1
|
Kim JW, Jung JY, Kim HA, Son H, Suh CH. Patient preference, efficacy, and compliance with zoledronic acid for glucocorticoid-induced osteoporosis in patients with autoimmune diseases. Postgrad Med J 2024; 100:334-341. [PMID: 38297995 DOI: 10.1093/postmj/qgae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/06/2023] [Accepted: 12/25/2023] [Indexed: 02/02/2024]
Abstract
PURPOSE We evaluated the preference, patient satisfaction, and efficacy of zoledronic acid compared with oral bisphosphonates (BPs) for glucocorticoid-induced osteoporosis (GIOP) in patients with autoimmune diseases. METHODS We enrolled 50 patients with new fractures or osteoporosis detected on follow-up bone densitometry after at least 1 year of oral BP use among patients diagnosed with GIOP during treatment for autoimmune diseases. After 1 year of zoledronic acid treatment, patients completed a survey for preference and satisfaction assessment. Treatment efficacy was analysed by comparing bone mineral density changes and fractures with those in a control group of patients who continued oral BP use. RESULTS Age, sex, treatment duration, and medication history did not differ significantly between the two groups. Among the participants, 86.7% preferred and were more satisfied with intravenous zoledronic acid than with oral BPs, primarily because of the convenience of its administration interval. Only two patients (4%) reported infusion-related adverse events with zoledronic acid. Furthermore, no significant differences were observed in the annualized percentage change in the bone mineral density of the lumbar spine, femur neck, and hip between patients receiving zoledronic acid and those receiving oral BPs. The occurrence of new fractures was consistent across both groups, with two cases in each, showing no significant differences. CONCLUSION Patients showed a preference for and greater satisfaction with zoledronic acid, and its efficacy in treating osteoporosis was comparable to that of oral BPs. Therefore, zoledronic acid is a suitable treatment option for GIOP in patients with autoimmune diseases.
Collapse
Affiliation(s)
- Ji-Won Kim
- Department of Rheumatology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Ju-Yang Jung
- Department of Rheumatology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Hyoun-Ah Kim
- Department of Rheumatology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Heejun Son
- Department of Rheumatology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Chang-Hee Suh
- Department of Rheumatology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
2
|
Reid IR, Green JR, Lyles KW, Reid DM, Trechsel U, Hosking DJ, Black DM, Cummings SR, Russell RGG, Eriksen EF. Zoledronate. Bone 2020; 137:115390. [PMID: 32353565 DOI: 10.1016/j.bone.2020.115390] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/16/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023]
Abstract
Zoledronate is the most potent and most long-acting bisphosphonate in clinical use, and is administered as an intravenous infusion. Its major uses are in osteoporosis, Paget's disease, and in myeloma and cancers to reduce adverse skeletal related events (SREs). In benign disease, it is a first- or second-line treatment for osteoporosis, achieving anti-fracture efficacy comparable to that of the RANKL blocker, denosumab, over 3 years, and it reduces fracture risk in osteopenic older women. It is the preferred treatment for Paget's disease, achieving higher rates of remissions which are much more prolonged than with any other agent. Some trials have suggested that it reduces mortality, cardiovascular disease and cancer, but these findings are not consistent across all studies. It is nephrotoxic, so should not be given to those with significant renal impairment, and, like other potent anti-resorptive agents, can cause hypocalcemia in patients with severe vitamin D deficiency, which should be corrected before administration. Its most common adverse effect is the acute phase response, seen in 30-40% of patients after their first dose, and much less commonly subsequently. Clinical trials in osteoporosis have not demonstrated increases in osteonecrosis of the jaw or in atypical femoral fractures. Observational databases are currently inadequate to determine whether these problems are increased in zoledronate users. Now available as a generic, zoledronate is a cost-effective agent for fracture prevention and for management of Paget's disease, but wider provision of infusion facilities is important to increase patient access. There is a need to further explore its potential for reducing cancer, cardiovascular disease and mortality, since these effects could be substantially more important than its skeletal actions.
