1
|
Ciaramidaro A, Toppi J, Vogel P, Freitag CM, Siniatchkin M, Astolfi L. Synergy of the mirror neuron system and the mentalizing system in a single brain and between brains during joint actions. Neuroimage 2024; 299:120783. [PMID: 39187218 DOI: 10.1016/j.neuroimage.2024.120783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
Cooperative action involves the simulation of actions and their co-representation by two or more people. This requires the involvement of two complex brain systems: the mirror neuron system (MNS) and the mentalizing system (MENT), both of critical importance for successful social interaction. However, their internal organization and the potential synergy of both systems during joint actions (JA) are yet to be determined. The aim of this study was to examine the role and interaction of these two fundamental systems-MENT and MNS-during continuous interaction. To this hand, we conducted a multiple-brain connectivity analysis in the source domain during a motor cooperation task using high-density EEG dual-recordings providing relevant insights into the roles of MNS and MENT at the intra- and interbrain levels. In particular, the intra-brain analysis demonstrated the essential function of both systems during JA, as well as the crucial role played by single brain regions of both neural mechanisms during cooperative activities. Specifically, our intra-brain analysis revealed that both neural mechanisms are essential during Joint Action (JA), showing a solid connection between MNS and MENT and a central role of the single brain regions of both mechanisms during cooperative actions. Additionally, our inter-brain study revealed increased inter-subject connections involving the motor system, MENT and MNS. Thus, our findings show a mutual influence between two interacting agents, based on synchronization of MNS and MENT systems. Our results actually encourage more research into the still-largely unknown realm of inter-brain dynamics and contribute to expand the body of knowledge in social neuroscience.
Collapse
Affiliation(s)
- Angela Ciaramidaro
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Viale Allegri 9, 42121 Reggio Emilia, Italy; Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt/Main, Germany.
| | - Jlenia Toppi
- Department of Computer, Control, and Management Engineering, Univ. of Rome "Sapienza", Via Ariosto 25, 00185 Rome, Italy; Neuroelectrical Imaging and Brain Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Via Ardeatina 306/354, 00179 Rome, Italy
| | - Pascal Vogel
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt/Main, Germany; Institute of Neurophysiology, Neuroscience Center, Goethe University, Heinrich-Hoffmann-Str. 7, 60528 Frankfurt/M, Germany
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt/Main, Germany
| | - Michael Siniatchkin
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt/Main, Germany; Clinic of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Aachen, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Laura Astolfi
- Department of Computer, Control, and Management Engineering, Univ. of Rome "Sapienza", Via Ariosto 25, 00185 Rome, Italy; Neuroelectrical Imaging and Brain Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Via Ardeatina 306/354, 00179 Rome, Italy
| |
Collapse
|
2
|
Wang LS, Chang YC, Liou S, Weng MH, Chen DY, Kung CC. When "more for others, less for self" leads to co-benefits: A tri-MRI dyad-hyperscanning study. Psychophysiology 2024; 61:e14560. [PMID: 38469655 DOI: 10.1111/psyp.14560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 03/13/2024]
Abstract
Unselfishness is admired, especially when collaborations between groups of various scales are urgently needed. However, its neural mechanisms remain elusive. In a tri-MRI dyad-hyperscanning experiment involving 26 groups, each containing 4 participants as two rotating pairs in a coordination game, we sought to achieve reciprocity, or "winning in turn by the two interacting players," as the precursor to unselfishness. Due to its critical role in social processing, the right temporal-parietal junction (rTPJ) was the seed for both time domain (connectivity) and frequency domain (i.e., coherence) analyses. For the former, negative connectivity between the rTPJ and the mentalizing network areas (e.g., the right inferior parietal lobule, rIPL) was identified, and such connectivity was further negatively correlated with the individual's final gain, supporting our task design that "rewarded" the reciprocal participants. For the latter, cerebral coherences of the rTPJs emerged between the interacting pairs (i.e., within-group interacting pairs), and the coupling between the rTPJ and the right superior temporal gyrus (rSTG) between the players who were not interacting with each other (i.e., within-group noninteracting pairs). These coherences reinforce the hypotheses that the rTPJ-rTPJ coupling tracks the collaboration processes and the rTPJ-rSTG coupling for the emergence of decontextualized shared meaning. Our results underpin two social roles (inferring others' behavior and interpreting social outcomes) subserved by the rTPJ-related network and highlight its interaction with other-self/other-concerning brain areas in reaching co-benefits among unselfish players.
