1
|
Peng Y, Wang Y, Bai R, Shi K, Zhou H, Chen C. Nanomaterials: Recent Advances in Knee Osteoarthritis Treatment. Adv Healthc Mater 2024; 13:e2400615. [PMID: 39308252 DOI: 10.1002/adhm.202400615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/16/2024] [Indexed: 12/28/2024]
Abstract
Osteoarthritis (OA) of the knee is the most prevalent degenerative joint condition that places a substantial financial and medical burden on society. However, due to drawbacks such as inefficiency, adverse effects, and brief duration of action, the clinical efficacy of the current major therapies for knee OA is largely restricted. Therefore, novel medication development is highly required to address these issues. Numerous studies in recent years have established that nanomaterials can be a potential and highly effective way to overcome these challenges. In this review, the anatomical distinctions between healthy and OA knee joints, as well as novel advances in the field of nanomaterials for the treatment of knee OA are summarized. The limits of the present therapeutic strategies for treating knee OA are also highlighted, as well as the potential prospects of nanomaterials in the future.
Collapse
Affiliation(s)
- Yufeng Peng
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, China
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Ying Wang
- National Center for Orthopaedics, Department of Molecular Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Ru Bai
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Kejian Shi
- Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Huige Zhou
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Chunying Chen
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, China
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing, 100021, China
| |
Collapse
|
2
|
Choi M, Min JS, Moon SW, Jeon J, Do HK, Kim W. Mitoregulin modulates inflammation in osteoarthritis: Insights from synovial transcriptomics and cellular studies. Biochem Biophys Res Commun 2024; 734:150652. [PMID: 39245029 DOI: 10.1016/j.bbrc.2024.150652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
Osteoarthritis is a prevalent musculoskeletal disease that involves cartilage degradation, subchondral bone remodeling, and synovial inflammation and ultimately causes physical disability. Common risk factors for osteoarthritis include age, sex, obesity, and genetic predispositions. Treatment includes nonpharmaceutical and pharmacological approaches; however, disease-modifying osteoarthritis drugs remain undeveloped. We aimed to identify key regulatory factors underlying the etiology of osteoarthritis. We studied alterations of the inflammatory responses after manipulating the expression of MTLN, which we selected after sequencing and transcriptomics of the patients' synovial tissues. MTLN expression was increased in synovial tissues of patients and in SW982 human synovial sarcoma cells following inflammatory stimuli. We found that MTLN overexpression or knockout respectively decreased or increased expression of the inflammation-associated genes, including IL-6, IL-8, and TNF-α. Thus, high levels of MTLN in osteoarthritis may protect tissues against excessive inflammation, thereby offering therapeutic potentials.
Collapse
Affiliation(s)
- Minjeong Choi
- Department of Biochemistry, Department of Convergence Medical Science, and Institute of Medical Science, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Ju-Sik Min
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Sang Won Moon
- Department of Orthopedic Surgery, Inje University Haeundae Paik Hospital, Busan, Republic of Korea
| | - Jaewan Jeon
- Department of Radiation Oncology, Inje University Haeundae Paik Hospital, Busan, Republic of Korea
| | - Hwan-Kwon Do
- Department of Physical Medicine and Rehabilitation, Dongnam Institute of Radiological & Medical Sciences, Busan, Republic of Korea
| | - Wanil Kim
- Department of Biochemistry, Department of Convergence Medical Science, and Institute of Medical Science, Gyeongsang National University School of Medicine, Jinju, Republic of Korea.
| |
Collapse
|
3
|
Castagno S, Gompels B, Strangmark E, Robertson-Waters E, Birch M, van der Schaar M, McCaskie AW. Understanding the role of machine learning in predicting progression of osteoarthritis. Bone Joint J 2024; 106-B:1216-1222. [PMID: 39481441 DOI: 10.1302/0301-620x.106b11.bjj-2024-0453.r1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Aims Machine learning (ML), a branch of artificial intelligence that uses algorithms to learn from data and make predictions, offers a pathway towards more personalized and tailored surgical treatments. This approach is particularly relevant to prevalent joint diseases such as osteoarthritis (OA). In contrast to end-stage disease, where joint arthroplasty provides excellent results, early stages of OA currently lack effective therapies to halt or reverse progression. Accurate prediction of OA progression is crucial if timely interventions are to be developed, to enhance patient care and optimize the design of clinical trials. Methods A systematic review was conducted in accordance with PRISMA guidelines. We searched MEDLINE and Embase on 5 May 2024 for studies utilizing ML to predict OA progression. Titles and abstracts were independently screened, followed by full-text reviews for studies that met the eligibility criteria. Key information was extracted and synthesized for analysis, including types of data (such as clinical, radiological, or biochemical), definitions of OA progression, ML algorithms, validation methods, and outcome measures. Results Out of 1,160 studies initially identified, 39 were included. Most studies (85%) were published between 2020 and 2024, with 82% using publicly available datasets, primarily the Osteoarthritis Initiative. ML methods were predominantly supervised, with significant variability in the definitions of OA progression: most studies focused on structural changes (59%), while fewer addressed pain progression or both. Deep learning was used in 44% of studies, while automated ML was used in 5%. There was a lack of standardization in evaluation metrics and limited external validation. Interpretability was explored in 54% of studies, primarily using SHapley Additive exPlanations. Conclusion Our systematic review demonstrates the feasibility of ML models in predicting OA progression, but also uncovers critical limitations that currently restrict their clinical applicability. Future priorities should include diversifying data sources, standardizing outcome measures, enforcing rigorous validation, and integrating more sophisticated algorithms. This paradigm shift from predictive modelling to actionable clinical tools has the potential to transform patient care and disease management in orthopaedic practice.
Collapse
Affiliation(s)
- Simone Castagno
- Department of Surgery, University of Cambridge, Cambridge, UK
| | | | | | | | - Mark Birch
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Mihaela van der Schaar
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
4
|
Qiu S, Shi Y, Zang H, Sun X, Wang Q, Fu X, Shen H, Mo F, Zhang Y, Chen X, Zhou J, Li L, Lin G. Multifunctional injectable microspheres for osteoarthritis therapy via spatiotemporally modulating macrophage polarization and inflammation. NPJ Regen Med 2024; 9:22. [PMID: 39289387 PMCID: PMC11408510 DOI: 10.1038/s41536-024-00368-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/10/2024] [Indexed: 09/19/2024] Open
Abstract
Local injection of anti-inflammatory drugs for osteoarthritis emerged as a promising administration in the clinic, and sustained-release dosage forms have great potential for future therapeutic applications. Controlling the response of patients only in the acute inflammatory phase is currently the focus of therapeutic interventions. To relieve acute pain in patients and to improve the long-term prognosis effect of osteoarthritis treatment, we designed a two-pronged approach in this research: an injectable double-layer microsphere containing a "nonsteroidal anti-inflammatory drug - macrophage polarizing factor" was constructed. The results indicated that microspheres could regulate the intra-articular environment by inhibiting local inflammatory cytokine production, promoting macrophage polarization to the M2-phenotype, and increasing the expression of cartilage repair factors. Polymers chosen could govern the biocompatibility of microspheres and control the release sequence of the two drugs. Injection of microspheres into the degenerative articular cavity of rats leads to suppressed inflammation and well-promoted cartilage regeneration.
Collapse
Affiliation(s)
- Shengnan Qiu
- Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medience, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
| | - Yanbin Shi
- School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Hengchang Zang
- Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medience, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
| | - Xiaochen Sun
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan, Shandong Province, 250002, China
| | - Qingjie Wang
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Xianglei Fu
- Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medience, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
| | - Hua Shen
- Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medience, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
| | - Fanyang Mo
- Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medience, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
| | - Yankun Zhang
- Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medience, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
| | - Xiangqin Chen
- Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medience, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
| | - Jiamin Zhou
- Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medience, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
| | - Lian Li
- Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medience, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province, 250012, China.
| | - Guimei Lin
- Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medience, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province, 250012, China.
| |
Collapse
|
5
|
Li Y, Zhao J, Guo S, He D. siRNA therapy in osteoarthritis: targeting cellular pathways for advanced treatment approaches. Front Immunol 2024; 15:1382689. [PMID: 38895116 PMCID: PMC11184127 DOI: 10.3389/fimmu.2024.1382689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Osteoarthritis (OA) is a common joint disorder characterized by the degeneration of cartilage and inflammation, affecting millions worldwide. The disease's complex pathogenesis involves various cell types, such as chondrocytes, synovial cells, osteoblasts, and immune cells, contributing to the intricate interplay of factors leading to tissue degradation and pain. RNA interference (RNAi) therapy, particularly through the use of small interfering RNA (siRNA), emerges as a promising avenue for OA treatment due to its capacity for specific gene silencing. siRNA molecules can modulate post-transcriptional gene expression, targeting key pathways involved in cellular proliferation, apoptosis, senescence, autophagy, biomolecule secretion, inflammation, and bone remodeling. This review delves into the mechanisms by which siRNA targets various cell populations within the OA milieu, offering a comprehensive overview of the potential therapeutic benefits and challenges in clinical application. By summarizing the current advancements in siRNA delivery systems and therapeutic targets, we provide a solid theoretical foundation for the future development of novel siRNA-based strategies for OA diagnosis and treatment, paving the way for innovative and more effective approaches to managing this debilitating disease.