Collapse
Affiliation(s)
- Ian R Reid
- Department of Medicine, University of Auckland, Auckland, New Zealand.
| | | | | | - David M Reid
- School of Medicine, Dentistry and Nutrition, University of Aberdeen, UK
| | | | | | - Dennis M Black
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Steven R Cummings
- San Francisco Coordinating Center, Sutter Health Research, San Francisco, CA, USA; Departments of Medicine, Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - R Graham G Russell
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, UK; Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK
| | - Erik F Eriksen
- Department of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Cai G, Laslett LL, Aitken D, Halliday A, Pan F, Otahal P, Speden D, Winzenberg TM, Jones G. Effect of Zoledronic Acid and Denosumab in Patients With Low Back Pain and Modic Change: A Proof-of-Principle Trial. J Bone Miner Res 2018; 33:773-782. [PMID: 29297602 DOI: 10.1002/jbmr.3376] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/07/2017] [Accepted: 12/23/2017] [Indexed: 01/08/2023]
Abstract
The aim of this study was to evaluate the effect of zoledronic acid (ZA) and denosumab on low back pain (LBP) and Modic change (MC) over 6 months. Adults aged ≥40 years with significant LBP for at least 6 months duration and MC (type 1, 2, or mixed) were randomized to receive ZA (5 mg/100 mL), denosumab (60 mg), or placebo. LBP was measured monthly by visual analogue scale (VAS) and the LBP Rating Scale (RS). MC was measured from MRIs of T12 -S1 vertebrae at screening and 6 months. A total of 103 participants with moderate/severe LBP (mean VAS = 57 mm; mean RS = 18) and median total MC area 538 mm2 were enrolled. Compared to placebo, LBP reduced significantly at 6 months in the ZA group for RS (-3.3; 95% CI, -5.9 to -0.7) but not VAS (-8.2; 95% CI, -18.8 to +2.4) with similar findings for denosumab (RS, -3.0; 95% CI, -5.7 to -0.3; VAS, -10.7; 95% CI, -21.7 to +0.2). There was little change in areal MC size overall and no difference between groups with the exception of denosumab in those with type 1 Modic change (-22.1 mm2 ; 95% CI, -41.5 to -2.7). In post hoc analyses, both medications significantly reduced VAS LBP in participants with milder disc degeneration and non-neuropathic pain, and denosumab reduced VAS LBP in those with type 1 MC over 6 months, compared to placebo. Adverse events were more frequent in the ZA group. These results suggests a potential therapeutic role for ZA and denosumab in MC-associated LBP. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Guoqi Cai
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Laura L Laslett
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Dawn Aitken
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Andrew Halliday
- Department of Radiology, Royal Hobart Hospital, Hobart, TAS, Australia
| | - Feng Pan
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Petr Otahal
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Deborah Speden
- Department of Rheumatology, Royal Hobart Hospital, Hobart, TAS, Australia
| | - Tania M Winzenberg
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Graeme Jones
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
4
|
Abstract
The Wnt/β-catenin signaling pathway plays an essential role in osteoblast biology. Sclerostin is a soluble antagonist of Wnt/β-catenin signaling secreted primarily by osteocytes. Current evidence indicates that sclerostin likely functions as a local/paracrine regulator of bone metabolism rather than as an endocrine hormone. Nonetheless, circulating sclerostin levels in humans often reflect changes in the bone microenvironment, although there may be exceptions to this observation. Using existing assays, circulating sclerostin levels have been shown to be altered in response to both hormonal stimuli and across a variety of normal physiological and pathophysiological conditions. In both rodents and humans, parathyroid hormone provided either intermittently or continuously suppresses sclerostin levels. Likewise, most evidence from both human and animal studies supports a suppressive effect of estrogen on sclerostin levels. Efforts to examine non-hormonal/systemic regulation of sclerostin have in general shown less consistent findings or have provided associations rather than direct interventional information, with the exception of mechanosensory studies which have consistently demonstrated increased sclerostin levels with skeletal unloading, and conversely decreases in sclerostin with enhanced skeletal loading. Herein, we will review the existent literature on both hormonal and non-hormonal/systemic factors which have been studied for their impact on sclerostin regulation.
