptors are associated with bone mineral density SNPs, suggesting that they play a pivotal role in osteoclast differentiation and activity. The regulatory effects of three differentially expressed G-protein coupled receptors were exemplified by in vitro pharmacological modulation of complement 5 A receptor 1 (C5AR1), somatostatin receptor 2 (SSTR2), and free fatty acid receptor 4 (FFAR4/GPR120). Activating C5AR1 enhanced osteoclast formation, while activating SSTR2 decreased the resorptive activity of mature osteoclasts, and activating FFAR4 decreased both the number and resorptive activity of mature osteoclasts. In conclusion, we report the occurrence of transcriptional reprogramming during human osteoclast differentiation and identified SSTR2 and FFAR4 as antiresorptive G-protein coupled receptors and FLNB and LOX-1 as potential molecular markers of osteoclast activity. These data can help future investigations identify molecular regulators of osteoclast differentiation and activity and provide the basis for novel antiosteoporotic targets.
Collapse
Affiliation(s)
- Morten S Hansen
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, DK-5000, Odense C, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, DK-5000, Odense C, Denmark
- Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, DK-5000, Odense C, Denmark
| | - Kaja Madsen
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, DK-5000, Odense C, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, DK-5000, Odense C, Denmark
| | - Maria Price
- Institute of Metabolism and Systems Research (IMSR) and Centre for Diabetes, Endocrinology and Metabolism (CEDAM), University of Birmingham, Birmingham, B15 2TT, UK
- Centre for Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, B15 2TT, UK
| | - Kent Søe
- Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, DK-5000, Odense C, Denmark
- Department of Molecular Medicine, University of Southern Denmark, DK-5000, Odense C, Denmark
| | - Yasunori Omata
- Department of Orthopedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, D-91054, Erlangen, Germany
| | - Mario M Zaiss
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, D-91054, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, D-91054, Erlangen, Germany
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research (IMSR) and Centre for Diabetes, Endocrinology and Metabolism (CEDAM), University of Birmingham, Birmingham, B15 2TT, UK
- Centre for Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, B15 2TT, UK
| | - Morten Frost
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, DK-5000, Odense C, Denmark.
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, DK-5000, Odense C, Denmark.
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000, Odense C, Denmark.
| | - Alexander Rauch
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, DK-5000, Odense C, Denmark.
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, DK-5000, Odense C, Denmark.
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000, Odense C, Denmark.
| |
Collapse
|
7
|
Xie J, Xu J, Chen H. Regulatory mechanisms of miR-212-3p on the secretion of inflammatory factors in monocyte-macrophages and the directed differentiation into osteoclasts in ankylosing spondylitis. Aging (Albany NY) 2023; 15:13411-13421. [PMID: 38019469 PMCID: PMC10713416 DOI: 10.18632/aging.205249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/15/2023] [Indexed: 11/30/2023]
Abstract
To explore the mechanisms of action of micro ribonucleic acid (miR)-212-3p in the secretion of inflammatory factors in monocyte-macrophages and the directed differentiation into osteoclasts (OCs) in ankylosing spondylitis (AS), proteoglycan was used to establish an AS mouse model. The mouse monocyte-macrophages were cultured in vitro, transfected with miR-212-3p mimic, and added with phosphorylated-extracellular signal-regulated kinase (p-ERK)1/2 agonist Ro67-7476 in vitro. After the cells were transfected with the miR-212-3p mimic in each group, the expressions of p-ERK1/2, matrix metalloproteinase-1 (MMP-1), MMP-3, interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) significantly declined, whereas those of tartrate-resistant acid phosphatase (TRAP), calcitonin, and p-nuclear factor of activated T cell 1 (NFATC1) significantly rose. After Ro67-7476 was added, the protein expressions of p-ERK1/2, MMP-1, MMP-3, IL-1β, and TNF-α were significantly increased in each group, but they displayed decreasing trends in cells transfected with the miR-212-3p mimic. In contrast, the protein expressions of TRAP, calcitonin, and p-NFATC1 declined, but they showed increasing trends in cells transfected with the miR-212-3p mimic. miR-212-3p can, through inhibiting the phosphorylation of p-ERK1/2, prevent the aggregation of macrophages and the secretion of inflammatory factors. It also up-regulates the expression of OC marker proteins to facilitate the differentiation and maturation of OCs, ultimately relieving AS-induced inflammation and new bone growth-induced joint neoplasm.
Collapse
Affiliation(s)
- Jianli Xie
- Department of Rheumatic Immunology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jinrong Xu
- Department of Rheumatic Immunology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haiying Chen
- Department of Rheumatic Immunology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
8
|
Hou J, Liu J, Huang Z, Wang Y, Yao H, Hu Z, Shi C, Xu J, Wang Q. Structure and function of the membrane microdomains in osteoclasts. Bone Res 2023; 11:61. [PMID: 37989999 PMCID: PMC10663511 DOI: 10.1038/s41413-023-00294-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 11/23/2023] Open
Abstract
The cell membrane structure is closely related to the occurrence and progression of many metabolic bone diseases observed in the clinic and is an important target to the development of therapeutic strategies for these diseases. Strong experimental evidence supports the existence of membrane microdomains in osteoclasts (OCs). However, the potential membrane microdomains and the crucial mechanisms underlying their roles in OCs have not been fully characterized. Membrane microdomain components, such as scaffolding proteins and the actin cytoskeleton, as well as the roles of individual membrane proteins, need to be elucidated. In this review, we discuss the compositions and critical functions of membrane microdomains that determine the biological behavior of OCs through the three main stages of the OC life cycle.
Collapse
Affiliation(s)
- Jialong Hou
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhixian Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yining Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hanbing Yao
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhenxin Hu
- Department of Spine Surgery, Peking University Fourth School of Clinical Medicine, Beijing, China
| | - Chengge Shi
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia.
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Qingqing Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
9
|
Chen K, Chen X, Lang C, Yuan X, Huang J, Li Z, Xu M, Wu K, Zhou C, Li Q, Zhu C, Liu L, Shang X. CircFam190a: a critical positive regulator of osteoclast differentiation via enhancement of the AKT1/HSP90β complex. Exp Mol Med 2023; 55:2051-2066. [PMID: 37653038 PMCID: PMC10545668 DOI: 10.1038/s12276-023-01085-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 09/02/2023] Open
Abstract
The identification of key regulatory factors that control osteoclastogenesis is important. Accumulating evidence indicates that circular RNAs (circRNAs) are discrete functional entities. However, the complexities of circRNA expression as well as the extent of their regulatory functions during osteoclastogenesis have yet to be revealed. Here, based on circular RNA sequencing data, we identified a circular RNA, circFam190a, as a critical regulator of osteoclast differentiation and function. During osteoclastogenesis, circFam190a is significantly upregulated. In vitro, circFam190a enhanced osteoclast formation and function. In vivo, overexpression of circFam190a induced significant bone loss, while knockdown of circFam190a prevented pathological bone loss in an ovariectomized (OVX) mouse osteoporosis model. Mechanistically, our data suggest that circFam90a enhances the binding of AKT1 and HSP90β, promoting AKT1 stability. Altogether, our findings highlight the critical role of circFam190a as a positive regulator of osteoclastogenesis, and targeting circFam190a might be a promising therapeutic strategy for treating pathological bone loss.
Collapse
Affiliation(s)
- Kun Chen
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China
| | - Xi Chen
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China
| | - Chuandong Lang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China
| | - Xingshi Yuan
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China
| | - Junming Huang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, 330000, Nanchang, Jiangxi, China
| | - Zhi Li
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China
| | - Mingyou Xu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China
| | - Kerong Wu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China
| | - Chenhe Zhou
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
| | - Qidong Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China.
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, 230001, Hefei, Anhui, China.
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, 230001, Hefei, Anhui, China.
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China.
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China.
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, 230001, Hefei, Anhui, China.
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, 230001, Hefei, Anhui, China.
| | - Xifu Shang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China.
| |
Collapse
|
10
|
Yang YJ, Lu LJ, Wang JJ, Ma SY, Xu BL, Lin R, Chen QS, Ma ZG, Mo YL, Wang DT. Tubson-2 decoction ameliorates rheumatoid arthritis complicated with osteoporosis in CIA rats involving isochlorogenic acid A regulating IL-17/MAPK pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154875. [PMID: 37263000 DOI: 10.1016/j.phymed.2023.154875] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Osteoporosis (OP) is considered as one of the major comorbidities of rheumatoid arthritis (RA), and is responsible for fragility fracture. However, there is currently no effective treatment for RA complicated with OP. Tubson-2 decoction (TBD), a Mongolian medicine also known as Erwei Duzhong Decoction, has been shown to exert a preventive effect on post-menopausal osteoporosis (PMOP). The preventive effects of TBD on RA-induced OP, as well as the bioactive compound responsible and the underlying mechanisms, remain to be elucidated. OBJECTIVE To explore the effects of TBD on RA-induced OP in vivo, and to elucidate the mechanism of isochlorogenic acid A (ICA), the effective component of TBD, in vitro. METHODS To evaluate the anti-arthritic and anti-osteoporotic effects of TBD, we conducted H&E straining and safranine O/fast green, TEM, immunohistochemistry (IHC), bone histomorphometry, micro-CT imaging, and biomechanical testing in collagen induced arthritis (CIA) rats. The active ingredient in TBD was identified using network pharmacology and molecular docking. The identification was supported by in vivo IHC assay, and further confirmed using qRT-PCR, Western blot, and SEM analysis in TNF-α-treated MH7A cells and/or in LPS-exposed RAW264.7 cells. RESULTS Oral administration of TBD attenuated the severity of arthritis and osteopenia as well as poor bone quality, in CIA rats. Additionally, TBD and the positive control, tripterygium glycosides (TG), exhibited similar effects in reducing inflammation in both the synovium and ankle joint. They also were both effective in improving bone loss, microarchitecture, and overall bone quality. TBD reduced the expression of MMP13, IL-17, and p-JNK protein in the synovium of CIA rats. ICA, which was screened, suppressed TNF-α or LPS-triggered inflammatory responses via down-regulating IL-17 signaling, involving in MMP13, IL-1β, IL-23, and IL-17, and the MAPK pathway including p-ERK, p-JNK, and p-P38, both in MH7A cells and in RAW264.7 cells. Furthermore, ICA prevented osteoclasts from differentiating and bone resoprtion in a dose-dependent manner in vitro. CONCLUSION This study provides the first evidence that TBD exerts intervening effects on RA-induced OP, possibly through the downregulation of the IL-17/MAPK signaling pathway by ICA. The findings of our study provides valuable insights for further research in this area.
Collapse
Affiliation(s)
- Ya-Jun Yang
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, the affiliated hospital, Department of Physiology, Guangdong Medical University, Zhanjiang 524023, China.
| | - Lu-Jiao Lu
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, the affiliated hospital, Department of Physiology, Guangdong Medical University, Zhanjiang 524023, China
| | - Jia-Jia Wang
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, the affiliated hospital, Department of Physiology, Guangdong Medical University, Zhanjiang 524023, China
| | - Shao-Yong Ma
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, the affiliated hospital, Department of Physiology, Guangdong Medical University, Zhanjiang 524023, China
| | - Bi-Lian Xu
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, the affiliated hospital, Department of Physiology, Guangdong Medical University, Zhanjiang 524023, China
| | - Rui Lin
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, the affiliated hospital, Department of Physiology, Guangdong Medical University, Zhanjiang 524023, China
| | - Qiu-Sheng Chen
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, the affiliated hospital, Department of Physiology, Guangdong Medical University, Zhanjiang 524023, China
| | - Zhi-Guo Ma
- Research Center for Traditional Chinese Medicine of Lingnan (Southern China), Jinan University, Guangzhou, China
| | - Yu-Lin Mo
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, the affiliated hospital, Department of Physiology, Guangdong Medical University, Zhanjiang 524023, China; Department of Orthopedics and Traumatology, Nanning Hospital of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Dong-Tao Wang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
11
|
Wang X, Sun T, Mao X. mascRNA promotes macrophage apoptosis, inhibits osteoclast differentiation and attenuates disease progression in a murine model of arthritis. Biochem Biophys Res Commun 2022; 611:151-157. [PMID: 35489201 DOI: 10.1016/j.bbrc.2022.04.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022]
Abstract
Macrophages play a crucial role in the pathogenesis of rheumatoid arthritis (RA) and have been considered as a therapeutic target of this disease. Here we show that mascRNA, a tRNA-like cytoplasmic small noncoding RNA, promoted RIPK1-dependent apoptosis (RDA) in RAW267.4 macrophages in response to the TAK1 inhibitor 5Z-7-oxozeaenol (5Z-7) alone as well as in combination with TNF. Moreover, mascRNA suppressed RANKL-induced expression of osteoclast marker genes and attenuated RANKL signaling. Using a murine model of collagen-induced arthritis (CIA), we demonstrated that mascRNA, administered either alone or in combination with 5Z-7, alleviated joint inflammation in CIA mice. Thus, mascRNA might be a promising agent for the treatment of RA.