Collapse
Affiliation(s)
- Yunshen Li
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jianan Zhao
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongyi He
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
He M, Liu J, Sun Y, Chen X, Wang J, Gao W. FSGT capsule inhibits IL-1β-induced inflammation in chondrocytes and ameliorates osteoarthritis by upregulating LncRNA PACER and downregulating COX2/PGE2. Immun Inflamm Dis 2024; 12:e1334. [PMID: 38938021 PMCID: PMC11211208 DOI: 10.1002/iid3.1334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 04/08/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024] Open
Abstract
OBJECTIVE To explore the efficacy and potential mechanism of Fengshi Gutong capsule (FSGTC) in osteoarthritis (OA) inflammation. METHODS The impact of FSGTC on laboratory indicators of OA patients was explored using data mining technology and association rule analysis. Then, the OA cell model was constructed by inducing chondrocytes (CHs) with interleukin-1β (IL-1β). In the presence of FSGTC intervention, the regulatory mechanism of PACER/COX2/PGE2 in OA-CH viability and inflammatory responses was evaluated. RESULTS Retrospective data mining showed that FSGTC effectively reduced inflammation indexes (ESR, HCRP) of OA patients. Cell experiments showed that LncRNA PACER (PACER) silencing inhibited the proliferation activity of OA-CHs, increased the level of COX2 protein, elevated the levels of PGE2, TNF-α, and IL-1β, and decreased the levels of IL-4 and IL-10 (p < .01). On the contrary, FSGTC-containing serum reversed the effect of PACER silencing on OA-CHs (p < .01). After the addition of COX2 pathway inhibitor, the proliferation activity of OA-CHs was enhanced; the levels of PGE2, TNF-α, and IL-1β were decreased while the levels of IL-4 and IL-10 were increased (p < .01). CONCLUSION FSGTC inhibits IL-1β-induced inflammation in CHs and ameliorates OA by upregulating PACER and downregulating COX2/PGE2.
Collapse
Affiliation(s)
- Mingyu He
- Department of Rheumatism Immunity, The First Affiliated HospitalAnhui University of Chinese MedicineHefeiChina
| | - Jian Liu
- Department of Rheumatism Immunity, The First Affiliated HospitalAnhui University of Chinese MedicineHefeiChina
| | - Yanqiu Sun
- Department of Rheumatism Immunity, The First Affiliated HospitalAnhui University of Chinese MedicineHefeiChina
| | - Xiaolu Chen
- Department of Rheumatism Immunity, The First Affiliated HospitalAnhui University of Chinese MedicineHefeiChina
| | - Jue Wang
- Sinopharm Group Jingfang (Anhui) Pharmaceutical Co., Ltd.JingfangChina
| | - Wu Gao
- Sinopharm Group Jingfang (Anhui) Pharmaceutical Co., Ltd.JingfangChina
| |
Collapse
|
7
|
Qi B, Wang Z, Cao Y, Zhao H. Study on the treatment of osteoarthritis by acupuncture combined with traditional Chinese medicine based on pathophysiological mechanism: A review. Medicine (Baltimore) 2024; 103:e37483. [PMID: 38579081 PMCID: PMC10994424 DOI: 10.1097/md.0000000000037483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/13/2024] [Indexed: 04/07/2024] Open
Abstract
Osteoarthritis (OA) is a major contributor to disability and social costs in the elderly. As the population ages and becomes increasingly obese, the incidence of the disease is higher than in previous decades. In recent years, important progress has been made in the causes and pathogenesis of OA pain. Modern medical treatment modalities mainly include the specific situation of the patient and focus on the core treatment, including self-management and education, exercise, and related weight loss. As an important part of complementary and alternative medicine, TCM has remarkable curative effect, clinical safety, and diversity of treatment methods in the treatment of OA. Traditional Chinese Medicine treatment of OA has attracted worldwide attention. Therefore, this article will study the pathophysiological mechanism of OA based on modern medicine, and explore the treatment of OA by acupuncture combined with Chinese Medicine.
Collapse
Affiliation(s)
- Biao Qi
- Shenzhen Baoan District Shiyan People’s Hospital, Shenzhen, China
| | - Zeyu Wang
- Shenzhen Pingshan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Ying Cao
- Shenzhen Pingshan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Haishen Zhao
- Community Health Service Center of Nanhui New Town, Shanghai, China
| |
Collapse
|
8
|
Sönmez DZ, Taşcı S. The Effect of St. John's Wort Oil (Hypericum Perforatum L.) in Knee Osteoarthritis: A Randomized Controlled and Qualitative Study. Pain Manag Nurs 2024; 25:e115-e125. [PMID: 38242739 DOI: 10.1016/j.pmn.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/07/2023] [Accepted: 12/10/2023] [Indexed: 01/21/2024]
Abstract
BACKGROUND Reducing pain and improving physical function are critical in the treatment of osteoarthritis. Although individuals use St. John's Wort oil to relieve pain due to osteoarthritis, no scientific research has been found investigating its effectiveness. AIM This study investigated the effect of St. John's Wort oil on pain intensity and physical functions in people with knee osteoarthritis. METHODS This study adopted a single-blind, randomized, placebo-controlled, and qualitative mixed design. The sample consisted of 60 patients randomized into intervention (n = 30) and placebo control (n=30) groups. The experimental group participants were treated with topically St. John's Wort oil three times a week for 3 weeks, and the placebo control group participants were treated with olive oil three times a week for 3 weeks. Quantitative data were collected using a patient identification form, the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and the Visual Analogue Scale. Qualitative data were collected through semi-structured interviews. RESULTS The experimental group had a significantly lower mean Visual Analog Scale score in the first, third, and fourth follow-ups than the control group. The experimental group had significantly lower mean WOMAC-pain, WOMAC-stiffness, and WOMAC-physical function subscale scores in the last follow-up than in the first follow-up. The qualitative data agreed with the quantitative data. CONCLUSIONS The results show that St. John's Wort oil helps people with knee osteoarthritis feel less pain and become physically more active. Additional research is warranted to better understand the effect of St. John's Wort oil on pain intensity and physical functions in people with knee osteoarthritis.
Collapse
Affiliation(s)
- Deniz Zeynep Sönmez
- From the Osmaniye Korkut Ata University Faculty of Health Sciences Midwifery Department, Osmaniye, Turkey.
| | - Sultan Taşcı
- Erciyes University Faculty of Health Sciences Nursing Department, Erciyes University, Kayseri, Turkey
| |
Collapse
|
9
|
Liao Z, Umar M, Huang X, Qin L, Xiao G, Chen Y, Tong L, Chen D. Transient receptor potential vanilloid 1: A potential therapeutic target for the treatment of osteoarthritis and rheumatoid arthritis. Cell Prolif 2024; 57:e13569. [PMID: 37994506 PMCID: PMC10905355 DOI: 10.1111/cpr.13569] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/11/2023] [Accepted: 10/15/2023] [Indexed: 11/24/2023] Open
Abstract
This study aims to determine the molecular mechanisms and analgesic effects of transient receptor potential vanilloid 1 (TRPV1) in the treatments of osteoarthritis (OA) and rheumatoid arthritis (RA). We summarize and analyse current studies regarding the biological functions and mechanisms of TRPV1 in arthritis. We search and analyse the related literature in Google Scholar, Web of Science and PubMed databases from inception to September 2023 through the multi-combination of keywords like 'TRPV1', 'ion channel', 'osteoarthritis', 'rheumatoid arthritis' and 'pain'. TRPV1 plays a crucial role in regulating downstream gene expression and maintaining cellular function and homeostasis, especially in chondrocytes, synovial fibroblasts, macrophages and osteoclasts. In addition, TRPV1 is located in sensory nerve endings and plays an important role in nerve sensitization, defunctionalization or central sensitization. TRPV1 is a non-selective cation channel protein. Extensive evidence in recent years has established the significant involvement of TRPV1 in the development of arthritis pain and inflammation, positioning it as a promising therapeutic target for arthritis. TRPV1 likely represents a feasible therapeutic target for the treatment of OA and RA.