Collapse
Affiliation(s)
- Matthew T Drake
- Department of Endocrinology, Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, MN, USA.
| | - Sundeep Khosla
- Department of Endocrinology, Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
5
|
Hsieh PC. Effectiveness and Safety of Zoledronic Acid in the Treatment of Osteoporosis. Orthopedics 2016; 39:e263-70. [PMID: 26881461 DOI: 10.3928/01477447-20160201-02] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 07/08/2015] [Indexed: 02/03/2023]
Abstract
The effectiveness of current treatments for osteoporosis is limited by poor patient compliance. However, a favorable dosing regimen of zoledronic acid (ZA) has the potential to improve patient compliance and thus clinical outcomes. The author conducted a retrospective analysis to examine adherence to and the antiosteoporotic effects of a once-yearly infusion of 5 mg of ZA in Taiwanese patients with osteoporosis for up to 48 months. Five men and 149 postmenopausal women (mean age, 77.1 years) were included. Prior to ZA treatment, 66.2% of patients had fractures; most patients discontinued previous treatments due to compliance or convenience issues. Approximately 85% of patients received at least 2 infusions of ZA. Following ZA treatment, bone mineral density improved from baseline at 12 months (11% from baseline; P=.01) and 48 months (20.7% from baseline; P=.009). In addition there was a significant reduction in mean beta-C-telopeptide at all time points from 12 (P<.001) to 36 months (P=.010). New clinical fractures occurred in 16 (10.4%) patients, of which 12 patients experienced a single fracture. Zoledronic acid had an acceptable safety profile; no adverse events were considered to be drug related. Treatment with ZA improved bone health by enhancing bone mineral density and reducing bone turnover, even in high-risk patients. Low fracture rates and high adherence further elucidate the benefits of ZA in the treatment of osteoporosis.
Collapse
|
6
|
Cavalier E, Bergmann P, Bruyère O, Delanaye P, Durnez A, Devogelaer JP, Ferrari SL, Gielen E, Goemaere S, Kaufman JM, Toukap AN, Reginster JY, Rousseau AF, Rozenberg S, Scheen AJ, Body JJ. The role of biochemical of bone turnover markers in osteoporosis and metabolic bone disease: a consensus paper of the Belgian Bone Club. Osteoporos Int 2016; 27:2181-2195. [PMID: 27026330 DOI: 10.1007/s00198-016-3561-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/03/2016] [Indexed: 01/22/2023]
Abstract
The exact role of biochemical markers of bone turnover in the management of metabolic bone diseases remains a topic of controversy. In this consensus paper, the Belgian Bone Club aimed to provide a state of the art on the use of these biomarkers in different clinical or physiological situations like in postmenopausal women, osteoporosis in men, in elderly patients, in patients suffering from bone metastasis, in patients with chronic renal failure, in pregnant or lactating women, in intensive care patients, and in diabetics. We also gave our considerations on the analytical issues linked to the use of these biomarkers, on potential new emerging biomarkers, and on the use of bone turnover biomarkers in the follow-up of patients treated with new drugs for osteoporosis.
Collapse
Affiliation(s)
- E Cavalier
- Department of Clinical Chemistry, UnilabLg, CIRM, University of Liège, CHU de Liège, Domaine du Sart-Tilman, 4000, Liège, Belgium.
| | - P Bergmann
- Department of Radioisotopes, CHU Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - O Bruyère
- Department of Public Health, Epidemiology and Health Economics, University of Liège, Liège, Belgium
| | - P Delanaye
- Department of Nephrology Dialysis Transplantation, University of Liège, CHU de Liège, Liège, Belgium
| | - A Durnez
- Pôle de Pathologie Rhumatismale, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - J-P Devogelaer
- Pôle de Pathologie Rhumatismale, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - S L Ferrari
- Department of Bone Diseases, Hôpitaux Universitaires Genève, Geneva, Switzerland
| | - E Gielen
- Gerontology and Geriatrics Section, Department of Clinical and Experimental Medicine, K.U. Leuven, Leuven, Belgium
| | - S Goemaere
- Unit for Osteoporosis and Metabolic Bone Diseases, Ghent University Hospital, Ghent, Belgium
| | - J-M Kaufman
- Department of Endocrinology and Unit for Osteoporosis and Metabolic Bone Diseases, Ghent University Hospital, Ghent, Belgium
- Centre Académique de Recherche et d'Expérimentation en Santé SPRL (CARES SPRL), Liège, Belgium
| | - A Nzeusseu Toukap
- Pôle de Pathologie Rhumatismale, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - J-Y Reginster