Collapse
Affiliation(s)
- Xuxu Wang
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Tao Sun
- School of Life Science and Technology, Key Laboratory of Ministry of Education for Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, China
| | - Xiaohua Mao
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, Jiangsu, China; School of Life Science and Technology, Key Laboratory of Ministry of Education for Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
12
|
Zeng Q, Xu R, Ling H, Zhao S, Wang X, Yuan W, Gu M, Xu T, Wang P, Ruan H, Jin H, Qu H, Ye F, Chen J. N-Butanol Extract of Modified You-Gui-Yin Attenuates Osteoclastogenesis and Ameliorates Osteoporosis by Inhibiting RANKL-Mediated NF-κB Signaling. Front Endocrinol (Lausanne) 2022; 13:925848. [PMID: 35813633 PMCID: PMC9263119 DOI: 10.3389/fendo.2022.925848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/23/2022] [Indexed: 12/02/2022] Open
Abstract
Postmenopausal Osteoporosis (PMOP) is the most prevalent primary osteoporosis, attributable to an imbalance in osteoblast and osteoclast activity. Modified You-Gui-Yin (MYGY), a traditional Chinese herbal formula, is able to effectively treat PMOP, while the critical components and pharmacological mechanisms of MYGY are still unclear. In this study, we aimed to investigate the therapeutic effects and underlying mechanisms of N-butanol extract of MYGY (MYGY-Nb) in ovariectomized (OVX)-induced osteoporosis mice. Histological staining and micro-computed tomography (μCT) analysis showed that MYGY-Nb was more effective in the suppression of OVX-induced bone loss than MYGY original formula. Subsequently, liquid chromatography and mass spectrometry analysis identified 16 critical compounds of MYGY-Nb and some of them are reported to affect osteoclast functions. Furthermore, in vivo and in vitro experiments demonstrated that MYGY-Nb significantly attenuated osteoclastogenesis by down-regulating RANKL-mediated NF-κB signaling. In conclusion, our study indicated that MYGY-Nb suppresses NF-κB signaling and osteoclast formation to mitigate bone loss in PMOP, implying that MYGY-Nb and its compounds are potential candidates for development of anti-PMOP drugs.
Collapse
Affiliation(s)
- Qinghe Zeng
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rui Xu
- Department of Orthopaedics, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Houfu Ling
- Department of Orthopaedics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shan Zhao
- The College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xu Wang
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenhua Yuan
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Mancang Gu
- The College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Taotao Xu
- Department of Orthopaedics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Pinger Wang
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongfeng Ruan
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongting Jin
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hangbo Qu
- Department of Orthopaedic Surgery, Zhejiang Hospital, Hangzhou, China
- *Correspondence: Jiali Chen, ; Fusheng Ye, ; Hangbo Qu,
| | - Fusheng Ye
- Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
- *Correspondence: Jiali Chen, ; Fusheng Ye, ; Hangbo Qu,
| | - Jiali Chen
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Jiali Chen, ; Fusheng Ye, ; Hangbo Qu,
| |
Collapse
|
13
|
Wang Q, Duan M, Liao J, Xie J, Zhou C. Are Osteoclasts Mechanosensitive Cells? J Biomed Nanotechnol 2021; 17:1917-1938. [PMID: 34706793 DOI: 10.1166/jbn.2021.3171] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Skeleton metabolism is a process in which osteoclasts constantly remove old bone and osteoblasts form new osteoid and induce mineralization; disruption of this balance may cause diseases. Osteoclasts play a key role in bone metabolism, as osteoclastogenesis marks the beginning of each bone remodeling cycle. As the only cell capable of bone resorption, osteoclasts are derived from the monocyte/macrophage hematopoietic precursors that terminally adhere to mineralized extracellular matrix, and they subsequently break down the extracellular compartment. Bone is generally considered the load-burdening tissue, bone homeostasis is critically affected by mechanical conductions, and the bone cells are mechanosensitive. The functions of various bone cells under mechanical forces such as chondrocytes and osteoblasts have been reported; however, the unique bone-resorbing osteoclasts are less studied. The oversuppression of osteoclasts in mechanical studies may be because of its complicated differentiation progress and flexible structure, which increases difficulty in targeting mechanical structures. This paper will focus on recent findings regarding osteoclasts and attempt to uncover proposed candidate mechanosensing structures in osteoclasts including podosome-associated complexes, gap junctions and transient receptor potential family (ion channels). We will additionally describe possible mechanotransduction signaling pathways including GTPase ras homologue family member A (RhoA), Yes-associated protein/transcriptional co-activator with PDZ-binding motif (TAZ), Ca2+ signaling and non-canonical Wnt signaling. According to numerous studies, evaluating the possible influence of various physical environments on osteoclastogenesis is conducive to the study of bone homeostasis.
Collapse
Affiliation(s)
- Qingxuan Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
| | - Mengmeng Duan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
| | - Jingfeng Liao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
14
|
Ling Y, Yang J, Hua D, Wang D, Zhao C, Weng L, Yue D, Cai X, Meng Q, Chen J, Sun X, Kong W, Zhu L, Cao P, Hu C. ZhiJingSan Inhibits Osteoclastogenesis via Regulating RANKL/NF-κB Signaling Pathway and Ameliorates Bone Erosion in Collagen-Induced Mouse Arthritis. Front Pharmacol 2021; 12:693777. [PMID: 34122118 PMCID: PMC8193094 DOI: 10.3389/fphar.2021.693777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/11/2021] [Indexed: 11/26/2022] Open
Abstract
Bone erosion is the most evident pathological condition of rheumatoid arthritis (RA), which is the main cause of joint deformities and disability in RA patients. At present, the conventional RA drugs have not achieved satisfactory effect in improving bone erosion. ZhiJingSan (ZJS), which is a traditional Chinese prescription composed of scolopendra (dried body of Scolopendra subspinipes mutilans L. Koch, scolopendridae) and scorpion (dried body of Buthus martensii Karsch, Buthus), exhibits anti-rheumatism, analgesic and joint deformities improvement effects. This study aimed to assess the therapeutic effect of ZJS on RA bone erosion and to elucidate the underlying mechanism. The effect of ZJS on RA bone erosion was investigated in a murine model of bovine collagen-induced arthritis (CIA), and the underlying mechanism was investigated in vitro in an osteoclast differentiation cell model. Administration of ZJS delayed the onset of arthritis, alleviated joint inflammation, and attenuated bone erosion in the CIA mice. Meanwhile, ZJS decreased the serum levels of TNF-α, IL-6, and anti-bovine collagen II-specific antibodies. Furthermore, ZJS treatment reduced the number of osteoclasts and the expression of cathepsin K in the ankle joints of CIA mice. ZJS also inhibited receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation and the expression of MMP9 and cathepsin K in vitro. Mechanistically, ZJS blocked RANKL-induced p65 phosphorylation, nucleation, and inhibited the expression of downstream NFATc1 and c-Fos in bone marrow-derived macrophages (BMMs). Taken together, ZJS exerts a therapeutic effect on bone erosion in CIA mice by inhibiting RANKL/NF-κB-mediated osteoclast differentiation, which suggested that ZJS is a promising prescription for treating RA bone erosion.
Collapse
Affiliation(s)
- Yuanyuan Ling
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Yang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Di Hua
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dawei Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chenglei Zhao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ling Weng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dandan Yue
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xueting Cai
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qinghai Meng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiao Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoyan Sun
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weikang Kong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lizhong Zhu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunping Hu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
15
|
Polavaram NS, Dutta S, Islam R, Bag AK, Roy S, Poitz D, Karnes J, Hofbauer LC, Kohli M, Costello BA, Jimenez R, Batra SK, Teply BA, Muders MH, Datta K. Tumor- and osteoclast-derived NRP2 in prostate cancer bone metastases. Bone Res 2021; 9:24. [PMID: 33990538 PMCID: PMC8121836 DOI: 10.1038/s41413-021-00136-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/22/2020] [Accepted: 11/26/2020] [Indexed: 01/13/2023] Open
Abstract
Understanding the role of neuropilin 2 (NRP2) in prostate cancer cells as well as in the bone microenvironment is pivotal in the development of an effective targeted therapy for the treatment of prostate cancer bone metastasis. We observed a significant upregulation of NRP2 in prostate cancer cells metastasized to bone. Here, we report that targeting NRP2 in cancer cells can enhance taxane-based chemotherapy with a better therapeutic outcome in bone metastasis, implicating NRP2 as a promising therapeutic target. Since, osteoclasts present in the tumor microenvironment express NRP2, we have investigated the potential effect of targeting NRP2 in osteoclasts. Our results revealed NRP2 negatively regulates osteoclast differentiation and function in the presence of prostate cancer cells that promotes mixed bone lesions. Our study further delineated the molecular mechanisms by which NRP2 regulates osteoclast function. Interestingly, depletion of NRP2 in osteoclasts in vivo showed a decrease in the overall prostate tumor burden in the bone. These results therefore indicate that targeting NRP2 in prostate cancer cells as well as in the osteoclastic compartment can be beneficial in the treatment of prostate cancer bone metastasis.
Collapse
Affiliation(s)
- Navatha Shree Polavaram
- Department of Microbiology and Pathology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Samikshan Dutta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ridwan Islam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Arup K Bag
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sohini Roy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - David Poitz
- Institute for Clinical Chemistry, University Hospital Dresden, Dresden, Germany
| | | | - Lorenz C Hofbauer
- Center for Healthy Aging and Bone Lab Dresden, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Manish Kohli
- School of Medicine, Division of Oncology, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | | | - Raffael Jimenez
- Division of Anatomic Pathology, Department of Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benjamin A Teply
- Internal Medicine, Division of Oncology & Hematology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael H Muders
- Rudolf- Becker Laboratory for Prostate Cancer Research, Institute of Pathology, University of Bonn Medical Center, Bonn, Germany.
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
16
|
O'Reilly E, Zeinabad HA, Szegezdi E. Hematopoietic versus leukemic stem cell quiescence: Challenges and therapeutic opportunities. Blood Rev 2021; 50:100850. [PMID: 34049731 DOI: 10.1016/j.blre.2021.100850] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/22/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022]
Abstract
Hematopoietic stem cells (HSC) are responsible for the production of mature blood cells. To ensure that the HSC pool does not get exhausted over the lifetime of an individual, most HSCs are in a state of quiescence with only a small proportion of HSCs dividing at any one time. HSC quiescence is carefully controlled by both intrinsic and extrinsic, niche-driven mechanisms. In acute myeloid leukemia (AML), the leukemic cells overtake the hematopoietic bone marrow niche where they acquire a quiescent state. These dormant AML cells are resistant to chemotherapeutics. Because they can re-establish the disease after therapy, they are often termed as quiescent leukemic stem cells (LSC) or leukemia-initiating cells. While advancements are being made to target particular driver mutations in AML, there is less focus on how to tackle the drug resistance of quiescent LSCs. This review summarises the current knowledge on the biochemical characteristics of quiescent HSCs and LSCs, the intracellular signaling pathways and the niche-driven mechanisms that control quiescence and the key differences between HSC- and LSC-quiescence that may be exploited for therapy.