Collapse
Affiliation(s)
- Zhidong Liao
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
- Research Center for Computer‐aided Drug Discovery, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co‐constructed by the Province and MinistryGuangxi Medical UniversityNanningGuangxiChina
| | - Muhammad Umar
- Research Center for Computer‐aided Drug Discovery, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
| | - Xingyun Huang
- Research Center for Computer‐aided Drug Discovery, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research LaboratoryLi Ka Shing Institute of Health Sciences, The Chinese University of Hong KongHong KongChina
| | - Guozhi Xiao
- School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Yan Chen
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Liping Tong
- Research Center for Computer‐aided Drug Discovery, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Di Chen
- Research Center for Computer‐aided Drug Discovery, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
| |
Collapse
|
10
|
Perruccio AV, Young JJ, Wilfong JM, Denise Power J, Canizares M, Badley EM. Osteoarthritis year in review 2023: Epidemiology & therapy. Osteoarthritis Cartilage 2024; 32:159-165. [PMID: 38035975 DOI: 10.1016/j.joca.2023.11.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
OBJECTIVE To highlight some important findings from osteoarthritis (OA) epidemiology and therapy research undertaken over the past year. METHODS Search of MEDLINE and EMBASE databases between April 1, 2022 to March 3, 2023 using "exp *Osteoarthritis/" as the preliminary search term. The search was limited to articles published in English and including human subjects. Final inclusions were based on perceived importance and results that may inform improved identification of risk factors or OA treatments, as well as OA subgroups of potential relevance to risk factors or treatment approaches. RESULTS 3182 studies were screened, leaving 208 eligible for inclusion. This narrative review of thirty-three selected studies was arranged into: a) OA predictors - population-based studies, b) Specific predictors of OA and OA outcome; c) Intra-articular injections, and d) OA phenotypes. There was some suggestion of sex differences in predictors of incidence or outcomes. Body mass index changes appear largely to affect knee OA outcomes. Evidence points to a lack of benefit of viscosupplementation in knee OA; findings were variable for other injectables. Studies of OA phenotypes reveal potentially relevant clinical and pathophysiological differences. CONCLUSIONS Identifying risk factors for the incidence/progression of OA represents an ongoing and important area of OA research. Sex may play a role in this understanding and bears consideration and further study. For knee injectables other than viscosupplementation, additional high-quality trials appear warranted. Continued investigation and application of phenotyping across the OA disease, illness and care spectrum may be key to developing disease-modifying agents and their appropriate selection for individuals.
Collapse
Affiliation(s)
- Anthony V Perruccio
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Arthritis Community Research and Epidemiology Unit (ACREU), University Health Network, Toronto, Ontario, Canada; Institute of Health Policy, Management & Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - James J Young
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Arthritis Community Research and Epidemiology Unit (ACREU), University Health Network, Toronto, Ontario, Canada; Center for Muscle and Joint Health, Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark.
| | - Jessica M Wilfong
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Arthritis Community Research and Epidemiology Unit (ACREU), University Health Network, Toronto, Ontario, Canada.
| | - J Denise Power
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Arthritis Community Research and Epidemiology Unit (ACREU), University Health Network, Toronto, Ontario, Canada.
| | - Mayilee Canizares
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Arthritis Community Research and Epidemiology Unit (ACREU), University Health Network, Toronto, Ontario, Canada.
| | - Elizabeth M Badley
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Arthritis Community Research and Epidemiology Unit (ACREU), University Health Network, Toronto, Ontario, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
11
|
Alghamdi R, Pertusati F, Prokopovich P. Poly-beta-amino-ester licofelone conjugates development for osteoarthritis treatment. RSC Adv 2024; 14:15-28. [PMID: 38173598 PMCID: PMC10758810 DOI: 10.1039/d3ra04967a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/16/2023] [Indexed: 01/05/2024] Open
Abstract
Disease-modifying osteoarthritis drugs (DMOADs) are a new therapeutic class for osteoarthritis (OA) prevention or inhibition of the disease development. Unfortunately, none of the DMOADs have been clinically approved due to their poor therapeutic performances in clinical trials. The joint environment has played a role in this process by limiting the amount of drug effectively delivered as well as the time that the drug stays within the joint space. The current study aimed to improve the delivery of the DMOADs into cartilage tissue by increasing uptake and retention time of the DMOADs within the tissue. Licofelone was used a model DMOAD due to its significant therapeutic effect against OA progression as shown in the recent phase III clinical trial. For this purpose licofelone was covalently conjugated to the two different A16 and A87 poly-beta-amino-ester (PBAEs) polymers taking advantage of their hydrolysable, cytocompatible, and cationic nature. We have shown cartilage uptake of the licofelone-PBAE conjugates increased 18 times and retention in tissues was prolonged by 37 times compared to the equivalent dose of the free licofelone. Additionally, these licofelone conjugates showed no detrimental effect on the chondrocyte viability. In conclusion, the cationic A87 and A16 PBAE polymers increased the amount of licofelone within the cartilage, which could potentially enhance the therapeutic effect and pharmacokinetic performance of this drug and other DMOADs clinically.
Collapse
Affiliation(s)
- Raed Alghamdi
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University Redwood Building, King Edward VII Avenue Cardiff Wales CF10 3NB UK
| | - Fabrizio Pertusati
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University Redwood Building, King Edward VII Avenue Cardiff Wales CF10 3NB UK
| | - Polina Prokopovich
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University Redwood Building, King Edward VII Avenue Cardiff Wales CF10 3NB UK
| |
Collapse
|
12
|
Chen S, Ruan G, Zeng M, Chen T, Cao P, Zhang Y, Li J, Wang X, Li S, Tang S, Lu S, Fan T, Li Y, Han W, Tan J, Ding C, Zhu Z. Association between Metformin Use and Risk of Total Knee Arthroplasty and Degree of Knee Pain in Knee Osteoarthritis Patients with Diabetes and/or Obesity: A Retrospective Study. J Clin Med 2022; 11:4796. [PMID: 36013035 PMCID: PMC9409735 DOI: 10.3390/jcm11164796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/03/2022] Open
Abstract
Objectives: We aimed to examine whether metformin (MET) use is associated with a reduced risk of total knee arthroplasty (TKA) and low severity of knee pain in patients with knee osteoarthritis (OA) and diabetes and/or obesity. Methods: Participants diagnosed with knee OA and diabetes and/or obesity from June 2000 to July 2019 were selected from the information system of a local hospital. Regular MET users were defined as those with recorded prescriptions of MET or self-reported regular MET use for at least 6 months. TKA information was extracted from patients’ surgical records. Knee pain was assessed using the numeric rating scale. Log-binomial regression, linear regression, and propensity score weighting (PSW) were performed for statistical analyses. Results: A total of 862 participants were included in the analyses. After excluding missing data, there were 346 MET non-users and 362 MET users. MET use was significantly associated with a reduced risk of TKA (prevalence ratio: 0.26, 95% CI: 0.15 to 0.45, p < 0.001), after adjustment for age, gender, body mass index, various analgesics, and insurance status. MET use was significantly associated with a reduced degree of knee pain after being adjusted for the above covariates (β: −0.48, 95% CI: −0.91 to −0.05, p = 0.029). There was a significantly accumulative effect of MET use on the reduced risk of TKA. Conclusion: MET can be a potential therapeutic option for OA. Further clinical trials are needed to determine if MET can reduce the risk of TKA and the severity of knee pain in metabolic-associated OA patients.
Collapse
Affiliation(s)
- Shibo Chen
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Guangfeng Ruan
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Clinical Research Centre, Guangzhou First People’s Hospital, Guangzhou 510180, China
| | - Muhui Zeng
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Tianyu Chen
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Peihua Cao
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yan Zhang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jia Li
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaoshuai Wang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Shengfa Li
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Su’an Tang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Shilong Lu
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Tianxiang Fan
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yang Li
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Weiyu Han
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jianye Tan
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Zhaohua Zhu
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
13
|
Calivà F, Namiri NK, Dubreuil M, Pedoia V, Ozhinsky E, Majumdar S. Studying osteoarthritis with artificial intelligence applied to magnetic resonance imaging. Nat Rev Rheumatol 2022; 18:112-121. [PMID: 34848883 DOI: 10.1038/s41584-021-00719-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2021] [Indexed: 02/08/2023]
Abstract
The 3D nature and soft-tissue contrast of MRI makes it an invaluable tool for osteoarthritis research, by facilitating the elucidation of disease pathogenesis and progression. The recent increasing employment of MRI has certainly been stimulated by major advances that are due to considerable investment in research, particularly related to artificial intelligence (AI). These AI-related advances are revolutionizing the use of MRI in clinical research by augmenting activities ranging from image acquisition to post-processing. Automation is key to reducing the long acquisition times of MRI, conducting large-scale longitudinal studies and quantitatively defining morphometric and other important clinical features of both soft and hard tissues in various anatomical joints. Deep learning methods have been used recently for multiple applications in the musculoskeletal field to improve understanding of osteoarthritis. Compared with labour-intensive human efforts, AI-based methods have advantages and potential in all stages of imaging, as well as post-processing steps, including aiding diagnosis and prognosis. However, AI-based methods also have limitations, including the arguably limited interpretability of AI models. Given that the AI community is highly invested in uncovering uncertainties associated with model predictions and improving their interpretability, we envision future clinical translation and progressive increase in the use of AI algorithms to support clinicians in optimizing patient care.