Collapse
Affiliation(s)
- Le-Si Wang
- Institute of Creative Industries Design, National Cheng Kung University (NCKU), Tainan, Taiwan
| | - Yi-Cing Chang
- Department of Psychology, National Cheng Kung University (NCKU), Tainan, Taiwan
| | - Shyhnan Liou
- Institute of Creative Industries Design, National Cheng Kung University (NCKU), Tainan, Taiwan
| | - Ming-Hung Weng
- Department of Economics, National Cheng Kung University (NCKU), Tainan, Taiwan
| | - Der-Yow Chen
- Department of Psychology, National Cheng Kung University (NCKU), Tainan, Taiwan
- Mind Research and Imaging Center (MRIC), Tainan, Taiwan
| | - Chun-Chia Kung
- Department of Psychology, National Cheng Kung University (NCKU), Tainan, Taiwan
- Mind Research and Imaging Center (MRIC), Tainan, Taiwan
| |
Collapse
|
3
|
Meng Y, Jia S, Liu J, Zhang C, Wang H, Liu Y. The shorter a man is, the more he defends fairness: relative height disadvantage promoting third-party punishment-evidence from inter-brain synchronization. Cereb Cortex 2024; 34:bhae048. [PMID: 38342691 DOI: 10.1093/cercor/bhae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/13/2024] Open
Abstract
Third-party punishment occurs in interpersonal interactions to sustain social norms, and is strongly influenced by the characteristics of the interacting individuals. During social interactions, height is the striking physical appearance features first observed, height disadvantage may critically influence men's behavior and mental health. Herein, we explored the influence of height disadvantage on third-party punishment through time-frequency analysis and electroencephalography hyperscanning. Two participants were randomly designated as the recipient and third party after height comparison and instructed to complete third-party punishment task. Compared with when the third party's height is higher than the recipient's height, when the third party's height is lower, the punishment rate and transfer amount were significantly higher. Only for highly unfair offers, the theta power was significantly greater when the third party's height was lower. The inter-brain synchronization between the recipient and the third party was significantly stronger when the third party's height was lower. Compared with the fair and medium unfair offers, the inter-brain synchronization was strongest for highly unfair offers. Our findings indicate that the height disadvantage-induced anger and reputation concern promote third-party punishment and inter-brain synchronization. This study enriches research perspective and expands the application of the theory of Napoleon complex.
Collapse
Affiliation(s)
- Yujia Meng
- School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai avenue, Caofeidian district, Tangshan 063000, Hebei province, China
| | - Shuyu Jia
- School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai avenue, Caofeidian district, Tangshan 063000, Hebei province, China
| | - Jingyue Liu
- School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai avenue, Caofeidian district, Tangshan 063000, Hebei province, China
| | - Chenyu Zhang
- School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai avenue, Caofeidian district, Tangshan 063000, Hebei province, China
| | - He Wang
- School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai avenue, Caofeidian district, Tangshan 063000, Hebei province, China
- School of Public Health, North China University of Science and Technology, 21 Bohai avenue, Caofeidian district,Tangshan 063000, Hebei province, China
| | - Yingjie Liu
- School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai avenue, Caofeidian district, Tangshan 063000, Hebei province, China
- School of Public Health, North China University of Science and Technology, 21 Bohai avenue, Caofeidian district,Tangshan 063000, Hebei province, China
| |
Collapse
|
4
|
Hakim U, De Felice S, Pinti P, Zhang X, Noah JA, Ono Y, Burgess PW, Hamilton A, Hirsch J, Tachtsidis I. Quantification of inter-brain coupling: A review of current methods used in haemodynamic and electrophysiological hyperscanning studies. Neuroimage 2023; 280:120354. [PMID: 37666393 DOI: 10.1016/j.neuroimage.2023.120354] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023] Open
Abstract
Hyperscanning is a form of neuroimaging experiment where the brains of two or more participants are imaged simultaneously whilst they interact. Within the domain of social neuroscience, hyperscanning is increasingly used to measure inter-brain coupling (IBC) and explore how brain responses change in tandem during social interaction. In addition to cognitive research, some have suggested that quantification of the interplay between interacting participants can be used as a biomarker for a variety of cognitive mechanisms aswell as to investigate mental health and developmental conditions including schizophrenia, social anxiety and autism. However, many different methods have been used to quantify brain coupling and this can lead to questions about comparability across studies and reduce research reproducibility. Here, we review methods for quantifying IBC, and suggest some ways moving forward. Following the PRISMA guidelines, we reviewed 215 hyperscanning studies, across four different brain imaging modalities: functional near-infrared spectroscopy (fNIRS), functional magnetic resonance (fMRI), electroencephalography (EEG) and magnetoencephalography (MEG). Overall, the review identified a total of 27 different methods used to compute IBC. The most common hyperscanning modality is fNIRS, used by 119 studies, 89 of which adopted wavelet coherence. Based on the results of this literature survey, we first report summary statistics of the hyperscanning field, followed by a brief overview of each signal that is obtained from each neuroimaging modality used in hyperscanning. We then discuss the rationale, assumptions and suitability of each method to different modalities which can be used to investigate IBC. Finally, we discuss issues surrounding the interpretation of each method.