Collapse
Affiliation(s)
- Eimear O'Reilly
- Apoptosis Research Centre, Department of Biochemistry, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Hojjat Alizadeh Zeinabad
- Apoptosis Research Centre, Department of Biochemistry, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Eva Szegezdi
- Apoptosis Research Centre, Department of Biochemistry, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
17
|
Lin L, Wang H, Guo W, He E, Huang K, Zhao Q. Osteosarcoma-derived exosomal miR-501-3p promotes osteoclastogenesis and aggravates bone loss. Cell Signal 2021; 82:109935. [PMID: 33529755 DOI: 10.1016/j.cellsig.2021.109935] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 01/08/2023]
Abstract
Emerging evidence indicates that osteoclasts from osteosarcoma patients have higher tartrate resistant acid phosphatase (TRAP) activity. Exosomes are important mediators of the cell-to-cell communication. However, whether osteosarcoma cell-derived exosomes mediate the osteoclastogenesis of bone marrow-derived monocytes (BMDMs) and its mechanisms are largely unknown. In this research, we validated the communication between osteosarcoma cells and BMDMs. Here, we found that osteosarcoma cell-derived exosomes can be transfered to BMDMs to promote osteoclast differentiation. The miR-501-3p is highly expressed in exosomes derived from osteosarcoma and could be transferred to BMDMs through the exosomes. Moreover, osteosarcoma-derived exosomal miR-501-3p mediate its role in promoting osteoclast differentiation and aggravates bone loss in vitro and in vivo. Mechanistically, osteosarcoma cell-derived exosomal miR-501-3p could promote osteoclast differentiation via PTEN/PI3K/Akt signaling pathway. Collectively, our results suggest that osteosarcoma-derived exosomal miR-501-3p promotes osteoclastogenesis and aggravates bone loss. Therefore, our study reveals a novel mechanism of osteoclastogenesis in osteosarcoma patients and provides a novel target for diagnosis or treatment.
Collapse
Affiliation(s)
- Longshuai Lin
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Hongjie Wang
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Weihong Guo
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Enjun He
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Kai Huang
- Department of Orthopedics, Zhabei Central Hospital of Jing'an District, Shanghai 200070, China.
| | - Qinghua Zhao
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China.
| |
Collapse
|
18
|
Su YW, Fan J, Fan CM, Peymanfar Y, Zhang YL, Xian CJ. Roles of apoptotic chondrocyte-derived CXCL12 in the enhanced chondroclast recruitment following methotrexate and/or dexamethasone treatment. J Cell Physiol 2021; 236:5966-5979. [PMID: 33438203 DOI: 10.1002/jcp.30278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/09/2020] [Accepted: 01/04/2021] [Indexed: 11/08/2022]
Abstract
Intensive use of methotrexate (MTX) and/or dexamethasone (DEX) for treating childhood malignancies is known to cause chondrocyte apoptosis and growth plate dysfunction leading to bone growth impairments. However, mechanisms remain vague and it is unclear whether MTX and DEX combination treatment could have additive effects in the growth plate defects. In this study, significant cell apoptosis was induced in mature ATDC5 chondrocytes after treatment for 48 h with 10-5 M MTX and/or 10-6 M DEX treatment. PCR array assays with treated cells plus messenger RNA and protein expression confirmation analyses identified chemokine CXCL12 having the most prominent induction in each treatment group. Conditioned medium from treated chondrocytes stimulated migration of RAW264.7 osteoclast precursor cells and formation of osteoclasts, and these stimulating effects were inhibited by the neutralizing antibody for CXCL12. Additionally, while MTX and DEX combination treatment showed some additive effects on apoptosis induction, it did not have additive or counteractive effects on CXCL12 expression and its functions in enhancing osteoclastic recruitment and formation. In young rats treated acutely with MTX, there was increased expression of CXCL12 in the tibial growth plate, and more resorbing chondroclasts were found present at the border between the hypertrophic growth plate and metaphysis bone. Thus, the present study showed an association between induced chondrocyte apoptosis and stimulated osteoclastic migration and formation following MTX and/or DEX treatment, which could be potentially or at least partially linked molecularly by CXCL12 induction. This finding may contribute to an enhanced mechanistic understanding of bone growth impairments following MTX and/or DEX therapy.
Collapse
Affiliation(s)
- Yu-Wen Su
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Jian Fan
- Department of Orthopedics, Tongji Hospital, Tongji University, Shanghai, China
| | - Chia-Ming Fan
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Yaser Peymanfar
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Ya-Li Zhang
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Cory J Xian
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia.,Department of Orthopedics, Tongji Hospital, Tongji University, Shanghai, China
| |
Collapse
|
19
|
Endolysosomal TRPMLs in Cancer. Biomolecules 2021; 11:biom11010065. [PMID: 33419007 PMCID: PMC7825278 DOI: 10.3390/biom11010065] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Lysosomes, the degradative endpoints and sophisticated cellular signaling hubs, are emerging as intracellular Ca2+ stores that govern multiple cellular processes. Dys-homeostasis of lysosomal Ca2+ is intimately associated with a variety of human diseases including cancer. Recent studies have suggested that the Ca2+-permeable channels Transient Receptor Potential (TRP) Mucolipins (TRPMLs, TRPML1-3) integrate multiple processes of cell growth, division and metabolism. Dysregulation of TRPMLs activity has been implicated in cancer development. In this review, we provide a summary of the latest development of TRPMLs in cancer. The expression of TRPMLs in cancer, TRPMLs in cancer cell nutrient sensing, TRPMLs-mediated lysosomal exocytosis in cancer development, TRPMLs in TFEB-mediated gene transcription of cancer cells, TRPMLs in bacteria-related cancer development and TRPMLs-regulated antitumor immunity are discussed. We hope to guide readers toward a more in-depth discussion of the importance of lysosomal TRPMLs in cancer progression and other human diseases.
Collapse
|
20
|
Kim MH, Lim HJ, Bak SG, Park EJ, Jang HJ, Lee SW, Lee S, Lee KM, Cheong SH, Lee SJ, Rho MC. Eudebeiolide B Inhibits Osteoclastogenesis and Prevents Ovariectomy-Induced Bone Loss by Regulating RANKL-Induced NF-κB, c-Fos and Calcium Signaling. Pharmaceuticals (Basel) 2020; 13:ph13120468. [PMID: 33339187 PMCID: PMC7765597 DOI: 10.3390/ph13120468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022] Open
Abstract
Eudebeiolide B is a eudesmane-type sesquiterpenoid compound isolated from Salvia plebeia R. Br., and little is known about its biological activity. In this study, we investigated the effects of eudebeiolide B on osteoblast differentiation, receptor activator nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis in vitro and ovariectomy-induced bone loss in vivo. Eudebeiolide B induced the expression of alkaline phosphatase (ALP) and calcium accumulation during MC3T3-E1 osteoblast differentiation. In mouse bone marrow macrophages (BMMs), eudebeiolide B suppressed RANKL-induced osteoclast differentiation of BMMs and bone resorption. Eudebeiolide B downregulated the expression of nuclear factor of activated T-cells 1 (NFATc1) and c-fos, transcription factors induced by RANKL. Moreover, eudebeiolide B attenuated the RANKL-induced expression of osteoclastogenesis-related genes, including cathepsin K (Ctsk), matrix metalloproteinase 9 (MMP9) and dendrocyte expressed seven transmembrane protein (DC-STAMP). Regarding the molecular mechanism, eudebeiolide B inhibited the phosphorylation of Akt and NF-κB p65. In addition, it downregulated the expression of cAMP response element-binding protein (CREB), Bruton's tyrosine kinase (Btk) and phospholipase Cγ2 (PLCγ2) in RANKL-induced calcium signaling. In an ovariectomized (OVX) mouse model, intragastric injection of eudebeiolide B prevented OVX-induced bone loss, as shown by bone mineral density and contents, microarchitecture parameters and serum levels of bone turnover markers. Eudebeiolide B not only promoted osteoblast differentiation but inhibited RANKL-induced osteoclastogenesis through calcium signaling and prevented OVX-induced bone loss. Therefore, eudebeiolide B may be a new therapeutic agent for osteoclast-related diseases, including osteoporosis, rheumatoid arthritis and periodontitis.
Collapse
Affiliation(s)
- Mi-Hwa Kim
- Biological Resources Research Group, Gyeongnam Department of Environment Toxicology and Chemistry, Korea Institute of Toxicology (KIT), Jinju 52834, Korea;
| | - Hyung-Jin Lim
- Immunoregulatory Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Korea; (H.-J.L.); (S.G.B.); (E.-J.P.); (S.W.L.); (S.L.)
| | - Seon Gyeong Bak
- Immunoregulatory Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Korea; (H.-J.L.); (S.G.B.); (E.-J.P.); (S.W.L.); (S.L.)
| | - Eun-Jae Park
- Immunoregulatory Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Korea; (H.-J.L.); (S.G.B.); (E.-J.P.); (S.W.L.); (S.L.)
| | - Hyun-Jae Jang
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea;
| | - Seung Woong Lee
- Immunoregulatory Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Korea; (H.-J.L.); (S.G.B.); (E.-J.P.); (S.W.L.); (S.L.)
| | - Soyoung Lee
- Immunoregulatory Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Korea; (H.-J.L.); (S.G.B.); (E.-J.P.); (S.W.L.); (S.L.)
| | - Kang Min Lee
- Department of Molecular Biology, Chonbuk National University, Jeonju 54896, Korea;
| | - Sun Hee Cheong
- Department of Marine Bio Food Science, Chonnam National University, Yeosu 59626, Korea;
| | - Seung-Jae Lee
- Immunoregulatory Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Korea; (H.-J.L.); (S.G.B.); (E.-J.P.); (S.W.L.); (S.L.)
- Correspondence: (S.-J.L.); (M.-C.R.)
| | - Mun-Chual Rho
- Immunoregulatory Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Korea; (H.-J.L.); (S.G.B.); (E.-J.P.); (S.W.L.); (S.L.)