Collapse
Affiliation(s)
- Francesco Calivà
- Department of Radiology and Biomedical Imaging and Center for Intelligent Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Nikan K Namiri
- Department of Radiology and Biomedical Imaging and Center for Intelligent Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Maureen Dubreuil
- Section of Rheumatology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Valentina Pedoia
- Department of Radiology and Biomedical Imaging and Center for Intelligent Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Eugene Ozhinsky
- Department of Radiology and Biomedical Imaging and Center for Intelligent Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Sharmila Majumdar
- Department of Radiology and Biomedical Imaging and Center for Intelligent Imaging, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
14
|
Karila T, Tervahartiala T, Cohen B, Sorsa T. The collagenases: are they tractable targets for preventing cartilage destruction in osteoarthritis? Expert Opin Ther Targets 2022; 26:93-105. [PMID: 35081858 DOI: 10.1080/14728222.2022.2035362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The etiology and pathogenesis of osteoarthritis (OA) have been intensely investigated; however, the disease course and progression are not completely understood. A prominent role for interstitial collagenases is recognized in this degenerative process, hence strategies to target them are of major interest. AREAS COVERED The pathogenesis of OA, the role of interstitial collagenases (MMP-1, -8 and -13) and collagenase modifying drugs are examined and discussed. We reviewed relevant papers from PubMed and Google Scholar. EXPERT OPINION There is strong evidence for the therapeutic potential of MMP inhibitors in OA; however, they are not expected to impact the inflammatory process. Therefore, there is a need for a relative inhibitor of MMP-13 collagenase which possesses anti-inflammatory properties. The identification of novel broad-spectrum relative multiple peptidase inhibitors could provide desirable tools for the prophylaxis, cure, or treatment of diseases involving articular cartilage (AC) degradation, in particular OA.
Collapse
Affiliation(s)
- Tuomo Karila
- Hospital Orton, Helsinki, Finland.,Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Taina Tervahartiala
- Department of Oral and Maxillofacial Diseases, University of Helsinki, and Helsinki University Central Hospital, Helsinki, Finland
| | | | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, University of Helsinki, and Helsinki University Central Hospital, Helsinki, Finland.,Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
15
|
The essential anti-angiogenic strategies in cartilage engineering and osteoarthritic cartilage repair. Cell Mol Life Sci 2022; 79:71. [PMID: 35029764 PMCID: PMC9805356 DOI: 10.1007/s00018-021-04105-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/01/2021] [Accepted: 12/18/2021] [Indexed: 01/16/2023]
Abstract
In the cartilage matrix, complex interactions occur between angiogenic and anti-angiogenic components, growth factors, and environmental stressors to maintain a proper cartilage phenotype that allows for effective load bearing and force distribution. However, as seen in both degenerative disease and tissue engineering, cartilage can lose its vascular resistance. This vascularization then leads to matrix breakdown, chondrocyte apoptosis, and ossification. Research has shown that articular cartilage inflammation leads to compromised joint function and decreased clinical potential for regeneration. Unfortunately, few articles comprehensively summarize what we have learned from previous investigations. In this review, we summarize our current understanding of the factors that stabilize chondrocytes to prevent terminal differentiation and applications of these factors to rescue the cartilage phenotype during cartilage engineering and osteoarthritis treatment. Inhibiting vascularization will allow for enhanced phenotypic stability so that we are able to develop more stable implants for cartilage repair and regeneration.
Collapse
|
16
|
Heller DB, Beggin AE, Lam AH, Kohi MP, Heller MB. Geniculate Artery Embolization: Role in Knee Hemarthrosis and Osteoarthritis. Radiographics 2021; 42:289-301. [PMID: 34890274 DOI: 10.1148/rg.210159] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Roughly 37% of Americans 60 years of age and older experience chronic pain due to osteoarthritis (OA) of the knee. After conservative treatment (pharmacologic, physical therapy, and joint injections) fails, patients often require total knee arthroplasty to alleviate pain and regain knee function. Given the high economic burden of surgery paired with its invasive nature, many patients with this degenerative joint disease seek alternative treatment. Moreover, many patients with severe knee OA who also have comorbidities that preclude surgery-most often morbid obesity-are left without options. Geniculate artery embolization (GAE) is a minimally invasive intra-arterial intervention that was originally developed for the treatment of knee hemarthrosis that has recently been adapted for symptomatic knee OA. Through selective embolization of geniculate branches corresponding to the site of knee pain, GAE inhibits the neovascularity that contributes to the catabolic and inflammatory drive of OA. Preliminary trials over the past decade have demonstrated promising clinical results, including decreased pain and improved function and quality of life after treatment. Given such success, GAE provides another minimally invasive treatment option for knee OA to patients who feel reluctant to undergo or are ineligible for surgery. The authors review the radiographic manifestations and current standard of treatment of OA and hemarthrosis of the knee. Procedural technique, embolic selection, and clinical evidence for GAE in the treatment of OA and hemarthrosis of the knee are also explored. The online slide presentation from the RSNA Annual Meeting is available for this article. ©RSNA, 2021.
Collapse
Affiliation(s)
- Daniel B Heller
- From the University of Illinois College of Medicine at Rockford, 1601 Parkview Ave, Rockford, IL 61107 (D.B.H., A.E.B.); Department of Interventional Radiology, University of California San Francisco, San Francisco, Calif (A.H.L., M.B.H.); and Department of Radiology, University of North Carolina, Chapel Hill, NC (M.P.K.)
| | - Allison E Beggin
- From the University of Illinois College of Medicine at Rockford, 1601 Parkview Ave, Rockford, IL 61107 (D.B.H., A.E.B.); Department of Interventional Radiology, University of California San Francisco, San Francisco, Calif (A.H.L., M.B.H.); and Department of Radiology, University of North Carolina, Chapel Hill, NC (M.P.K.)
| | - Alexander H Lam
- From the University of Illinois College of Medicine at Rockford, 1601 Parkview Ave, Rockford, IL 61107 (D.B.H., A.E.B.); Department of Interventional Radiology, University of California San Francisco, San Francisco, Calif (A.H.L., M.B.H.); and Department of Radiology, University of North Carolina, Chapel Hill, NC (M.P.K.)
| | - Maureen P Kohi
- From the University of Illinois College of Medicine at Rockford, 1601 Parkview Ave, Rockford, IL 61107 (D.B.H., A.E.B.); Department of Interventional Radiology, University of California San Francisco, San Francisco, Calif (A.H.L., M.B.H.); and Department of Radiology, University of North Carolina, Chapel Hill, NC (M.P.K.)
| | - Michael B Heller
- From the University of Illinois College of Medicine at Rockford, 1601 Parkview Ave, Rockford, IL 61107 (D.B.H., A.E.B.); Department of Interventional Radiology, University of California San Francisco, San Francisco, Calif (A.H.L., M.B.H.); and Department of Radiology, University of North Carolina, Chapel Hill, NC (M.P.K.)
| |
Collapse
|
17
|
Wu Z, Korntner SH, Mullen AM, Zeugolis DI. Collagen type II: From biosynthesis to advanced biomaterials for cartilage engineering. BIOMATERIALS AND BIOSYSTEMS 2021; 4:100030. [PMID: 36824570 PMCID: PMC9934443 DOI: 10.1016/j.bbiosy.2021.100030] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/02/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022] Open
Abstract
Collagen type II is the major constituent of cartilage tissue. Yet, cartilage engineering approaches are primarily based on collagen type I devices that are associated with suboptimal functional therapeutic outcomes. Herein, we briefly describe cartilage's development and cellular and extracellular composition and organisation. We also provide an overview of collagen type II biosynthesis and purification protocols from tissues of terrestrial and marine species and recombinant systems. We then advocate the use of collagen type II as a building block in cartilage engineering approaches, based on safety, efficiency and efficacy data that have been derived over the years from numerous in vitro and in vivo studies.
Collapse
Affiliation(s)
- Z Wu
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - SH Korntner
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - AM Mullen
- Teagasc Research Centre, Ashtown, Ireland
| | - DI Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
- Correspondence author at: REMODEL, NUI Galway & UCD.
| |
Collapse
|
18
|
Xie J, Wang Y, Lu L, Liu L, Yu X, Pei F. Cellular senescence in knee osteoarthritis: molecular mechanisms and therapeutic implications. Ageing Res Rev 2021; 70:101413. [PMID: 34298194 DOI: 10.1016/j.arr.2021.101413] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 02/08/2023]
Abstract
Cellular senescence is the inability of cells to proliferate, which has both beneficial and detrimental effects on tissue development and homeostasis. Chronic accumulation of senescent cells is associated with age-related disease, including osteoarthritis, a common joint disease responsible for joint pain and disability in older adults. The pathology of this disease includes loss of cartilage, synovium inflammation, and subchondral bone remodeling. Senescent cells are present in the cartilage of people with advanced osteoarthritis, but the link between cellular senescence and this disease is unclear. In this review, we summarize current evidence for the role of cellular senescence of different cell types in the onset and progression of osteoarthritis. We focus on the underlying mechanisms of senescence in chondrocytes, which maintain the cartilage in joints, and review the role of the Forkhead family of transcription factors, which are involved in cartilage maintenance and osteoarthritis. Finally, we discuss the potential therapeutic value and implications of targeting senescent cells using senolytic agents or immune therapies, targeting the senescence-associated secretory phenotype of these cells using senomorphic agents, and renewing the plasticity of stem cells and chondrocytes. Our review highlights current gaps in understanding of the mechanism of senescence that may, when addressed, provided new options for modifying and treating disease in osteoarthritis.