Collapse
Affiliation(s)
- U Hakim
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom.
| | - S De Felice
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom; Department of Psychology, University of Cambridge, United Kingdom
| | - P Pinti
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom; Centre for Brain and Cognitive Development, Birkbeck, University of London, London, United Kingdom
| | - X Zhang
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - J A Noah
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Y Ono
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kawasaki, Kanagawa, Japan
| | - P W Burgess
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - A Hamilton
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - J Hirsch
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom; Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States; Departments of Neuroscience and Comparative Medicine, Yale School of Medicine, New Haven, CT, United States; Yale University, Wu Tsai Institute, New Haven, CT, United States
| | - I Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
5
|
Chuang C, Hsu H. Pseudo-mutual gazing enhances interbrain synchrony during remote joint attention tasking. Brain Behav 2023; 13:e3181. [PMID: 37496332 PMCID: PMC10570487 DOI: 10.1002/brb3.3181] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/29/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023] Open
Abstract
INTRODUCTION Mutual gaze enables people to share attention and increase engagement during social interactions through intentional and implicit messages. Although previous studies have explored gaze behaviors and neural mechanisms underlying in-person eye contact, the growing prevalence of remote communication has raised questions about how to establish mutual gaze remotely and how the brains of interacting individuals synchronize. METHODS To address these questions, we conducted a study using eye trackers to create a pseudo-mutual gaze channel that mirrors the gazes of each interacting dyad on their respective remote screens. To demonstrate fluctuations in coupling across brains, we incorporated electroencephalographic hyperscanning techniques to simultaneously record the brain activity of interacting dyads engaged in a joint attention task in player-observer, collaborative, and competitive modes. RESULTS Our results indicated that mutual gaze could improve the efficiency of joint attention activities among remote partners. Moreover, by employing the phase locking value, we could estimate interbrain synchrony (IBS) and observe low-frequency couplings in the frontal and temporal regions that varied based on the interaction mode. While dyadic gender composition significantly affected gaze patterns, it did not impact the IBS. CONCLUSION These results provide insight into the neurological mechanisms underlying remote interaction through the pseudo-mutual gaze channel and have significant implications for developing effective online communication environments.
Collapse
Affiliation(s)
- Chun‐Hsiang Chuang
- Research Center for Education and Mind Sciences, College of EducationNational Tsing Hua UniversityHsinchuTaiwan
- Institute of Information Systems and ApplicationsCollege of Electrical Engineering and Computer ScienceNational Tsing Hua UniversityHsinchuTaiwan
| | - Hao‐Che Hsu
- Research Center for Education and Mind Sciences, College of EducationNational Tsing Hua UniversityHsinchuTaiwan
- Department of Computer ScienceNational Yang Ming Chiao Tung UniversityHsinchuTaiwan
- Department of Computer Science and EngineeringNational Taiwan Ocean UniversityKeelungTaiwan
| |
Collapse
|
6
|
Lotter LD, Kohl SH, Gerloff C, Bell L, Niephaus A, Kruppa JA, Dukart J, Schulte-Rüther M, Reindl V, Konrad K. Revealing the neurobiology underlying interpersonal neural synchronization with multimodal data fusion. Neurosci Biobehav Rev 2023; 146:105042. [PMID: 36641012 DOI: 10.1016/j.neubiorev.2023.105042] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/22/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Humans synchronize with one another to foster successful interactions. Here, we use a multimodal data fusion approach with the aim of elucidating the neurobiological mechanisms by which interpersonal neural synchronization (INS) occurs. Our meta-analysis of 22 functional magnetic resonance imaging and 69 near-infrared spectroscopy hyperscanning experiments (740 and 3721 subjects) revealed robust brain regional correlates of INS in the right temporoparietal junction and left ventral prefrontal cortex. Integrating this meta-analytic information with public databases, biobehavioral and brain-functional association analyses suggested that INS involves sensory-integrative hubs with functional connections to mentalizing and attention networks. On the molecular and genetic levels, we found INS to be associated with GABAergic neurotransmission and layer IV/V neuronal circuits, protracted developmental gene expression patterns, and disorders of neurodevelopment. Although limited by the indirect nature of phenotypic-molecular association analyses, our findings generate new testable hypotheses on the neurobiological basis of INS.