- Correspondence: (S.-J.L.); (M.-C.R.)
| |
Collapse
|
21
|
Wang R, Feng Y, Xu H, Huang H, Zhao S, Wang Y, Li H, Cao J, Xu G, Huang S. Synergistic effects of miR-708-5p and miR-708-3p accelerate the progression of osteoporosis. J Int Med Res 2020; 48:300060520978015. [PMID: 33322976 PMCID: PMC7745577 DOI: 10.1177/0300060520978015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/30/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Bone homeostasis is a tightly orchestrated process maintained by osteoblasts and osteoclasts, and a disruption of their steady-state equilibrium can lead to the occurrence of osteoporosis (OP). METHODS We investigated the differential expression of micro (mi)RNAs in the bone tissues of a postmenopausal osteoporosis rat model induced by ovariectomy (OVX). Real-time PCR was used to verify the differentially expressed miRNAs in bone samples from OP patients and controls. The specific targets of two differentially expressed miRNAs in osteogenic or osteoclast differentiation were determined by bioinformatic prediction, and mRNA and protein detection. RESULTS miR-708-5p and miR-708-3p were highly expressed in the bone tissue of OVX rats and OP patients. miR-708-5p negatively regulated osteoblast differentiation in bone marrow mesenchymal stem cells by targeting SMAD specific E3 ubiquitin protein ligase 2, while miR-708-3p positively regulated osteoclast differentiation in bone marrow monocytes by targeting cerebellar degeneration associated protein 1 antisense RNA. miR-708-5p and miR-708-3p were shown to originate from the same precursor miRNA and to have a synergistic effect on the development of osteoporosis with different temporal and spatial patterns. CONCLUSION Our findings provide a referential theoretical basis and targets for the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Ruran Wang
- Department of General Surgery, The Southern District of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanhua Feng
- Hospital Infection Control Department, The Southern District of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huaying Xu
- Department of General Surgery, The Southern District of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haoran Huang
- Department of General Surgery, The Southern District of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shan Zhao
- Department of General Surgery, The Southern District of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuhong Wang
- Surgical Department, Xihongmen Hospital, Daxing District, Beijing, China
| | - Hongyan Li
- Department of General Surgery, The Southern District of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jian Cao
- Central Laboratory, The Southern District of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guoying Xu
- Department of General Surgery, The Southern District of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengnan Huang
- Pharmacy Department, The Southern District of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
22
|
Xue J, Xu L, Zhu H, Bai M, Li X, Zhao Z, Zhong H, Cheng G, Li X, Hu F, Su Y. CD14 +CD16 - monocytes are the main precursors of osteoclasts in rheumatoid arthritis via expressing Tyro3TK. Arthritis Res Ther 2020; 22:221. [PMID: 32958023 PMCID: PMC7507256 DOI: 10.1186/s13075-020-02308-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
Background Monocytes as precursors of osteoclasts in rheumatoid arthritis (RA) are well demonstrated, while monocyte subsets in osteoclast formation are still controversial. Tyro3 tyrosine kinase (Tyro3TK) is a member of the receptor tyrosine kinase family involved in immune homeostasis, the role of which in osteoclast differentiation was reported recently. This study aimed to compare the osteoclastic capacity of CD14+CD16+ and CD14+CD16− monocytes in RA and determine the potential involvement of Tyro3TK in their osteoclastogenesis. Methods Osteoclasts were induced from CD14+CD16+ and CD14+CD16− monocyte subsets isolated from healthy control (HC) and RA patients in vitro and evaluated by tartrate-resistant acid phosphatase (TRAP) staining. Then, the expression of Tyro3TK on CD14+CD16+ and CD14+CD16− monocyte subsets in the peripheral blood of RA, osteoarthritis (OA) patients, and HC were evaluated by flow cytometry and qPCR, and their correlation with RA patient clinical and immunological features was analyzed. The role of Tyro3TK in CD14+CD16− monocyte-mediated osteoclastogenesis was further investigated by osteoclast differentiation assay with Tyro3TK blockade. Results The results revealed that CD14+CD16− monocytes were the primary source of osteoclasts. Compared with HC and OA patients, the expression of Tyro3TK on CD14+CD16− monocytes in RA patients was significantly upregulated and positively correlated with the disease manifestations, such as IgM level, tender joint count, and the disease activity score. Moreover, anti-Tyro3TK antibody could inhibit Gas6-mediated osteoclast differentiation from CD14+CD16− monocytes in a dose-dependent manner. Conclusions These findings indicate that elevated Tyro3TK on CD14+CD16− monocytes serves as a critical signal for osteoclast differentiation in RA.
Collapse
Affiliation(s)
- Jimeng Xue
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China.,Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Liling Xu
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China.,Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Huaqun Zhu
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China.,Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Mingxin Bai
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China.,Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Xin Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China.,Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zhen Zhao
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China.,Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Hua Zhong
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China.,Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Gong Cheng
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China.,Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Xue Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China.,Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Fanlei Hu
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China. .,Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China. .,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Yin Su
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China. .,Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China.
| |
Collapse
|
23
|
3-Hydroxyolean-12-en-27-oic Acids Inhibit RANKL-Induced Osteoclastogenesis in Vitro and Inflammation-Induced Bone Loss in Vivo. Int J Mol Sci 2020; 21:ijms21155240. [PMID: 32718089 PMCID: PMC7432734 DOI: 10.3390/ijms21155240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022] Open
Abstract
Olean-12-en-27-oic acids possess a variety of pharmacological effects. However, their effects and underlying mechanisms on osteoclastogenesis remain unclear. This study aimed to investigate the anti-osteoclastogenic effects of five olean-12-en-27-oic acid derivatives including 3α,23-isopropylidenedioxyolean-12-en-27-oic acid (AR-1), 3-oxoolean-12-en-27-oic acid (AR-2), 3α-hydroxyolean-12-en-27-oic acid (AR-3), 23-hydroxy-3-oxoolean-12-en-27-oic acid (AR-4), and aceriphyllic acid A (AR-5). Among the five olean-12-en-27-oic acid derivatives, 3-hydroxyolean-12-en-27-oic acid derivatives, AR-3 and AR-5, significantly inhibited receptor activator of nuclear factor-κB ligand (RANKL)-induced mature osteoclast formation by reducing the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts, F-actin ring formation, and mineral resorption activity. AR-3 and AR-5 decreased RANKL-induced expression levels of osteoclast-specific marker genes such as c-Src, TRAP, and cathepsin K (CtsK) as well as c-Fos and nuclear factor of activated T cells cytoplasmic 1 (NFATc1). Mice treated with either AR-3 or AR-5 showed significant protection of the mice from lipopolysaccharide (LPS)-induced bone destruction and osteoclast formation. In particular, AR-5 suppressed RANKL-induced phosphorylation of JNK and ERK mitogen-activated protein kinases (MAPKs). The results suggest that AR-3 and AR-5 attenuate osteoclast formation in vitro and in vivo by suppressing RANKL-mediated MAPKs and NFATc1 signaling pathways and could potentially be lead compounds for the prevention or treatment of osteolytic bone diseases.
Collapse
|
24
|
Zhang D, Li Z, Zhang R, Yang X, Zhang D, Li Q, Wang C, Yang X, Xiong Y. Identification of differentially expressed and methylated genes associated with rheumatoid arthritis based on network. Autoimmunity 2020; 53:303-313. [DOI: 10.1080/08916934.2020.1786069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Di Zhang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, P.R. China
| | - ZhaoFang Li
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, P.R. China
| | - RongQiang Zhang
- Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, P.R. China
| | - XiaoLi Yang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, P.R. China
| | - DanDan Zhang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, P.R. China
| | - Qiang Li
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, P.R. China
| | - Chen Wang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, P.R. China
| | - Xuena Yang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, P.R. China
| | - YongMin Xiong
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, P.R. China
| |
Collapse
|
25
|
Tang D, Liu X, Chen K, Li Z, Dai Y, Xu J, Zhang HT, Gao X, Liu L. Cytoplasmic PCNA is located in the actin belt and involved in osteoclast differentiation. Aging (Albany NY) 2020; 12:13297-13317. [PMID: 32597793 PMCID: PMC7377826 DOI: 10.18632/aging.103434] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/25/2020] [Indexed: 12/18/2022]
Abstract
Osteoporosis (OP) is an age-related osteolytic disease and characterized by low bone mass and more prone to fracture due to active osteoclasts. Proliferating cell nuclear antigen (PCNA) has been long identified as a nuclear protein playing critical roles in the regulation of DNA replication and repair. Recently, a few studies have demonstrated the cytoplasmic localization of PCNA and its function associated with apoptosis in neutrophil and neuroblastoma cells. However, the involvement of PCNA, including the cytoplasmic PCNA, in the osteoclast differentiation remains unclear. In the present study, we show that PCNA is translocated from nucleus to cytoplasm during the RANKL-induced osteoclast differentiation, and localized in the actin belt of mature osteoclast. Knockdown of PCNA significantly affected the integrity of actin belt, the formation of multinucleated osteoclasts, the expression of osteoclast-specific genes, and the in vitro bone resorption. Interactomic study has revealed β-actin as the major interacting partner of the cytoplasmic PCNA, suggesting that cytoplasmic PCNA might play a critical role in the differentiation of osteoclast through regulation of actin-cytoskeleton remodeling. Taken together, our results demonstrate the critical role of cytoplasmic PCNA during the process of osteoclast differentiation, and provided a potential therapeutic target for treatment of osteoclast-related bone diseases.
Collapse
Affiliation(s)
- Donge Tang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China.,Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China
| | - Xiaohui Liu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Kezhi Chen
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Zhipeng Li
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Yong Dai
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China
| | - Jiake Xu
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth 6009, Western Australia, Australia
| | - Huan-Tian Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China.,Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, Guangdong, China
| | - Xuejuan Gao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Langxia Liu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
26
|
Han B, Geng H, Liu L, Wu Z, Wang Y. GSH attenuates RANKL-induced osteoclast formation in vitro and LPS-induced bone loss in vivo. Biomed Pharmacother 2020; 128:110305. [PMID: 32485573 DOI: 10.1016/j.biopha.2020.110305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 12/31/2022] Open
Abstract
Osteoclasts are capable of adhering the bone matrix, then secrete acid and lytic enzymes to resorb it. Reactive oxygen species (ROS), as a signaling messenger, plays an important role in the receptor activator nuclear factor κB ligand (RANKL) signal pathway during osteoclast differentiation. Glutathione (GSH) is known to be a powerful antioxidant which can scavenge intracellular ROS. This study aimed to investigate whether GSH can as a protective agent against the RANKL-stimulated osteoclastogenesis by suppressing intracellular ROS. Here, we showed that GSH markedly restricted RNAKL-induced differentiation of bone marrow-derived macrophages (BMMs) to form osteoclasts. GSH suppressed RANKL-induced ROS generation and subsequent ROS-induced NF-κB signaling pathways within BMMs during osteoclastogenesis. Further, GSH acted to significantly downregulate the osteoclastogenic genes expression of nuclear factor in activated T cells, cytoplasmic1 (NFATc1), C-fos, the tartrate-resistant acid phosphatase (TRAP), and osteoclast-associated immunoglobulin-like receptor (OSCAR). Our results suggested that GSH inhibits intracellular ROS-mediated NF-κB signal pathway involved in osteoclast differentiation. These findings might form the basis of a new strategy for treating bone disease associated with excessive bone resorption.
Collapse
Affiliation(s)
- Bing Han
- Xiangyang No.1 People' Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Huan Geng
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Liang Liu
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhixin Wu
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yizhong Wang
- Xiangyang No.1 People' Hospital, Hubei University of Medicine, Xiangyang, 441000, China; Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
27
|
Zhang L, Yang Y, Liao Z, Liu Q, Lei X, Li M, Saijilafu, Zhang Z, Hong D, Zhu M, Li B, Yang H, Chen J. Genetic and pharmacological activation of Hedgehog signaling inhibits osteoclastogenesis and attenuates titanium particle-induced osteolysis partly through suppressing the JNK/c-Fos-NFATc1 cascade. Theranostics 2020; 10:6638-6660. [PMID: 32550895 PMCID: PMC7295048 DOI: 10.7150/thno.44793] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/07/2020] [Indexed: 12/19/2022] Open
Abstract
Rationale: Wear particle-induced periprosthetic osteolysis (PPO) is a common long-term complication of total joint arthroplasty, and represents the major cause of aseptic loosening and subsequent implant failure. Previous studies have identified the central role of osteoclast-mediated bone resorption in the pathogenesis of PPO. Thus, therapeutic approaches of inhibiting osteoclast formation and activity are considered to be of great potential to prevent and treat this osteolytic disease. Hedgehog (Hh) signaling has been shown to play an important role in promoting osteoblast differentiation and bone formation. While Hh signaling is also implicated in regulating osteoclastogenesis, whether it can directly inhibit osteoclast differentiation and bone resorption remains controversial. Moreover, its potential therapeutic effects on PPO have never been assessed. In this study, we explored the cell-autonomous role of Hh signaling in regulating osteoclastogenesis and its therapeutic potential in preventing wear particle-induced osteolysis. Methods: Hh signaling was activated in macrophages by genetically ablating Sufu in these cells using LysM-Cre or by treating them with purmorphamine (PM), a pharmacological activator of Smoothened (Smo). In vitro cell-autonomous effects of Hh pathway activation on RANKL-induced osteoclast differentiation and activity were evaluated by TRAP staining, phalloidin staining, qPCR analyses, and bone resorption assays. In vivo evaluation of its therapeutic efficacy against PPO was performed in a murine calvarial model of titanium particle-induced osteolysis by μCT and histological analyses. Mechanistic details were explored in RANKL-treated macrophages through Western blot analyses. Results: We found that Sufu deletion or PM treatment potently activated Hh signaling in macrophages, and strongly inhibited RANKL-induced TRAP+ osteoclast production, F-actin ring formation, osteoclast-specific gene expression, and osteoclast activity in vitro. Furthermore, we found that Sufu deletion or PM administration significantly attenuated titanium particle-induced osteoclast formation and bone loss in vivo. Our mechanistic study revealed that activation of Hh signaling suppressed RANKL-induced activation of JNK pathway and downregulated protein levels of two key osteoclastic transcriptional factors, c-Fos and its downstream target NFATc1. Conclusions: Both genetic and pharmacological activation of Hh signaling can cell-autonomously inhibit RANKL-induced osteoclast differentiation and activity in vitro and protect against titanium particle-induced osteolysis in vivo. Mechanistically, Hh signaling hinders osteoclastogenesis partly through suppressing the JNK/c-Fos-NFATc1 cascade. Thus, Hh signaling may serve as a promising therapeutic target for the prevention and treatment of PPO and other osteolytic diseases.