Collapse
|
19
|
von Kaeppler EP, Wang Q, Raghu H, Bloom MS, Wong H, Robinson WH. Interleukin 4 promotes anti-inflammatory macrophages that clear cartilage debris and inhibits osteoclast development to protect against osteoarthritis. Clin Immunol 2021; 229:108784. [PMID: 34126239 DOI: 10.1016/j.clim.2021.108784] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Osteoarthritis (OA), the leading cause of joint failure, is characterized by breakdown of articular cartilage and remodeling of subchondral bone in synovial joints. Despite the high prevalence and debilitating effects of OA, no disease-modifying drugs exist. Increasing evidence, including genetic variants of the interleukin 4 (IL-4) and IL-4 receptor genes, implicates a role for IL-4 in OA, however, the mechanism underlying IL-4 function in OA remains unknown. Here, we investigated the role of IL-4 in OA pathogenesis. METHODS Il4-, myeloid-specific-Il4ra-, and Stat6-deficient and control mice were subjected to destabilization of the medial meniscus to induce OA. Macrophages, osteoclasts, and synovial explants were stimulated with IL-4 in vitro, and their function and expression profiles characterized. RESULTS Mice lacking IL-4, IL-4Ra in myeloid cells, or STAT6 developed exacerbated cartilage damage and osteophyte formation relative to WT controls. In vitro analyses revealed that IL-4 downregulates osteoarthritis-associated genes, enhances macrophage phagocytosis of cartilage debris, and inhibits osteoclast differentiation and activation via the type I receptor. CONCLUSION Our findings demonstrate that IL-4 protects against osteoarthritis in a myeloid and STAT6-dependent manner. Further, IL-4 can promote an immunomodulatory microenvironment in which joint-resident macrophages polarize towards an M2 phenotype and efficiently clear pro-inflammatory debris, and osteoclasts maintain a homeostatic level of activity in subchondral bone. These findings support a role for IL-4 modulation of myeloid cell types in maintenance of joint health and identify a pathway that could provide therapeutic benefit for osteoarthritis.
Collapse
Affiliation(s)
- Ericka P von Kaeppler
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, United States of America; VA Palo Alto Health Care System, Palo Alto, CA, United States of America
| | - Qian Wang
- VA Palo Alto Health Care System, Palo Alto, CA, United States of America; Division of Immunology and Rheumatology, Stanford University, Stanford, CA, United States of America
| | - Harini Raghu
- VA Palo Alto Health Care System, Palo Alto, CA, United States of America; Division of Immunology and Rheumatology, Stanford University, Stanford, CA, United States of America
| | - Michelle S Bloom
- VA Palo Alto Health Care System, Palo Alto, CA, United States of America; Division of Immunology and Rheumatology, Stanford University, Stanford, CA, United States of America
| | - Heidi Wong
- VA Palo Alto Health Care System, Palo Alto, CA, United States of America; Division of Immunology and Rheumatology, Stanford University, Stanford, CA, United States of America
| | - William H Robinson
- VA Palo Alto Health Care System, Palo Alto, CA, United States of America; Division of Immunology and Rheumatology, Stanford University, Stanford, CA, United States of America.
| |
Collapse
|
20
|
Wee TC, Neo EJR, Tan YL. Dextrose prolotherapy in knee osteoarthritis: A systematic review and meta-analysis. J Clin Orthop Trauma 2021; 19:108-117. [PMID: 34046305 PMCID: PMC8144680 DOI: 10.1016/j.jcot.2021.05.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE To summarize the evidence for dextrose prolotherapy in knee osteoarthritis. DATA SOURCES The authors searched PubMed and Embase from inception to September 2020. All publications in the English language were included without demographic limits. STUDY SELECTION Randomized clinical trials comparing the effects of any active interventions or placebo versus dextrose prolotherapy in patients with knee osteoarthritis were included. DATA EXTRACTION Potential articles were screened for eligibility, and data was extracted independently. The risk of bias was assessed using the Cochrane Risk of Bias tool. Meta-analysis was performed on clinical trials with similar parameters. The Strength of Recommendation Taxonomy (SORT) was used for evaluating the strength of recommendations. DATA SYNTHESIS In total, eleven articles (n = 837 patients) met the search criteria and were included. The risk-of-bias analysis revealed two studies to be of low risk. The overall effectiveness was calculated using a meta-analysis method. Prolotherapy was no different from platelet-rich plasma on the pain subscale at the 6-month time point. Prolotherapy was inferior to platelet-rich plasma at 6 months (MD 0.45, 95% CI 0.06-0.85, p = 0.03) on the stiffness subscale. Prolotherapy was found to be safe with no major adverse effects. CONCLUSION Prolotherapy in knee osteoarthritis confers potential benefits for pain but the studies are at high risk of bias. Based on two well-designed studies, dextrose prolotherapy may be considered in knee osteoarthritis (strength of recommendation B). This treatment is safe and may be considered in patients with limited alternative options (strength of recommendation C).
Collapse
Affiliation(s)
- Tze Chao Wee
- Department of Rehabilitation Medicine, Changi General Hospital, Singapore,Corresponding author. 2, Simei Street 3, Singapore, 529889.
| | | | - Yeow Leng Tan
- Department of Rehabilitation Medicine, Singapore General Hospital, Singapore
| |
Collapse
|
21
|
Oridonin ameliorates inflammation-induced bone loss in mice via suppressing DC-STAMP expression. Acta Pharmacol Sin 2021; 42:744-754. [PMID: 32753731 PMCID: PMC8115576 DOI: 10.1038/s41401-020-0477-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/06/2020] [Indexed: 02/01/2023]
Abstract
Currently, dendritic cell-specific transmembrane protein (DC-STAMP), a multipass transmembrane protein, is considered as the master regulator of cell-cell fusion, which underlies the formation of functional multinucleated osteoclasts. Thus, DC-STAMP has become a promising target for osteoclast-associated osteolytic diseases. In this study, we investigated the effects of oridonin (ORI), a natural tetracyclic diterpenoid compound isolated from the traditional Chinese herb Rabdosia rubescens, on osteoclastogenesis in vivo and ex vivo. ICR mice were injected with LPS (5 mg/kg, ip, on day 0 and day 4) to induce inflammatory bone destruction. Administration of ORI (2, 10 mg·kg-1·d-1, ig, for 8 days) dose dependently ameliorated inflammatory bone destruction and dramatically decreased DC-STAMP protein expression in BMMs isolated from LPS-treated mice. Treatment of preosteoclast RAW264.7 cells with ORI (0.78-3.125 μM) dose dependently inhibited both mRNA and protein levels of DC-STAMP, and suppressed the following activation of NFATc1 during osteoclastogenesis. Knockdown of DC-STAMP in RAW264.7 cells abolished the inhibitory effects of ORI on RANKL-induced NFATc1 activity and osteoclast formation. In conclusion, we show for the first time that ORI effectively attenuates inflammation-induced bone loss by suppressing DC-STAMP expression, suggesting that ORI is a potential agent against inflammatory bone diseases.
Collapse
|
22
|
Zhang P, Liu Y, Jia L, Ci Z, Zhang W, Liu Y, Chen J, Cao Y, Zhou G. SP600125, a JNK-Specific Inhibitor, Regulates in vitro Auricular Cartilage Regeneration by Promoting Cell Proliferation and Inhibiting Extracellular Matrix Metabolism. Front Cell Dev Biol 2021; 9:630678. [PMID: 33816478 PMCID: PMC8010669 DOI: 10.3389/fcell.2021.630678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/15/2021] [Indexed: 11/24/2022] Open
Abstract
In vitro construction is a major trend involved in cartilage regeneration and repair. Satisfactory in vitro cartilage regeneration depends on a suitable culture system. Current chondrogenic culture systems with a high content of transforming growth factor beta-1 effectively promote cartilaginous extracellular matrix (ECM) production but inhibit chondrocyte survival. As is known, inhibition of the c-Jun N-terminal kinase (JNK) signaling pathway acts in blocking the progression of osteoarthritis by reducing chondrocyte apoptosis and cartilage destruction. However, whether inhibiting JNK signaling resists the inhibitory effect of current chondrogenic medium (CM) on cell survival and affects in vitro auricular cartilage regeneration (including cell proliferation, ECM synthesis, and degradation) has not been investigated. In order to address these issues and optimize the chondrogenic culture system, we generated a three-dimensional in vitro auricular cartilage regeneration model to investigate the effects of SP600125 (a JNK-specific inhibitor) on chondrocyte proliferation and ECM metabolism. SP600125 supplementation efficiently promoted cell proliferation at both cellular and tissue levels and canceled the negative effect of our chondrogenic culture system on cell survival. Moreover, it significantly inhibited ECM degradation by reducing the expressions of tumor necrosis factor-alpha, interleukin-1-beta, and matrix metalloproteinase 13. In addition, SP600125 inhibited ECM synthesis at both cellular and tissue levels, but this could be canceled and even reversed by adding chondrogenic factors; yet this enabled a sufficient number of chondrocytes to be retained at the same time. Thus, SP600125 had a positive effect on in vitro auricular cartilage regeneration in terms of cell proliferation and ECM degradation but a negative effect on ECM synthesis, which could be reversed by adding CM. Therefore, a combination of SP600125 and CM might help in optimizing current chondrogenic culture systems and achieve satisfactory in vitro cartilage regeneration by promoting cell proliferation, reducing ECM degradation, and enhancing ECM synthesis.