- Centre Académique de Recherche et d'Expérimentation en Santé SPRL (CARES SPRL), Liège, Belgium
| | - A-F Rousseau
- Burn Centre and General Intensive Care Department, University of Liège, CHU de Liège, Liège, Belgium
| | - S Rozenberg
- Department of Gynaecology-Obstetrics, Université Libre de Bruxelles, Brussels, Belgium
| | - A J Scheen
- Division of Diabetes, Nutrition and Metabolic Disorders, University of Liège CHU de Liège, Liège, Belgium
| | - J-J Body
- Department of Medicine, CHU Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
7
|
Current Knowledge, Drug-Based Therapeutic Options and Future Directions in Managing Osteoporosis. Clin Rev Bone Miner Metab 2016. [DOI: 10.1007/s12018-016-9207-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Yao W, Dai W, Jiang L, Lay EYA, Zhong Z, Ritchie RO, Li X, Ke H, Lane NE. Sclerostin-antibody treatment of glucocorticoid-induced osteoporosis maintained bone mass and strength. Osteoporos Int 2016; 27:283-294. [PMID: 26384674 PMCID: PMC4958115 DOI: 10.1007/s00198-015-3308-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 08/25/2015] [Indexed: 12/18/2022]
Abstract
UNLABELLED This study was to determine if antibody against sclerostin (Scl-Ab) could prevent glucocorticoid (GC)-induced osteoporosis in mice. We found that Scl-Ab prevented GC-induced reduction in bone mass and bone strength and that the anabolic effects of Scl-Ab might be partially achieved through the preservation of osteoblast activity through autophagy. INTRODUCTION Glucocorticoids (GCs) inhibit bone formation by altering osteoblast and osteocyte cell activity and lifespan. A monoclonal antibody against sclerostin, Scl-Ab, increased bone mass in both preclinical animal and clinical studies in subjects with low bone mass. The objectives of this study were to determine if treatment with the Scl-Ab could prevent loss of bone mass and strength in a mouse model of GC excess and to elucidate if Scl-Ab modulated bone cell activity through autophagy. METHODS We generated reporter mice that globally expressed dsRed fused to LC3, a protein marker for autophagosomes, and evaluated the dose-dependent effects of GCs (0, 0.8, 2.8, and 4 mg/kg/day) and Scl-Ab on autophagic osteoblasts, bone mass, and bone strength. RESULTS GC treatment at 2.8 and 4 mg/kg/day of methylprednisolone significantly lowered trabecular bone volume (Tb-BV/TV) at the lumbar vertebrae and distal femurs, cortical bone mass at the mid-shaft femur (FS), and cortical bone strength compared to placebo (PL). In mice treated with GC and Scl-Ab, Tb-BV/TV increased by 60-125 %, apparent bone strength of the lumbar vertebrae by 30-70 %, FS-BV by 10-18 %, and FS-apparent strength by 13-15 %, as compared to GC vehicle-treated mice. GC treatment at 4 mg/kg/day reduced the number of autophagic osteoblasts by 70 % on the vertebral trabecular bone surface compared to the placebo group (PL, GC 0 mg), and GC + Scl-Ab treatment. CONCLUSIONS Treatment with Scl-Ab prevented GC-induced reduction in both trabecular and cortical bone mass and strength and appeared to maintain osteoblast activity through autophagy.
Collapse
Affiliation(s)
- W. Yao
- Center for Musculoskeletal Health, Internal Medicine, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - W. Dai
- Center for Musculoskeletal Health, Internal Medicine, University of California at Davis Medical Center, Sacramento, CA 95817, USA
- Science and Technology Experimental Center, Integrative Medicine Discipline, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - L. Jiang
- Center for Musculoskeletal Health, Internal Medicine, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - E. Y.-A. Lay
- Center for Musculoskeletal Health, Internal Medicine, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Z. Zhong
- Center for Musculoskeletal Health, Internal Medicine, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - R. O. Ritchie
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, CA 94720, USA
| | - X. Li
- Department of Metabolic Disorders, Amgen Inc., Thousand Oaks, CA, USA
| | - H. Ke
- Department of Metabolic Disorders, Amgen Inc., Thousand Oaks, CA, USA
| | - N. E. Lane
- Center for Musculoskeletal Health, Internal Medicine, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| |
Collapse
|
9
|
|
10
|