Collapse
Affiliation(s)
- Liwei Zhang
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu 215007, China
| | - Yanjun Yang
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu 215007, China
| | - Zirui Liao
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu 215007, China
| | - Qingbai Liu
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Xinhuan Lei
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| | - Meng Li
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu 215007, China
| | - Saijilafu
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu 215007, China
| | - Zunyi Zhang
- Institute of Life Sciences, College of Life and Environmental Science, Key Laboratory of Mammalian Organogenesis and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Dun Hong
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| | - Min Zhu
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| | - Bin Li
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu 215007, China
| | - Huilin Yang
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu 215007, China
| | - Jianquan Chen
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu 215007, China
| |
Collapse
|
28
|
Molecular and Cellular Pathways Contributing to Joint Damage in Rheumatoid Arthritis. Mediators Inflamm 2020; 2020:3830212. [PMID: 32256192 PMCID: PMC7103059 DOI: 10.1155/2020/3830212] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 02/24/2020] [Indexed: 01/19/2023] Open
Abstract
Rheumatoid arthritis is a chronic autoimmune syndrome associated with several genetic, epigenetic, and environmental factors affecting the articular joints contributing to cartilage and bone damage. Although etiology of this disease is not clear, several immune pathways, involving immune (T cells, B cells, dendritic cells, macrophages, and neutrophils) and nonimmune (fibroblasts and chondrocytes) cells, participate in the secretion of many proinflammatory cytokines, chemokines, proteases (MMPs, ADAMTS), and other matrix lysing enzymes that could disturb the immune balance leading to cartilage and bone damage. The presence of autoantibodies preceding the clinical onset of arthritis and the induction of bone erosion early in the disease course clearly suggest that initiation events damaging the cartilage and bone start very early during the autoimmune phase of the arthritis development. During this process, several signaling molecules (RANKL-RANK, NF-κB, MAPK, NFATc1, and Src kinase) are activated in the osteoclasts, cells responsible for bone resorption. Hence, comprehensive knowledge on pathogenesis is a prerequisite for prevention and development of targeted clinical treatment for RA patients that can restore the immune balance improving clinical therapy.
Collapse
|
29
|
Cepeda SB, Sandoval MJ, Crescitelli MC, Rauschemberger MB, Massheimer VL. The isoflavone genistein enhances osteoblastogenesis: signaling pathways involved. J Physiol Biochem 2020; 76:99-110. [DOI: 10.1007/s13105-019-00722-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/11/2019] [Indexed: 11/24/2022]
|
30
|
Xie Y, Pan M, Gao Y, Zhang L, Ge W, Tang P. Dose-dependent roles of aspirin and other non-steroidal anti-inflammatory drugs in abnormal bone remodeling and skeletal regeneration. Cell Biosci 2019; 9:103. [PMID: 31890152 PMCID: PMC6929289 DOI: 10.1186/s13578-019-0369-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 12/20/2019] [Indexed: 01/10/2023] Open
Abstract
The failure of remodeling process that constantly regenerates effete, aged bone is highly associated with bone nonunion and degenerative bone diseases. Numerous studies have demonstrated that aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) activate cytokines and mediators on osteoclasts, osteoblasts and their constituent progenitor cells located around the remodeling area. These cells contribute to a complex metabolic scenario, resulting in degradative or synthetic functions for bone mineral tissues. The spatiotemporal effects of aspirin and NSAIDs in the bone remodeling are controversial according the specific therapeutic doses used for different clinical conditions. Herein, we review in vitro, in vivo, and clinical studies on the dose-dependent roles of aspirin and NSAIDs in bone remodeling. Our results show that low-dose aspirin (< 100 μg/mL), which is widely recommended for prevention of thrombosis, is very likely to be benefit for maintaining bone mass and qualities by activation of osteoblastic bone formation and inhibition of osteoclast activities via cyclooxygenase-independent manner. While, the roles of high-dose aspirin (150-300 μg/mL) and other NSAIDs in bone self-regeneration and fracture-healing process are difficult to elucidate owing to their dual effects on osteoclast activity and bone formation of osteoblast. In conclusion, this study highlighted the potential clinical applications of low-dose aspirin in abnormal bone remodeling as well as the risks of high-dose aspirin and other NSAIDs for relieving pain and anti-inflammation in fractures and orthopedic operations.
Collapse
Affiliation(s)
- Yong Xie
- 1Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 China
| | - Meng Pan
- 2State Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, 100005 China
| | - Yanpan Gao
- 2State Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, 100005 China
| | - Licheng Zhang
- 1Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 China
| | - Wei Ge
- 2State Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, 100005 China
| | - Peifu Tang
- 1Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 China
| |
Collapse
|
31
|
Ruan L, Jiang N, Guo F, Xu H, Zhang J, Sun J. The antiresoptive effects of recombinant Lingzhi-8 protein against retinoic acid-induced osteopenia. Eur J Pharmacol 2019; 863:172669. [DOI: 10.1016/j.ejphar.2019.172669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/03/2019] [Accepted: 09/18/2019] [Indexed: 01/18/2023]
|
32
|
Hirose S, Lin Q, Ohtsuji M, Nishimura H, Verbeek JS. Monocyte subsets involved in the development of systemic lupus erythematosus and rheumatoid arthritis. Int Immunol 2019; 31:687-696. [PMID: 31063541 PMCID: PMC6794944 DOI: 10.1093/intimm/dxz036] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/10/2019] [Indexed: 12/12/2022] Open
Abstract
AbstractMonocytes are evolutionally conserved innate immune cells that play essential roles for the protection of the host against pathogens and also produce several inflammatory cytokines. Thus, the aberrant functioning of monocytes may affect not only host defense but also the development of inflammatory diseases. Monocytes are a heterogeneous population with phenotypical and functional differences. Most recent studies have shown that monocytes are divided into three subsets, namely classical, intermediate and non-classical subsets, both in humans and mice. Accumulating evidence showed that monocyte activation is associated with the disease progression in autoimmune diseases, such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). However, it remains to be determined how monocytes contribute to the disease process and which subset is involved. In this review, we discuss the pathogenic role of monocyte subsets in SLE and RA on the basis of current studies by ourselves and others to shed light on the suitability of monocyte-targeted therapies in these diseases.
Collapse
Affiliation(s)
- Sachiko Hirose
- Department of Biomedical Engineering, Toin University of Yokohama, Kurogane-cho, Aoba-ku, Yokohama, Japan
| | - Qingshun Lin
- Department of Biomedical Engineering, Toin University of Yokohama, Kurogane-cho, Aoba-ku, Yokohama, Japan
| | - Mareki Ohtsuji
- Department of Biomedical Engineering, Toin University of Yokohama, Kurogane-cho, Aoba-ku, Yokohama, Japan
| | - Hiroyuki Nishimura
- Department of Biomedical Engineering, Toin University of Yokohama, Kurogane-cho, Aoba-ku, Yokohama, Japan
| | - J Sjef Verbeek
- Department of Biomedical Engineering, Toin University of Yokohama, Kurogane-cho, Aoba-ku, Yokohama, Japan
| |
Collapse
|
33
|
Yuan Q, Zhao Y, Cai P, He Z, Gao F, Zhang J, Gao X. Dose-Dependent Efficacy of Gold Clusters on Rheumatoid Arthritis Therapy. ACS OMEGA 2019; 4:14092-14099. [PMID: 31497728 PMCID: PMC6714532 DOI: 10.1021/acsomega.9b02003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/01/2019] [Indexed: 05/02/2023]
Abstract
Chronic inflammation and progressive bone damage in joints are two main pathological features of rheumatoid arthritis (RA). We have synthesized a gold cluster with glutathione (Au29SG27) (named GA) that can effectively suppress both inflammation and bone damage in collagen-induced arthritis (CIA) in rats. Thus, gold clusters showed great potential for the therapy of RA. However, the optimal therapeutic dose remaining has to be determined. Therapeutic effect and safety are largely relying on drug dosage. Specifying the dose-dependent effects of GA on both therapy and biosafety can facilitate its clinical transformation research. Therefore, in this study, we comprehensively evaluated the dose-dependent efficacy of GA on the 30-day toxicity and RA treatment in rats. Results showed that continuous intraperitoneal injection of GA at a dose of 15 mg/kg (Au content) for 30 days resulted in slight hematological abnormalities and increases on organ coefficients of kidney and adrenal gland, while 10 mg Au/kg did not cause any obvious toxicity and side effects. In the treatment of CIA rats, only when the dose of GA reached 5 mg Au/kg, the symptoms of RA could be significantly improved. With regard to the histopathological analysis, although a lower dose of GA can suppress inflammation and bone damage to some extent, only the 5 mg Au/kg treatment could restore them to a state close to the normal control group. Therefore, we infer that 5 mg Au/kg is the optimal dose of GA for RA therapy in rats, which provides a theoretical basis for further preclinical research.
Collapse
Affiliation(s)
- Qing Yuan
- Department
of Chemistry and Chemical Engineering, Beijing
University of Technology, Beijing 100124, China
- Center
of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Yao Zhao
- CAS
Key Laboratory for the Biological Effects of Nanomaterials and Nanosafety,
Institute of High Energy Physics, Chinese
Academy of Sciences, Beijing 100049, China
| | - Pengju Cai
- CAS
Key Laboratory for the Biological Effects of Nanomaterials and Nanosafety,
Institute of High Energy Physics, Chinese
Academy of Sciences, Beijing 100049, China
| | - Zhesheng He
- CAS
Key Laboratory for the Biological Effects of Nanomaterials and Nanosafety,
Institute of High Energy Physics, Chinese
Academy of Sciences, Beijing 100049, China
| | - Fuping Gao
- CAS
Key Laboratory for the Biological Effects of Nanomaterials and Nanosafety,
Institute of High Energy Physics, Chinese
Academy of Sciences, Beijing 100049, China
- E-mail: . Tel: 86-10-88236709. (X.G.)
| | - Jinsong Zhang
- Key
Laboratory of Tea Biochemistry & Biotechnology, School of Tea
and Food Science, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Xueyun Gao
- Department
of Chemistry and Chemical Engineering, Beijing
University of Technology, Beijing 100124, China
- Center
of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
- CAS
Key Laboratory for the Biological Effects of Nanomaterials and Nanosafety,
Institute of High Energy Physics, Chinese
Academy of Sciences, Beijing 100049, China
- E-mail: (F.G.)
| |
Collapse
|
34
|
Jeong JW, Ji SY, Lee H, Hong SH, Kim GY, Park C, Lee BJ, Park EK, Hyun JW, Jeon YJ, Choi YH. Fermented Sea Tangle ( Laminaria japonica Aresch) Suppresses RANKL-Induced Osteoclastogenesis by Scavenging ROS in RAW 264.7 Cells. Foods 2019; 8:foods8080290. [PMID: 31357503 PMCID: PMC6723172 DOI: 10.3390/foods8080290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 01/20/2023] Open
Abstract
Sea tangle (Laminaria japonica Aresch), a brown alga, has been used for many years as a functional food ingredient in the Asia-Pacific region. In the present study, we investigated the effects of fermented sea tangle extract (FST) on receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-stimulated osteoclast differentiation, using RAW 264.7 mouse macrophage cells. FST was found to inhibit the RANKL-stimulated activation of tartrate-resistance acid phosphatase (TRAP) and F-actin ring structure formation. FST also down-regulated the expression of osteoclast marker genes like TRAP, matrix metalloproteinase-9, cathepsin K and osteoclast-associated receptor by blocking RANKL-induced activation of NF-κB and expression of nuclear factor of activated T cells c1 (NFATc1), a master transcription factor. In addition, FST significantly abolished RANKL-induced generation of reactive oxygen species (ROS) by activation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and its transcriptional targets. Hence, it seems likely that FST may have anti-osteoclastogenic potential as a result of its ability to inactivate the NF-κB-mediated NFATc1 signaling pathway and by reducing ROS production through activation of the Nrf2 pathway. Although further studies are needed to inquire its efficacy in vivo, FST appears to have potential use as an adjunctive or as a prophylactic treatment for osteoclastic bone disease.