Collapse
Affiliation(s)
- Peiling Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanqun Liu
- Research Institute of Plastic Surgery, Wei Fang Medical College, Wei Fang, China
| | - Litao Jia
- Research Institute of Plastic Surgery, Wei Fang Medical College, Wei Fang, China
| | - Zheng Ci
- Research Institute of Plastic Surgery, Wei Fang Medical College, Wei Fang, China
| | - Wei Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Plastic Surgery, Wei Fang Medical College, Wei Fang, China
| | - Yu Liu
- Research Institute of Plastic Surgery, Wei Fang Medical College, Wei Fang, China.,National Tissue Engineering Center of China, Shanghai, China
| | - Jie Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yilin Cao
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Plastic Surgery, Wei Fang Medical College, Wei Fang, China.,National Tissue Engineering Center of China, Shanghai, China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Plastic Surgery, Wei Fang Medical College, Wei Fang, China.,National Tissue Engineering Center of China, Shanghai, China
| |
Collapse
|
23
|
From Pathogenesis to Therapy in Knee Osteoarthritis: Bench-to-Bedside. Int J Mol Sci 2021; 22:ijms22052697. [PMID: 33800057 PMCID: PMC7962130 DOI: 10.3390/ijms22052697] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 12/22/2022] Open
Abstract
Osteoarthritis (OA) is currently the most widespread musculoskeletal condition and primarily affects weight-bearing joints such as the knees and hips. Importantly, knee OA remains a multifactorial whole-joint disease, the appearance and progression of which involves the alteration of articular cartilage as well as the synovium, subchondral bone, ligaments, and muscles through intricate pathomechanisms. Whereas it was initially depicted as a predominantly aging-related and mechanically driven condition given its clear association with old age, high body mass index (BMI), and joint malalignment, more recent research identified and described a plethora of further factors contributing to knee OA pathogenesis. However, the pathogenic intricacies between the molecular pathways involved in OA prompted the study of certain drugs for more than one therapeutic target (amelioration of cartilage and bone changes, and synovial inflammation). Most clinical studies regarding knee OA focus mainly on improvement in pain and joint function and thus do not provide sufficient evidence on the possible disease-modifying properties of the tested drugs. Currently, there is an unmet need for further research regarding OA pathogenesis as well as the introduction and exhaustive testing of potential disease-modifying pharmacotherapies in order to structure an effective treatment plan for these patients.
Collapse
|
24
|
Abstract
Importance Osteoarthritis (OA) is the most common joint disease, affecting an estimated more than 240 million people worldwide, including an estimated more than 32 million in the US. Osteoarthritis is the most frequent reason for activity limitation in adults. This Review focuses on hip and knee OA. Observations Osteoarthritis can involve almost any joint but typically affects the hands, knees, hips, and feet. It is characterized by pathologic changes in cartilage, bone, synovium, ligament, muscle, and periarticular fat, leading to joint dysfunction, pain, stiffness, functional limitation, and loss of valued activities, such as walking for exercise and dancing. Risk factors include age (33% of individuals older than 75 years have symptomatic and radiographic knee OA), female sex, obesity, genetics, and major joint injury. Persons with OA have more comorbidities and are more sedentary than those without OA. The reduced physical activity leads to a 20% higher age-adjusted mortality. Several physical examination findings are useful diagnostically, including bony enlargement in knee OA and pain elicited with internal hip rotation in hip OA. Radiographic indicators include marginal osteophytes and joint space narrowing. The cornerstones of OA management include exercises, weight loss if appropriate, and education-complemented by topical or oral nonsteroidal anti-inflammatory drugs (NSAIDs) in those without contraindications. Intra-articular steroid injections provide short-term pain relief and duloxetine has demonstrated efficacy. Opiates should be avoided. Clinical trials have shown promising results for compounds that arrest structural progression (eg, cathepsin K inhibitors, Wnt inhibitors, anabolic growth factors) or reduce OA pain (eg, nerve growth factor inhibitors). Persons with advanced symptoms and structural damage are candidates for total joint replacement. Racial and ethnic disparities persist in the use and outcomes of joint replacement. Conclusions and Relevance Hip and knee OA are highly prevalent and disabling. Education, exercise and weight loss are cornerstones of management, complemented by NSAIDs (for patients who are candidates), corticosteroid injections, and several adjunctive medications. For persons with advanced symptoms and structural damage, total joint replacement effectively relieves pain.
Collapse
Affiliation(s)
- Jeffrey N. Katz
- Orthopedic and Arthritis Center for Outcomes Research, Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard Chan School of Public Health, Boston, MA, USA
| | - Kaetlyn R. Arant
- Orthopedic and Arthritis Center for Outcomes Research, Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard F. Loeser
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
25
|
Ehirchiou D, Bernabei I, Chobaz V, Castelblanco M, Hügle T, So A, Zhang L, Busso N, Nasi S. CD11b Signaling Prevents Chondrocyte Mineralization and Attenuates the Severity of Osteoarthritis. Front Cell Dev Biol 2020; 8:611757. [PMID: 33392201 PMCID: PMC7775404 DOI: 10.3389/fcell.2020.611757] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/02/2020] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is a progressive joint disease that is strongly associated with calcium-containing crystal formation (mineralization) by chondrocytes leading ultimately to cartilage calcification. However, this calcification process is poorly understood and treatments targeting the underlying disease mechanisms are lacking. The CD11b/CD18 integrin (Mac-1 or αMβ2), a member of the beta 2 integrin family of adhesion receptors, is critically involved in the development of several inflammatory diseases, including rheumatoid arthritis and systemic lupus erythematosus. We found that in a collagen-induced arthritis, CD11b-deficient mice exhibited increased cartilage degradation compared to WT control animals. However, the functional significance of CD11b integrin signaling in the pathophysiology of chondrocytes remains unknown. CD11b expression was found in the extracellular matrix and in chondrocytes in both healthy and damaged human and murine articular cartilage. Primary murine CD11b KO chondrocytes showed increased mineralization when induced in vitro by secondary calciprotein particles (CPP) and quantified by Alizarin Red staining. This increased propensity to mineralize was associated with an increased alkaline phosphatase (Alp) expression (measured by qRT-PCR and activity assay) and an enhanced secretion of the pro-mineralizing IL-6 cytokine compared to control wild-type cells (measured by ELISA). Accordingly, addition of an anti-IL-6 receptor antibody to CD11b KO chondrocytes reduced significantly the calcification and identified IL-6 as a pro-mineralizing factor in these cells. In the same conditions, the ratio of qRT-PCR expression of collagen X over collagen II, and that of Runx2 over Sox9 (both ratio being indexes of chondrocyte hypertrophy) were increased in CD11b-deficient cells. Conversely, the CD11b activator LA1 reduced chondrocyte mineralization, Alp expression, IL-6 production and collagen X expression. In the meniscectomy (MNX) model of murine knee osteoarthritis, deficiency of CD11b led to more severe OA (OARSI scoring of medial cartilage damage in CD11b: 5.6 ± 1.8, in WT: 1.2 ± 0.5, p < 0.05, inflammation in CD11b: 2.8 ± 0.2, in WT: 1.4 ± 0.5). In conclusion, these data demonstrate that CD11b signaling prevents chondrocyte hypertrophy and chondrocyte mineralization in vitro and has a protective role in models of OA in vivo.
Collapse
Affiliation(s)
- Driss Ehirchiou
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Ilaria Bernabei
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Véronique Chobaz
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Mariela Castelblanco
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Thomas Hügle
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Alexander So
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Li Zhang
- Department of Physiology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Nathalie Busso
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Sonia Nasi
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
26
|
Mao X, Fu P, Wang L, Xiang C. Mitochondria: Potential Targets for Osteoarthritis. Front Med (Lausanne) 2020; 7:581402. [PMID: 33324661 PMCID: PMC7726420 DOI: 10.3389/fmed.2020.581402] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a common and disabling joint disorder that is mainly characterized by cartilage degeneration and narrow joint spaces. The role of mitochondrial dysfunction in promoting the development of OA has gained much attention. Targeting endogenous molecules to improve mitochondrial function is a potential treatment for OA. Moreover, research on exogenous drugs to improve mitochondrial function in OA based on endogenous molecular targets has been accomplished. In addition, stem cells and exosomes have been deeply researched in the context of cartilage regeneration, and these factors both reverse mitochondrial dysfunctions. Thus, we hypothesize that biomedical approaches will be applied to the treatment of OA. Furthermore, we have summarized the global status of mitochondria and osteoarthritis research in the past two decades, which will contribute to the research field and the development of novel treatment strategies for OA.