Kenanidis E, Potoupnis ME, Kakoulidis P, Leonidou A, Sakellariou GT, Sayegh FE, Tsiridis E. Management of glucocorticoid-induced osteoporosis: clinical data in relation to disease demographics, bone mineral density and fracture risk. Expert Opin Drug Saf 2015; 14:1035-53. [PMID: 25952267 DOI: 10.1517/14740338.2015.1040387] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Glucocorticoid-induced osteoporosis (GIOP) is the most common type of secondary osteoporosis. Patient selection and the treatment choice remain to be controversial. None of the proposed management guidelines are widely accepted. We evaluate the available clinical data, the efficacy of current medication and we propose an overall algorithm for managing GIOP. AREAS COVERED This article provides a critical review of in vivo and clinical evidence regarding GIOP and developing evidence-based algorithm of treatment. Data base used includes MEDLINE® (1950 to May 2014). EXPERT OPINION Patient-specific treatment is the gold standard of care. Glucocorticoid (GC)-treated patients must comply with a healthy lifestyle and receive 1000 mg of calcium and at least 800 mg of Vitamin D daily. Bisphosphonate (BP) therapy is the current standard of care for prevention and treatment of GIOP. Most of bisphosphonates demonstrated benefit in lumbar bone mineral density (BMD) and some in hip BMD. Alendronate, risedronate and zoledronate showed vertebral anti-fracture efficacy in postmenopausal women and men. Scarce data however when compared head to head with BP efficacy. In post-menopausal women, early antiresorptive BP treatment appears to be efficient and safe. In premenopausal women and patients at high risk of fracture receiving long-term GC therapy however, teriparitide may be advised alternatively.
Collapse
Affiliation(s)
- Eustathios Kenanidis
- Aristotle University Medical School, Academic Orthopaedic Unit , Thessaloniki , Greece
| | | | | | | | | | | | | |
Collapse
|
11
|
Dai W, Jiang L, Lay YAE, Chen H, Jin G, Zhang H, Kot A, Ritchie RO, Lane NE, Yao W. Prevention of glucocorticoid induced bone changes with beta-ecdysone. Bone 2015; 74:48-57. [PMID: 25585248 PMCID: PMC4355031 DOI: 10.1016/j.bone.2015.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/15/2014] [Accepted: 01/05/2015] [Indexed: 12/20/2022]
Abstract
Beta-ecdysone (βEcd) is a phytoecdysteroid found in the dry roots and seeds of the asteraceae and achyranthes plants, and is reported to increase osteogenesis in vitro. Since glucocorticoid (GC) excess is associated with a decrease in bone formation, the purpose of this study was to determine if treatment with βEcd could prevent GC-induced osteoporosis. Two-month-old male Swiss-Webster mice (n=8-10/group) were randomized to either placebo or slow release prednisolone pellets (3.3mg/kg/day) and treated with vehicle control or βEcd (0.5mg/kg/day) for 21days. GC treatment inhibited age-dependent trabecular gain and cortical bone expansion and this was accompanied by a 30-50% lower bone formation rate (BFR) at both the endosteal and periosteal surfaces. Mice treated with only βEcd significantly increased bone formation on the endosteal and periosteal bone surfaces, and increased cortical bone mass were their controls to compare to GC alone. Concurrent treatment of βEcd and GC completely prevented the GC-induced reduction in BFR, trabecular bone volume and partially prevented cortical bone loss. In vitro studies determined that βEcd prevented the GC increase in autophagy of the bone marrow stromal cells as well as in whole bone. In summary, βEcd prevented GC induced changes in bone formation, bone cell viability and bone mass. Additional studies are warranted of βEcd for the treatment of GC induced bone loss.
Collapse
Affiliation(s)
- Weiwei Dai
- Center for Musculoskeletal Health, Internal Medicine, University of California at Davis Medical Center, Sacramento, CA 95817, USA; Department of Science and Technology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Li Jiang
- Center for Musculoskeletal Health, Internal Medicine, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Yu-An Evan Lay
- Center for Musculoskeletal Health, Internal Medicine, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Haiyan Chen
- Center for Musculoskeletal Health, Internal Medicine, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Guoqin Jin
- Department of Science and Technology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Hongliang Zhang
- Center for Musculoskeletal Health, Internal Medicine, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Alexander Kot
- Center for Musculoskeletal Health, Internal Medicine, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Robert O Ritchie
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Nancy E Lane
- Center for Musculoskeletal Health, Internal Medicine, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Wei Yao
- Center for Musculoskeletal Health, Internal Medicine, University of California at Davis Medical Center, Sacramento, CA 95817, USA.
| |
Collapse
|