Collapse
Affiliation(s)
- Jin-Woo Jeong
- Nakdonggang National Institute of Biological Resources, Sangju 37242, Korea
| | - Seon Yeong Ji
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
- Anti-Aging Research Center, Dong-eui University, Busan 47227, Korea
| | - Hyesook Lee
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
- Anti-Aging Research Center, Dong-eui University, Busan 47227, Korea
| | - Su Hyun Hong
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
- Anti-Aging Research Center, Dong-eui University, Busan 47227, Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea
| | - Cheol Park
- Department of Molecular Biology, College of Natural Sciences, Dong-eui University, Busan 47340, Korea
| | - Bae-Jin Lee
- Marine Bioprocess Co. Ltd., Busan 46048, Korea
| | - Eui Kyun Park
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Jin Won Hyun
- Department of Biochemistry, School of Medicine, Jeju National University, Jeju 63243, Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea.
- Anti-Aging Research Center, Dong-eui University, Busan 47227, Korea.
| |
Collapse
|
35
|
Park E, Kim J, Kim MC, Yeo S, Kim J, Park S, Jo M, Choi CW, Jin HS, Lee SW, Li WY, Lee JW, Park JH, Huh D, Jeong SY. Anti-Osteoporotic Effects of Kukoamine B Isolated from Lycii Radicis Cortex Extract on Osteoblast and Osteoclast Cells and Ovariectomized Osteoporosis Model Mice. Int J Mol Sci 2019; 20:ijms20112784. [PMID: 31174394 PMCID: PMC6600412 DOI: 10.3390/ijms20112784] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 06/06/2019] [Indexed: 11/16/2022] Open
Abstract
Osteoporosis is an abnormal bone remodeling condition characterized by decreased bone density, which leads to high risks of fracture. Previous study has demonstrated that Lycii Radicis Cortex (LRC) extract inhibits bone loss in ovariectomized (OVX) mice by enhancing osteoblast differentiation. A bioactive compound, kukoamine B (KB), was identified from fractionation of an LRC extract as a candidate component responsible for an anti-osteoporotic effect. This study investigated the anti-osteoporotic effects of KB using in vitro and in vivo osteoporosis models. KB treatment significantly increased the osteoblastic differentiation and mineralized nodule formation of osteoblastic MC3T3-E1 cells, while it significantly decreased the osteoclast differentiation of primary-cultured monocytes derived from mouse bone marrow. The effects of KB on osteoblastic and osteoclastic differentiations under more physiological conditions were also examined. In the co-culture of MC3T3-E1 cells and monocytes, KB promoted osteoblast differentiation but did not affect osteoclast differentiation. In vivo experiments revealed that KB significantly inhibited OVX-induced bone mineral density loss and restored the impaired bone structural properties in osteoporosis model mice. These results suggest that KB may be a potential therapeutic candidate for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Eunkuk Park
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea.
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea.
| | - Jeonghyun Kim
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea.
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea.
| | - Mun-Chang Kim
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea.
| | - Subin Yeo
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea.
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea.
| | - Jieun Kim
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea.
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea.
| | - Seulbi Park
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea.
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea.
| | - Miran Jo
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea.
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea.
| | - Chun Whan Choi
- Natural Products Research Institute, Gyeonggi Institute of Science & Technology Promotion, Suwon 16229, Korea.
| | - Hyun-Seok Jin
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan 31499, Korea.
| | - Sang Woo Lee
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.
| | - Wan Yi Li
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming 650200, China.
| | - Ji-Won Lee
- Korea Food Research Institute, Seongnam 13539, Korea.
| | - Jin-Hyok Park
- Dongwoodang Pharmacy Co. Ltd., Yeongchen 38819, Korea.
| | - Dam Huh
- Dongwoodang Pharmacy Co. Ltd., Yeongchen 38819, Korea.
| | - Seon-Yong Jeong
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea.
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea.
| |
Collapse
|
36
|
Yeon JT, Kim KJ, Son YJ, Park SJ, Kim SH. Idelalisib inhibits osteoclast differentiation and pre-osteoclast migration by blocking the PI3Kδ-Akt-c-Fos/NFATc1 signaling cascade. Arch Pharm Res 2019; 42:712-721. [PMID: 31161369 DOI: 10.1007/s12272-019-01163-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 05/21/2019] [Indexed: 12/11/2022]
Abstract
Since increased number of osteoclasts could lead to impaired bone structure and low bone mass, which are common characteristics of bone disorders including osteoporosis, the pharmacological inhibition of osteoclast differentiation is one of therapeutic strategies for preventing and/or treating bone disorders and related facture. However, little data are available regarding the functional relevance of phosphoinositide 3-kinase (PI3K) isoforms in the osteoclast differentiation process. To elucidate the functional involvement of PI3Kδ in osteoclastogenesis, here we investigated how osteoclast differentiation was influenced by idelalisib (also called CAL-101), which is p110δ-selective inhibitor approved for the treatment of specific human B cell malignancies. Here, we found that receptor activator of nuclear factor kappa B ligand (RANKL) induced PI3Kδ protein expression, and idelalisib inhibited RANKL-induced osteoclast differentiation. Next, the inhibitory effect of idelalisib on RANKL-induced activation of the Akt-c-Fos/NFATc1 signaling cascade was confirmed by western blot analysis and real-time PCR. Finally, idelalisib inhibited pre-osteoclast migration in the last stage of osteoclast differentiation through down-regulation of the Akt-c-Fos/NFATc1 signaling cascade. It may be possible to expand the clinical use of idelalisib for controlling osteoclast differentiation. Together, the present results contribute to our understanding of the clinical value of PI3Kδ as a druggable target and the efficacy of related therapeutics including osteoclastogenesis.
Collapse
Affiliation(s)
- Jeong-Tae Yeon
- Research Institute of Basic Science, Sunchon National University, Suncheon, Republic of Korea
| | - Kwang-Jin Kim
- Department of Pharmacy, Sunchon National University, Suncheon, Republic of Korea
| | - Young-Jin Son
- Department of Pharmacy, Sunchon National University, Suncheon, Republic of Korea
| | - Sang-Joon Park
- Department of Histology, College of Veterinary Medicine, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea.
| | - Seong Hwan Kim
- Innovative Target Research Center, Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 334114, Republic of Korea.
| |
Collapse
|
37
|
Protective Effects of Fermented Oyster Extract against RANKL-Induced Osteoclastogenesis through Scavenging ROS Generation in RAW 264.7 Cells. Int J Mol Sci 2019; 20:ijms20061439. [PMID: 30901917 PMCID: PMC6471417 DOI: 10.3390/ijms20061439] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 11/17/2022] Open
Abstract
Excessive bone resorption by osteoclasts causes bone loss-related diseases and reactive oxygen species (ROS) act as second messengers in intercellular signaling pathways during osteoclast differentiation. In this study, we explored the protective effects of fermented oyster extract (FO) against receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclast differentiation in murine monocyte/macrophage RAW 264.7 cells. Our results showed that FO markedly inhibited RANKL-induced activation of tartrate-resistant acid phosphatase and formation of F-actin ring structure. Mechanistically, FO has been shown to down-regulate RANKL-induced expression of osteoclast-specific markers by blocking the nuclear translocation of NF-κB and the transcriptional activation of nuclear factor of activated T cells c1 (NFATc1) and c-Fos. Furthermore, FO markedly diminished ROS production by RANKL stimulation, which was associated with blocking the expression of nicotinamide adenine dinucleotide phosphate oxidase 1 (NOX1) and its regulatory subunit Rac-1. However, a small interfering RNA (siRNA) targeting NOX1 suppressed RANKL-induced expression of osteoclast-specific markers and production of ROS and attenuated osteoclast differentiation as in the FO treatment group. Collectively, our findings suggest that FO has anti-osteoclastogenic potential by inactivating the NF-κB-mediated NFATc1 and c-Fos signaling pathways and inhibiting ROS generation, followed by suppression of osteoclast-specific genes. Although further studies are needed to demonstrate efficacy in in vivo animal models, FO may be used as an effective alternative agent for the prevention and treatment of osteoclastogenic bone diseases.
Collapse
|
38
|
Yuan Q, Gao F, Yao Y, Cai P, Zhang X, Yuan J, Hou K, Gao L, Ren X, Gao X. Gold Clusters Prevent Inflammation-Induced Bone Erosion through Inhibiting the Activation of NF-κB Pathway. Theranostics 2019; 9:1825-1836. [PMID: 31037141 PMCID: PMC6485295 DOI: 10.7150/thno.31893] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/28/2019] [Indexed: 11/21/2022] Open
Abstract
Inflammation-induced bone erosion is a major pathological factor in several chronic inflammatory diseases that often cause severe outcomes, such as rheumatoid arthritis and periodontitis. Plenty of evidences indicated that the inflammatory bone destruction was attributed to an increase in the number of bone-resorbing osteoclasts. However, anti-resorptive therapy alone failed to prevent bone loss in an inflammatory condition. Conventional anti-inflammation treatments are usually intended to suppress inflammation only, but ignore debilitating the subsequent bone destruction. Therefore, inhibition of proinflammatory activation of osteoclastogenesis could be an important strategy for the development of drugs aimed at preventing inflammatory bone destruction. Methods: In this study, we synthesized a peptide coated gold cluster to evaluate its effects on inflammatory osteoclastogenesis in vitro and inflammation-induced bone destruction in vivo. The in vitro anti-inflammation and anti-osteoclastogenesis effects of the cluster were evaluated in LPS-stimulated and receptor activator of nuclear factor κB ligand (RANKL) stimulated macrophages, respectively. The LPS-induced expression of crucial pro-inflammation cytokines and RANKL-induced osteoclastogenesis as well as the activation of NF-κB pathway in both situations were detected. The inflammation-induced RANKL expression and subsequent inflammatory bone destruction in vivo were determined in collagen-immunized mice. Results: The gold cluster strongly suppresses RANKL-induced osteoclast formation via inhibiting the activation of NF-κB pathway in vitro. Moreover, treatment with the clusters at a dose of 5 mg Au/kg.bw significantly reduces the severity of inflammation-induced bone and cartilage destruction in vivo without any significant toxicity effects. Conclusion: Therefore, the gold clusters may offer a novel potent therapeutic stratagem for inhibiting chronic inflammation associated bone destruction.