Collapse
Affiliation(s)
- Xingjia Mao
- Department of Orthopedic, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Panfeng Fu
- Department of Respiratory and Critical Care, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Linlin Wang
- Department of Basic Medicine Sciences, The School of Medicine of Zhejiang University, Hangzhou, China
| | - Chuan Xiang
- Department of Orthopedic, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
27
|
Huang X, Chen Z, Zhao G, Shi J, Huang G, Chen F, Wei Y, Xia J, Chen J, Wang S. Combined culture experiment of mouse bone marrow mesenchymal stem cells and bioceramic scaffolds. Exp Ther Med 2020; 20:19. [PMID: 32934684 PMCID: PMC7471870 DOI: 10.3892/etm.2020.9147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 04/24/2020] [Indexed: 01/11/2023] Open
Abstract
Articular cartilage injuries are common orthopedic conditions that severely affect the quality of life of patients. Tissue engineering can facilitate cartilage repair and the key points involve scaffolding and seed cell selection. Pre-experiments found a range of microstructures of bioceramic scaffolds suitable for chondrocyte adhesion and proliferation, and maintaining chondrocyte phenotype. Three-dimensional cultures of bone marrow mesenchymal stem cell (BMSC) scaffolds were implanted into mice. According to the shape of the bioceramic scaffolds and the implantation time in vivo, RNA sequencing was performed on the removed scaffolds to explore the molecular mechanism. The in vitro bone plate culture can induce differentiation of chondrocytes, making culture different to that produced in vitro. Implantation of scaffolds in vivo increases the expression of bone-related genes. The ceramic rod-like material was found to be superior to the disc shape, and the bone repair effect was more marked with longer implantation times. Gene Ontology analysis revealed that ‘cell chemotaxis’, ‘negative regulation of ossification’ and ‘bone development’ pathways were involved in recovery. It was further confirmed that BMSCs were suitable as seed cells for cartilage tissue engineering, and that the β-tricalcium phosphate scaffold maybe ideal as cartilage tissue engineering scaffold material. The present research provided new insights into the molecular mechanism of cartilage repair by BMSCs and bioceramic scaffolds. Bioinformatics analysis revealed that AMMECR1L-like protein, tumor necrosis factor-induced protein 2, inhibitor of nuclear factor-B kinase subunit and protein kinase C type and ‘negative regulation of ossification’ and ‘bone development’ pathways may be involved in osteoblast maturation and bone regeneration.
Collapse
Affiliation(s)
- Xin Huang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Zhenhao Chen
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Guanglei Zhao
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jingsheng Shi
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Gangyong Huang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Feiyan Chen
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Yibing Wei
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jun Xia
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jie Chen
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Siqun Wang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
28
|
Zhao T, Ahmad H, de Graaff B, Xia Q, Winzenberg T, Aitken D, Palmer AJ. Systematic Review of the Evolution of Health-Economic Evaluation Models of Osteoarthritis. Arthritis Care Res (Hoboken) 2020; 73:1617-1627. [PMID: 32799431 DOI: 10.1002/acr.24410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 08/04/2020] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To comprehensively synthesize the evolution of health-economic evaluation models (HEEMs) of all osteoarthritis (OA) interventions, including preventions, core treatments, adjunct nonpharmacologic interventions, pharmacologic interventions, and surgical treatments. METHODS The literature was searched within health-economic/biomedical databases. Data extracted included OA type, population characteristics, model setting/type/events, study perspective, and comparators; the reporting quality of the studies was also assessed. The review protocol was registered at the International Prospective Register of Systematic Reviews (CRD42018092937). RESULTS Eighty-eight studies were included. Pharmacologic and surgical interventions were the focus in 51% and 44% of studies, respectively. Twenty-four studies adopted a societal perspective (with increasing popularity after 2013), but most (63%) did not include indirect costs. Quality-adjusted life years was the most popular outcome measure since 2008. Markov models were used by 62% of studies, with increasing popularity since 2008. Until 2010, most studies used short-to-medium time horizons; subsequently, a lifetime horizon became popular. A total of 86% of studies reported discount rates (predominantly between 3% and 5%). Studies published after 2002 had a better coverage of OA-related adverse events (AEs). Reporting quality significantly improved after 2001. CONCLUSION OA HEEMs have evolved and improved substantially over time, with the focus shifting from short-to-medium-term pharmacologic decision-tree models to surgical-focused lifetime Markov models. Indirect costs of OA are frequently not considered, despite using a societal perspective. There was a lack of reporting sensitivity of model outcome to input parameters, including discount rate, OA definition, and population parameters. While the coverage of OA-related AEs has improved over time, it is still not comprehensive.
Collapse
Affiliation(s)
- Ting Zhao
- University of Tasmania, Hobart, Tasmania, Australia
| | - Hasnat Ahmad
- University of Tasmania, Hobart, Tasmania, Australia
| | | | - Qing Xia
- University of Tasmania, Hobart, Tasmania, Australia
| | | | - Dawn Aitken
- University of Tasmania, Hobart, Tasmania, Australia
| | - Andrew J Palmer
- University of Tasmania, Hobart, Tasmania, and The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
29
|
Boosting the Intra-Articular Efficacy of Low Dose Corticosteroid through a Biopolymeric Matrix: An In Vivo Model of Osteoarthritis. Cells 2020; 9:cells9071571. [PMID: 32605161 PMCID: PMC7408199 DOI: 10.3390/cells9071571] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/17/2022] Open
Abstract
The purpose of this study was to verify the efficacy of a single intra-articular (i.a.) injection of a hyaluronic acid-chitlac (HY-CTL) enriched with two low dosages of triamcinolone acetonide (TA, 2.0 mg/mL and 4.5 mg/mL), in comparison with HY-CTL alone, with a clinical control (TA 40 mg/mL) and with saline solution (NaCl) in an in vivo osteoarthritis (OA) model. Seven days after chemical induction of OA, 80 Sprague Dawley male rats were grouped into five arms (n = 16) and received a single i.a. injection of: 40 mg/mL TA, HY-CTL alone, HY-CTL with 2.0 mg/mL TA (RV2), HY-CTL with 4.5 mg/mL TA (RV4.5) and 0.9% NaCl. Pain sensitivity and Catwalk were performed at baseline and at 7, 14 and 21 days after the i.a. treatments. The histopathology of the joint, meniscus and synovial reaction, type II collagen expression and aggrecan expression were assessed 21 days after treatments. RV4.5 improved the local pain sensitivity in comparison with TA and NaCl. RV4.5 and TA exerted similar beneficial effects in all gait parameters. Histopathological analyses, measured by Osteoarthritis Research Society International (OARSI) and Kumar scores and by immunohistochemistry, evidenced that RV4.5 and TA reduced OA features in the same manner and showed a stronger type II collagen and aggrecan expression; both treatments reduced synovitis, as measured by Krenn score and, at the meniscus level, RV4.5 improved degenerative signs as evaluated by Pauli score. TA or RV4.5 treatments limited the local articular cartilage deterioration in knee OA with an improvement of the physical structure of articular cartilage, gait parameters, the sensitivity to local pain and a reduction of the synovial inflammation.
Collapse
|
30
|
Jung JH, Kim SE, Kim HJ, Park K, Song GG, Choi SJ. A comparative pilot study of oral diacerein and locally treated diacerein-loaded nanoparticles in a model of osteoarthritis. Int J Pharm 2020; 581:119249. [PMID: 32217157 DOI: 10.1016/j.ijpharm.2020.119249] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/19/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022]
Abstract
Diacerein (DIA) is a slow-acting drug for osteoarthritis (OA). Oral DIA administration, however, exerts side effects including diarrhea and urine discoloration. We fabricated DIA-loaded poly(d,l-lactide-co-glycolide) nanoparticles (DIA/PLGA NPs) that allow sustained release of DIA. In vitro, rat synoviocytes were used to investigate the cytotoxicity and anti-inflammatory effects of DIA-loaded NPs. In vivo, monosodium iodoacetate (MIA)-induced OA rats were divided into seven groups that included non-treated healthy control rats and rats injected with MIA alone or in combination with NPs, DIA(5%) solution, DIA(1%)/NPs, DIA(5%)/NPs, or oral DIA. The in vitro studies revealed that DIA/PLGA NPs dose-dependently suppressed mRNA levels of pro-inflammatory cytokines and enzymes, including interleukin-1 (IL-1), IL-6, tumor necrosis factor-α, matrix metalloproteinase-3 (MMP-3), MMP-13, cyclo-oxygenase-2, and a disintegrin and metalloproteinase with thrombospondin motifs-5 in synoviocytes. The in vivo studies demonstrated that intra-articular treatment of OA rat models with DIA-loaded PLGA NPs markedly decreased mRNA levels of these pro-inflammatory factors and increased those of anti-inflammatory cytokines (IL-4 and IL-10). Micro-computed tomography and histological evaluations indicated that intra-articular injection of DIA-loaded NPs was effective in protecting against cartilage degradation. Administration of DIA/PLGA NPs via intra-articular injection is promising for inhibiting inflammation and protecting against cartilage degradation in OA.