Collapse
Affiliation(s)
- Qing Yuan
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Fuping Gao
- CAS Key Laboratory for the Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yawen Yao
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Pengju Cai
- CAS Key Laboratory for the Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangchun Zhang
- CAS Key Laboratory for the Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jinling Yuan
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Kaixiao Hou
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Liang Gao
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xiaojun Ren
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xueyun Gao
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China
- CAS Key Laboratory for the Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
39
|
The potential risks of C-C chemokine receptor 5-edited babies in bone development. Bone Res 2019; 7:4. [PMID: 30701110 PMCID: PMC6351561 DOI: 10.1038/s41413-019-0044-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 12/13/2018] [Indexed: 12/27/2022] Open
|
40
|
Amengual-Peñafiel L, Brañes-Aroca M, Marchesani-Carrasco F, Jara-Sepúlveda MC, Parada-Pozas L, Cartes-Velásquez R. Coupling between Osseointegration and Mechanotransduction to Maintain Foreign Body Equilibrium in the Long-Term: A Comprehensive Overview. J Clin Med 2019; 8:E139. [PMID: 30691022 PMCID: PMC6407014 DOI: 10.3390/jcm8020139] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 12/15/2022] Open
Abstract
The permanent interaction between bone tissue and the immune system shows us the complex biology of the tissue in which we insert oral implants. At the same time, new knowledge in relation to the interaction of materials and the host, reveals to us the true nature of osseointegration. So, to achieve clinical success or perhaps most importantly, to understand why we sometimes fail, the study of oral implantology should consider the following advice equally important: a correct clinical protocol, the study of the immunomodulatory capacity of the device and the osteoimmunobiology of the host. Although osseointegration may seem adequate from the clinical point of view, a deeper vision shows us that a Foreign Body Equilibrium could be susceptible to environmental conditions. This is why maintaining this cellular balance should become our therapeutic target and, more specifically, the understanding of the main cell involved, the macrophage. The advent of new information, the development of new implant surfaces and the introduction of new therapeutic proposals such as therapeutic mechanotransduction, will allow us to maintain a healthy host-implant relationship long-term.
Collapse
Affiliation(s)
| | | | | | | | - Leopoldo Parada-Pozas
- Regenerative Medicine Center, Hospital Clínico de Viña del Mar, Viña del Mar 2520626, Chile.
| | - Ricardo Cartes-Velásquez
- School of Dentistry, Universidad Andres Bello, Concepción 4300866, Chile.
- Institute of Biomedical Sciences, Universidad Autónoma de Chile, Temuco 4810101, Chile.
| |
Collapse
|
41
|
Xiao Y, Li K, Wang Z, Fu F, Shao S, Song F, Zhao J, Chen W, Liu Q, Xu J. Pectolinarigenin prevents bone loss in ovariectomized mice and inhibits RANKL-induced osteoclastogenesis via blocking activation of MAPK and NFATc1 signaling. J Cell Physiol 2019; 234:13959-13968. [PMID: 30633330 DOI: 10.1002/jcp.28079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022]
Abstract
Osteoporosis (OP) is a metabolic disease caused by multiple factors, which is characterized by a reduction of bone mass per unit volume and destruction of bone microstructure. Aberrant osteoclast function is the main cause of OP, therefore, regulating the differentiation and function of osteoclast is one of the treatment strategies for OP. Pectolinarigenin (PEC) is a medicinal implant isolated from Fragrant Eupatorium. Our experimental data showed that PEC was able to inhibit receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis in vitro, by tartrate-resistant acid phosphatase (TRAcP) staining, Fibrous actin ring formation, and hydroxyapatite resorption assays. In terms of mechanism, PEC inhibited the expression of the osteoclastogenesis-related gene, including cathepsin K (Ctsk), matrix metalloproteinase 9 (Mmp9), and TRAcP (Acp5). Western blot analysis demonstrated that PEC could significantly block the activation of RANKL-induced mitogen-activated protein kinase signaling cascades and was able to suppress the protein expression of nuclear factor of activated T-cells and c-Fos. Meanwhile, the intracellular reactive oxygen species levels were also reduced by PEC in a concentration-dependent manner. Further, PEC could prevent the ovariectomy-induced bone loss in vivo. Summarizing all, our data suggested that PEC inhibits osteoclast formation and function and RANKL signaling pathways, and thus could potentially be used in the treatment the osteoclast-related bone loss diseases.
Collapse
Affiliation(s)
- Yu Xiao
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Department of Trauma Orthopedic and Hand Surgery, Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Kai Li
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Department of Trauma Orthopedic and Hand Surgery, Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ziyi Wang
- School of Biomedical Sciences, the University of Western Australia, Perth, Western Australia, Australia
| | - Fangsheng Fu
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Department of Trauma Orthopedic and Hand Surgery, Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Siyuan Shao
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Department of Trauma Orthopedic and Hand Surgery, Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Fangming Song
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China.,School of Biomedical Sciences, the University of Western Australia, Perth, Western Australia, Australia
| | - Jinmin Zhao
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Department of Trauma Orthopedic and Hand Surgery, Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Weiwei Chen
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Qian Liu
- Department of Trauma Orthopedic and Hand Surgery, Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiake Xu
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China.,School of Biomedical Sciences, the University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
42
|
Cao B, Dai X, Wang W. Knockdown of TRPV4 suppresses osteoclast differentiation and osteoporosis by inhibiting autophagy through Ca 2+ -calcineurin-NFATc1 pathway. J Cell Physiol 2018; 234:6831-6841. [PMID: 30387123 DOI: 10.1002/jcp.27432] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/27/2018] [Indexed: 12/22/2022]
Abstract
The aim of this study is to evaluate the effect of transient receptor potential vanilloid 4 (TRPV4) on osteoclast differentiation and osteoporosis, and to investigate the underlying mechanism. The results showed that TRPV4 expression and intracellular Ca2+ concentration were significantly upregulated in macrophage colony-stimulating factor (M-CSF)-stimulated and receptor activator of nuclear factor κΒ ligand (RANKL)-stimulated RAW264.7 cells. Furthermore, TRPV4 overexpression further increased the M-CSF- and RANKL-induced number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts and expression of osteoclastogenesis-related genes (TRAP, c-Fos, and nuclear factor of activated T cells [NFATc1]), activated the Ca 2+ -calcineurin-NFATc1 signaling and increased autophagy-related proteins (light chain [LC] 3II and Beclin-1) during osteoclast differentiation. In contrast, TRPV4 knockdown exerted the opposite effects. Mechanically, inhibition of Ca 2+ -calcineurin-NFATc1 signaling by FK506 or 11R-VIVIT abrogated the TRPV4 overexpression-induced osteoclast differentiation and autophagy induction. Moreover, suppression of autophagy by 3-methyladenine attenuated the TRPV4-induced osteoclast differentiation. In addition, short hairpin RNA TRPV4-lentivirus administration significantly diminished the increased levels of several osteoclastogenesis-related genes (RANKL, TRAP, and tumor necrosis factor-α), alleviated the disturbed microarchitecture of lumbar vertebrae, restored the decreased bone mineral density, ratio of bone volume to total tissue volume, trabecular thickness, and trabecular number, and diminished the increased trabecular separation, in ovariectomy (OVX)-induced osteoporosis mice. Consistent with the in vitro data, TRPV4 knockdown significantly decreased the induced number of TRAP-positive osteoclasts, the increased LC3 and NFATc1 expression in the lumbar vertebrae of OVX mice. In conclusion, TRPV4 knockdown suppresses osteoclast differentiation and osteoporosis by inhibiting autophagy through Ca 2+ -calcineurin-NFATc1 pathway.
Collapse
Affiliation(s)
- Boran Cao
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Dai
- Department of Oncology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenbo Wang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
43
|
Huang JM, Ren RY, Bao Y, Guo JC, Xiang W, Jing XZ, Shi J, Zhang GX, Li L, Tian Y, Kang H, Guo FJ. Ulinastatin Inhibits Osteoclastogenesis and Suppresses Ovariectomy-Induced Bone Loss by Downregulating uPAR. Front Pharmacol 2018; 9:1016. [PMID: 30245631 PMCID: PMC6137085 DOI: 10.3389/fphar.2018.01016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/22/2018] [Indexed: 11/13/2022] Open
Abstract
Recent studies indicate that uPAR acts a crucial part in cell migration and the modulation of bone homeostasis. As a natural serine protease inhibitor, ulinastatin owns the capacity to reduce proinflammatory factors, downregulate the activation of NF-κB and mitogen-activated protein kinases (MAPKs) signaling pathways. Osteoclastogenesis has been demonstrated to be related with low-grade inflammation which involves cell migration, thus we speculate that ulinastatin may have a certain kind of impact on uPAR so as to be a potential inhibiting agent of osteoclastogenesis. In this research, we investigated the role which ulinastatin plays in RANKL-induced osteoclastogenesis both in vivo and in vitro. Ulinastatin inhibited osteoclast formation and bone resorption in a dose-dependent manner in primary bone marrow-derived macrophages (BMMs), and knockdown of uPAR could completely repress the formation of osteoclasts. At the molecular level, ulinastatin suppressed RANKL-induced activation of cathepsin K, TRAP, nuclear factor-κB (NF-κB) and MAPKs, and decreased the expression of uPAR. At the meantime, ulinastatin also decreased the expression of osteoclast marker genes, including cathepsin K, TRAP, RANK, and NFATc1. Besides, ulinastatin prevented bone loss in ovariectomized C57 mice by inhibiting the formation of osteoclasts. To sum up, this research confirmed that ulinastatin has the ability to inhibit osteoclastogenesis and prevent bone loss, and uPAR plays a crucial role in that process. Therefore, ulinastatin could be chosen as an effective alternative therapeutics for osteoclast-related diseases.
Collapse
Affiliation(s)
- Jun-Ming Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ran-Yue Ren
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Bao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Chao Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Xiang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing-Zhi Jing
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Shi
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guo-Xiang Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Long Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Tian
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Kang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng-Jin Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
44
|
Thymol inhibits RANKL-induced osteoclastogenesis in RAW264.7 and BMM cells and LPS-induced bone loss in mice. Food Chem Toxicol 2018; 120:418-429. [PMID: 30048646 DOI: 10.1016/j.fct.2018.07.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 07/15/2018] [Accepted: 07/17/2018] [Indexed: 12/20/2022]
Abstract
Thymol was identified as one of key compounds contributing to the aroma of thyme leaves. We investigated the effects of thymol on receptor activator NF-κB ligand (RANKL)-induced osteoclastogenesis in murine macrophage RAW264.7 cells and bone marrow derived macrophage (BMMs) cells and lipopolysaccharide (LPS)-induced bone loss in vivo. Thymol markedly reduced RANKL-stimulated osteoclast formation and differentiation in RAW264.7 cells and BMMs cells without any cytotoxic effects. The in vitro and in vivo osteoclastogenesis inhibitory effect of thymol was assessed by calculating the quantity of TRAP (+) multinucleated cells and its inhibitory effects on the resorbing capacity were examined on calcium phosphate-coated plates. Moreover, the inhibitory effects of thymol resulted in a reduction of RANK, cathepsin K, matrix metalloproteinase-9 (MMP-9), dendritic cell-specific transmembrane protein (DC-STAMP), c-terminal myc kinase (C-MYC), C-terminal Src kinase (C-SRC), GRB2-associated-binding protein 2 (GAB2), microphthalmia-associated transcription factor (MITF), and carbonic anhydrase II genes. Similarly, activities of ERK, JNK and AKT and protein expressions of NFATc1, C-FOS, MMP-9 and cathepsin K were downregulated by thymol. More importantly, the application of thymol significantly reduced LPS-induced inflammatory bone loss in mice. In conclusion, these findings identified that thymol could be a useful therapeutic agent for the prevention of bone destructive diseases.
Collapse
|
45
|
Hairul-Islam MI, Saravanan S, Thirugnanasambantham K, Chellappandian M, Simon Durai Raj C, Karikalan K, Gabriel Paulraj M, Ignacimuthu S. Swertiamarin, a natural steroid, prevent bone erosion by modulating RANKL/RANK/OPG signaling. Int Immunopharmacol 2018; 53:114-124. [PMID: 29078090 DOI: 10.1016/j.intimp.2017.10.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/14/2017] [Accepted: 10/18/2017] [Indexed: 10/18/2022]
Abstract
Bone erosion is a central feature of rheumatoid arthritis (RA) that is characterized by the infiltration of the synovial lining by osteoclasts and lymphocytes. In the present study, swertiamarin a major secoiridoid glycoside was evaluated for anti-osteoclastogenic property to prevent bone erosion in Freund's complete adjuvant (FCA) induced in-vivo model, in-vitro osteoblast and osteoclasts as well as in co-culture system and in-silico molecular docking analysis. The swertiamarin treatment decreased the expression of TRAP, RANKL, and RANK levels and increased the levels of OPG levels significantly in both in vitro and in vivo models. In in vitro, the compound treatment significantly increased the cell proliferation and ALP levels in osteoblast cells; the high proliferation (153.8600±5.23%) and ALP release (165.6033±4.13%) were observed at 50μg/ml concentration of swertiamarin treatment. At the same time the treatment decreased the TRAP positive cells in osteoclast cells; the high reductions of TRAP positive cells (39.32±3.19%) were observed at 50μg/ml of swertiamarin treatment. The treatment modulated the levels of pro-inflammatory cytokines, MMPs and NF-κB levels in osteoblast and osteoclast co-culture system. In in silico analysis swertiamarin had affinity towards the proteins RANK, RANKL and OPG residues with low binding energy -4.5, -3.92 and -5.77kcal/mol respectively. Thus, the results of this study revealed the anti-osteoclastogenic activity of swertiamarin on the prevention of bone destruction.
Collapse
Affiliation(s)
- M I Hairul-Islam
- Biology Department, College of Science, King Faisal University, Hofouf, Saudi Arabia; Pondicherry Centre for Biological Sciences and Educational Trust, Pondicherry 605 005, India
| | - S Saravanan
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai 600 034, Tamil Nadu, India; Pondicherry Centre for Biological Sciences and Educational Trust, Pondicherry 605 005, India
| | - K Thirugnanasambantham
- Pondicherry Centre for Biological Sciences and Educational Trust, Pondicherry 605 005, India
| | - M Chellappandian
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai 600 034, Tamil Nadu, India
| | - C Simon Durai Raj
- Department of Pathology, Sri Ramachandra Medical College and Research Institute, Porur, Chennai 600116, Tamil Nadu, India
| | - K Karikalan
- School of Bioscience and Technology, VIT University, Vellore 632 014, Tamil Nadu, India
| | - M Gabriel Paulraj
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai 600 034, Tamil Nadu, India
| | - S Ignacimuthu
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai 600 034, Tamil Nadu, India.
| |
Collapse
|
46
|
Singh A, Gill G, Kaur H, Amhmed M, Jakhu H. Role of osteopontin in bone remodeling and orthodontic tooth movement: a review. Prog Orthod 2018; 19:18. [PMID: 29938297 PMCID: PMC6015792 DOI: 10.1186/s40510-018-0216-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/24/2018] [Indexed: 12/20/2022] Open
Abstract
In this review, most of the known and postulated mechanisms of osteopontin (OPN) and its role in bone remodeling and orthodontic tooth movement are discussed based on available literature. OPN, a multifunctional protein, is considered crucial for bone remodeling, biomineralization, and periodontal remodeling during mechanical tension and stress (orthodontic tooth movement). It contributes to bone remodeling by promoting osteoclastogenesis and osteoclast activity through CD44- and αvβ3-mediated cell signaling. Further, it has a definitive role in bone remodeling by the formation of podosomes, osteoclast survival, and osteoclast motility. OPN has been shown to have a regulatory effect on hydroxyapatite crystal (HAP) growth and potently inhibits the mineralization of osteoblast cultures in a phosphate-dependent manner. Bone remodeling is vital for orthodontic tooth movement. Significant compressive and tensional forces on the periodontium induce the signaling pathways mediated by various osteogenic genes including OPN, bone sialoprotein, Osterix, and osteocalcin. The signaling pathways involved in the regulation of OPN and its effect on the periodontal tissues during orthodontic tooth movement are further discussed in this review. A limited number of studies have suggested the use of OPN as a biomarker to assess orthodontic treatment. Furthermore, the association of single nucleotide polymorphisms (SNPs) in OPN coding gene Spp1 with orthodontically induced root resorption remains largely unexplored. Accordingly, future research directions for OPN are outlined in this review.
Collapse
Affiliation(s)
- Amarjot Singh
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada.
| | - Gurveen Gill
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada.,Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
| | - Harsimrat Kaur
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada.,Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
| | - Mohamed Amhmed
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada.,Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
| | - Harpal Jakhu
- Department of Endodontics, Government Dental College, Amritsar, Punjab, India.,Sandalwood Smiles, Private Dental Practice, Brampton, Ontario, Canada
| |
Collapse
|
47
|
Doss HM, Samarpita S, Ganesan R, Rasool M. Ferulic acid, a dietary polyphenol suppresses osteoclast differentiation and bone erosion via the inhibition of RANKL dependent NF-κB signalling pathway. Life Sci 2018; 207:284-295. [PMID: 29908722 DOI: 10.1016/j.lfs.2018.06.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 12/31/2022]
Abstract
AIMS Bone erosion induced by enhanced osteoclast formation is a debilitating pathological phenomenon in rheumatoid arthritis (RA). Recent finding has revealed that ferulic acid is associated with reduced osteoclast differentiation and bone erosion. However, the underlying mechanism through which ferulic acid inhibited osteoclast differentiation and bone erosion still remains to be elucidated. This study assessed the therapeutic effects of ferulic acid on osteoclast differentiation and bone erosion by targeting RANKL dependent NF-κB pathway. MAIN METHODS RAW 264.7 monocyte/macrophage cells were left untreated/treated with 25, 50 and 100 μM ferulic acid prior to stimulation with/without RANKL and M-CSF. Osteoclast differentiation and formation was assessed by SEM and TRAP analysis whereas its functional activity of bone erosion was determined by pit formation assay. Crucial transcription factors (NF-κBp-65, NFATc1 and c-Fos) and osteoclast specific genes (TRAP, MMP-9 and Cathepsin K) were evaluated by quantitative RT-PCR. Further, the protein level expression of NF-κBp-65, NFAtc1, c-Fos and MMP-9 was assessed using western blot analysis. KEY FINDINGS Our results demonstrated that ferulic acid significantly attenuated RANKL induced osteoclast differentiation as evidenced from SEM and TRAP staining analysis. A remarkable decrease in the bone resorption activity of osteoclasts was also noticed upon ferulic acid treatment. In addition, the down-regulation of RANKL induced NF-κB activation and its associated downstream factors like NFATc1, c-Fos, TRAP, Cathepsin K and MMP-9 was also observed upon ferulic acid treatment. SIGNIFICANCE Thus, our findings evidence the anti-stimulatory and anti-resorptive role of ferulic acid via the inhibition of RANKL dependent NF-κB signalling pathway.
Collapse
Affiliation(s)
- Hari Madhuri Doss
- Immunopathology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamilnadu, India
| | - Snigdha Samarpita
- Immunopathology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamilnadu, India
| | - Ramamoorthi Ganesan
- Immunopathology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamilnadu, India
| | - Mahaboobkhan Rasool
- Immunopathology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamilnadu, India.
| |
Collapse
|
48
|
Narahara H, Sakai E, Yamaguchi Y, Narahara S, Iwatake M, Okamoto K, Yoshida N, Tsukuba T. Actin binding LIM 1 (abLIM1) negatively controls osteoclastogenesis by regulating cell migration and fusion. J Cell Physiol 2018; 234:486-499. [PMID: 29904924 DOI: 10.1002/jcp.26605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 03/16/2018] [Indexed: 12/22/2022]
Abstract
Actin binding LIM 1 (abLIM1) is a cytoskeletal actin-binding protein that has been implicated in interactions between actin filaments and cytoplasmic targets. Previous biochemical and cytochemical studies have shown that abLIM1 interacts and co-localizes with F-actin in the retina and muscle. However, whether abLIM1 regulates osteoclast differentiation has not yet been elucidated. In this study, we examined the role of abLIM1 in osteoclast differentiation and function. We found that abLIM1 expression was upregulated during receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclast differentiation, and that a novel transcript of abLIM1 was exclusively expressed in osteoclasts. Overexpression of abLIM1 in the murine monocytic cell line, RAW-D suppressed osteoclast differentiation and decreased expression of several osteoclast-marker genes. By contrast, small interfering RNA-induced knockdown of abLIM1 enhanced the formation of multinucleated osteoclasts and markedly increased the expression of the osteoclast-marker genes. Mechanistically, abLIM1 regulated the localization of tubulin, migration, and fusion in osteoclasts. Thus, these results indicate that abLIM1 negatively controls osteoclast differentiation by regulating cell migration and fusion mediated via actin formation.
Collapse
Affiliation(s)
- Haruna Narahara
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Eiko Sakai
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yu Yamaguchi
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shun Narahara
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Mayumi Iwatake
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kuniaki Okamoto
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Noriaki Yoshida
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takayuki Tsukuba
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
49
|
Kim TH, Ihn HJ, Kim K, Cho HS, Shin HI, Bae YC, Park EK. Inhibitory effects of methyl-3,5-di-O-caffeoyl-epi-quinate on RANKL-induced osteoclast differentiation. Bioorg Med Chem Lett 2018; 28:1925-1930. [PMID: 29657104 DOI: 10.1016/j.bmcl.2018.03.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/22/2018] [Accepted: 03/24/2018] [Indexed: 11/24/2022]
Abstract
In this study, we have shown that methyl-3,5-di-O-caffeoyl-epi-quinate, a naturally occurring compound isolated from Ainsliaea acerifolia, inhibits receptor activator of nuclear factor-κB ligand (RANKL)-induced formation of multinucleated tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts and the expression of osteoclast marker genes. Methyl-3,5-di-O-caffeoyl-epi-quinate also inhibited RANKL-induced activation of p38, Akt and extracellular signal-regulated kinase (ERK) as well as the expression of nuclear factor of activated T-cell (NFATc1), the key regulator of osteoclast differentiation. Negative regulators for osteoclast differentiation was upregulated by methyl-3,5-di-O-caffeoyl-epi-quinate. Collectively, our results suggested that methyl-3,5-di-O-caffeoyl-epi-quinate suppresses osteoclast differentiation via downregulation of RANK signaling pathways and NFATc1.
Collapse
Affiliation(s)
- Tae Hoon Kim
- Department of Food Science and Biotechnology, Daegu University, Gyeongsan 38453, Republic of Korea
| | - Hye Jung Ihn
- IHBR, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Kiryeong Kim
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Hye-Sung Cho
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Hong-In Shin
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Yong Chul Bae
- Department of Oral Anatomy and Neuroscience, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Eui Kyun Park
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu 41940, Republic of Korea.
| |
Collapse
|
50
|
"Omics" Signatures in Peripheral Monocytes from Women with Low BMD Condition. J Osteoporos 2018; 2018:8726456. [PMID: 29744028 PMCID: PMC5878888 DOI: 10.1155/2018/8726456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 02/12/2018] [Indexed: 01/20/2023] Open
Abstract
Postmenopausal osteoporosis (PMO) is a result of increased bone resorption compared to formation. Osteoclasts are responsible for bone resorption, which are derived from circulating monocytes that undertake a journey from the blood to the bone for the process of osteoclastogenesis. In recent times, the use of high throughput technologies to explore monocytes from women with low versus high bone density has led to the identification of candidate molecules that may be deregulated in PMO. This review provides a list of molecules in monocytes relevant to bone density which have been identified by "omics" studies in the last decade or so. The molecules in monocytes that are deregulated in low BMD condition may contribute to processes such as monocyte survival, migration/chemotaxis, adhesion, transendothelial migration, and differentiation into the osteoclast lineage. Each of these processes may be crucial to the overall route of osteoclastogenesis and an increase in any/all of these processes can lead to increased bone resorption and subsequently low bone density. Whether these molecules are indeed the cause or effect is an arena currently unexplored.
Collapse
|