Collapse
Affiliation(s)
- Jae Hyun Jung
- Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Division of Rheumatology, Department of Internal Medicine, Korea University Ansan Hospital, 123 Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do 15355, Republic of Korea.
| | - Sung Eun Kim
- Department of Orthopedic Surgery and Rare Diseases Institute, Korea University Guro Hospital, 148 Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea.
| | - Hak-Jun Kim
- Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Department of Orthopedic Surgery and Rare Diseases Institute, Korea University Guro Hospital, 148 Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea.
| | - Kyeongsoon Park
- Department of Systems Biotechnology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi-do 17546, Republic of Korea.
| | - Gwan Gyu Song
- Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Division of Rheumatology, Department of Internal Medicine, Korea University Guro Hospital, 148 Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea.
| | - Sung Jae Choi
- Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Division of Rheumatology, Department of Internal Medicine, Korea University Ansan Hospital, 123 Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do 15355, Republic of Korea.
| |
Collapse
|
31
|
Cheng TH, Yoon SH, Lee P, Dimaculangan D, Vikram Maheshwari A, Zhang M. Knee synovial fluid complement C3-β chain levels correlate with clinical symptoms of knee osteoarthritis. Int J Rheum Dis 2020; 23:569-575. [PMID: 31989759 DOI: 10.1111/1756-185x.13794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/17/2019] [Accepted: 12/29/2019] [Indexed: 12/20/2022]
Abstract
AIM Early research found innate immune factor complement C3 in the synovial fluid (SF) and activated in serum of osteoarthritis (OA) patients. Whether synovial C3 comes from circulation, or is produced locally, is still unknown. It is also unclear whether synovial and circulating C3 is responsible to OA symptoms. A native C3 molecule consists of two chains, C3-α and C3-β. Small fragments breaking down from C3-α chain in serum and SF were reported to be related to OA severity. Little is known if C3-β chain is involved in the pathogenesis. METHOD In this study, we evaluated these important areas by biochemical analyses of C3-α and C3-β chains in both the SF and plasma of OA patients. RESULTS Our results showed that C3-α and C3-β levels in SF did not correlate with those in plasma, suggesting that synovial C3 is independently and locally produced, rather than being "leaked" from circulation. Synovial C3-β but not C3-α levels correlated with pain, other OA symptoms, function in daily living, and sports/recreational activities. Plasma C3-β levels only marginally correlated with pain, and plasma C3-α levels did not correlate with any of these OA symptoms. CONCLUSION We present first-hand evidence that the clinical symptoms of OA are mainly associated with C3 in the local SF rather than systemic circulation, suggesting local factors in the etiopathogenesis. Future local targeted therapies for pain management may be more effective and safer.
Collapse
Affiliation(s)
- Tzu Hsuan Cheng
- Department of Anesthesiology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Seung Ho Yoon
- Department of Anesthesiology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Philip Lee
- Department of Anesthesiology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Dennis Dimaculangan
- Department of Anesthesiology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | | | - Ming Zhang
- Department of Anesthesiology, SUNY Downstate Medical Center, Brooklyn, NY, USA.,Department of Orthopedics, SUNY Downstate Medical Center, Brooklyn, NY, USA
| |
Collapse
|
32
|
Block JE, Lavelle WF, Nunley PD. Toward a cure for lumbar spinal stenosis: The potential of interspinous process decompression. Med Hypotheses 2019; 132:109357. [PMID: 31421414 DOI: 10.1016/j.mehy.2019.109357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 11/24/2022]
Abstract
There is a growing impetus to treat aging as a disease in the quest to significantly extend the human life span through cellular regeneration methods. This approach, while promising, overlooks the fact that the evolutionary adaptation to bipedalism puts the human body in a distinctively vulnerable biomechanical and functional position. Orthograde human posture places unusually-high axial compressive loads on the weight-bearing joints of the skeleton, resulting in arthritic deterioration with aging. The effects are particularly robust in the lumbar spine were age-related degeneration, most commonly lumbar spinal stenosis (LSS), is ubiquitous among the elderly. It is postulated that re-establishing a favorable mechanical environment via interventions that unload the affected spinal joint complex may mitigate and potentially reverse the structural damage that is the cardinal pathoanatomical feature of this disease. The hypothesis of this paper is that a minimally-invasive surgical procedure, interspinous process decompression (IPD), which utilizes a stand-alone intervertebral spacer, effectively unloads the diseased spinal motion segment providing a healthy micro-environment to reverse and repair age-related and genetic deterioration of the spinal motion segment. Several lines of supporting evidence are provided from long-term follow-up results of a randomized controlled trial of IPD safety and effectiveness of the Superion® device including clinical outcomes, reoperation rates, opioid analgesic usage and advanced imaging utilization. All of these outcomes show uniquely-favorable trends with time that imply that the benefits of IPD are structural. The compendium of evidence suggests that IPD offers both a durable palliative effect due to direct blocking of back extension and a disease-modifying effect due to unloading of the spinal joint complex.
Collapse
Affiliation(s)
- Jon E Block
- 2210 Jackson Street, Ste. 401, San Francisco, CA 94115, United States.
| | - William F Lavelle
- Upstate Bone and Joint Center, East Syracuse, NY 13057, United States.
| | - Pierce D Nunley
- Spine Institute of Louisiana, Shreveport, LA 71101, United States.
| |
Collapse
|
33
|
Abstract
Osteoarthritis is a leading cause of disability and source of societal cost in older adults. With an ageing and increasingly obese population, this syndrome is becoming even more prevalent than in previous decades. In recent years, we have gained important insights into the cause and pathogenesis of pain in osteoarthritis. The diagnosis of osteoarthritis is clinically based despite the widespread overuse of imaging methods. Management should be tailored to the presenting individual and focus on core treatments, including self-management and education, exercise, and weight loss as relevant. Surgery should be reserved for those that have not responded appropriately to less invasive methods. Prevention and disease modification are areas being targeted by various research endeavours, which have indicated great potential thus far. This narrative Seminar provides an update on the pathogenesis, diagnosis, management, and future research on osteoarthritis for a clinical audience.
Collapse
Affiliation(s)
- David J Hunter
- Rheumatology Department, Royal North Shore Hospital and Institute of Bone and Joint Research, Kolling Institute, University of Sydney, Sydney, NSW, Australia.
| | - Sita Bierma-Zeinstra
- Departments of General Practice and Orthopaedic Surgery, Erasmus University Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
34
|
Singh P, Marcu KB, Goldring MB, Otero M. Phenotypic instability of chondrocytes in osteoarthritis: on a path to hypertrophy. Ann N Y Acad Sci 2018; 1442:17-34. [PMID: 30008181 DOI: 10.1111/nyas.13930] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/11/2018] [Accepted: 06/21/2018] [Indexed: 12/24/2022]
Abstract
Articular chondrocytes are quiescent, fully differentiated cells responsible for the homeostasis of adult articular cartilage by maintaining cellular survival functions and the fine-tuned balance between anabolic and catabolic functions. This balance requires phenotypic stability that is lost in osteoarthritis (OA), a disease that affects and involves all joint tissues and especially impacts articular cartilage structural integrity. In OA, articular chondrocytes respond to the accumulation of injurious biochemical and biomechanical insults by shifting toward a degradative and hypertrophy-like state, involving abnormal matrix production and increased aggrecanase and collagenase activities. Hypertrophy is a necessary, transient developmental stage in growth plate chondrocytes that culminates in bone formation; in OA, however, chondrocyte hypertrophy is catastrophic and it is believed to initiate and perpetuate a cascade of events that ultimately result in permanent cartilage damage. Emphasizing changes in DNA methylation status and alterations in NF-κB signaling in OA, this review summarizes the data from the literature highlighting the loss of phenotypic stability and the hypertrophic differentiation of OA chondrocytes as central contributing factors to OA pathogenesis.
Collapse
Affiliation(s)
- Purva Singh
- HSS Research Institute, Hospital for Special Surgery, New York, New York
| | - Kenneth B Marcu
- Biochemistry and Cell Biology Department, Stony Brook University, Stony Brook, New York
| | - Mary B Goldring
- HSS Research Institute, Hospital for Special Surgery, New York, New York.,Department of Cell and Developmental Biology, Weill Cornell Medical College and Weill Cornell Graduate School of Medical Sciences, New York, New York
| | - Miguel Otero
- HSS Research Institute, Hospital for Special Surgery, New York, New York
| |
Collapse
|