Collapse
Affiliation(s)
- Leon D Lotter
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany; Institute of Neuroscience and Medicine - Brain & Behaviour (INM-7), Jülich Research Centre, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Max Planck School of Cognition, Stephanstrasse 1A, 04103 Leipzig, Germany.
| | - Simon H Kohl
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany; JARA Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany
| | - Christian Gerloff
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany; JARA Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany; Chair II of Mathematics, Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, Aachen, Germany
| | - Laura Bell
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany; Audiovisual Media Center, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Alexandra Niephaus
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany
| | - Jana A Kruppa
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany; JARA Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany; Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Juergen Dukart
- Institute of Neuroscience and Medicine - Brain & Behaviour (INM-7), Jülich Research Centre, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Martin Schulte-Rüther
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany; JARA Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany; Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Vanessa Reindl
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany; JARA Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany; Psychology, School of Social Sciences, Nanyang Technological University, S639818, Singapore
| | - Kerstin Konrad
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany; JARA Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany
| |
Collapse
|
7
|
Yoshioka A, Tanabe HC, Nakagawa E, Sumiya M, Koike T, Sadato N. The Role of the Left Inferior Frontal Gyrus in Introspection during Verbal Communication. Brain Sci 2023; 13:brainsci13010111. [PMID: 36672092 PMCID: PMC9856826 DOI: 10.3390/brainsci13010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Conversation enables the sharing of our subjective experiences through verbalizing introspected thoughts and feelings. The mentalizing network represents introspection, and successful conversation is characterized by alignment through imitation mediated by the mirror neuron system (MNS). Therefore, we hypothesized that the interaction between the mentalizing network and MNS mediates the conversational exchange of introspection. To test this, we performed hyperscanning functional magnetic resonance imaging during structured real-time conversations between 19 pairs of healthy participants. The participants first evaluated their preference for and familiarity with a presented object and then disclosed it. The control was the object feature identification task. When contrasted with the control, the preference/familiarity evaluation phase activated the dorso-medial prefrontal cortex, anterior cingulate cortex, precuneus, left hippocampus, right cerebellum, and orbital portion of the left inferior frontal gyrus (IFG), which represents introspection. The left IFG was activated when the two participants' statements of introspection were mismatched during the disclosure. Disclosing introspection enhanced the functional connectivity of the left IFG with the bilateral superior temporal gyrus and primary motor cortex, representing the auditory MNS. Thus, the mentalizing system and MNS are hierarchically linked in the left IFG during a conversation, allowing for the sharing of introspection of the self and others.
Collapse
Affiliation(s)
- Ayumi Yoshioka
- Department of Cognitive and Psychological Sciences, Graduate School of Informatics, Nagoya University, Nagoya 464-8601, Japan
- Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
- Division of Cerebral Integration, Department of System Neuroscience, National Institute for Physiological Sciences (NIPS), Okazaki 444-8585, Japan
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Hiroki C. Tanabe
- Department of Cognitive and Psychological Sciences, Graduate School of Informatics, Nagoya University, Nagoya 464-8601, Japan
- Correspondence: (H.C.T.); (N.S.); Tel.: +81-52-789-2256 (H.C.T.); +81-564-55-7841 (N.S.); Fax: +81-52-789-2256 (H.C.T.); +81-564-55-7843 (N.S.)
| | - Eri Nakagawa
- Division of Cerebral Integration, Department of System Neuroscience, National Institute for Physiological Sciences (NIPS), Okazaki 444-8585, Japan
| | - Motofumi Sumiya
- Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
- Division of Cerebral Integration, Department of System Neuroscience, National Institute for Physiological Sciences (NIPS), Okazaki 444-8585, Japan
| | - Takahiko Koike
- Division of Cerebral Integration, Department of System Neuroscience, National Institute for Physiological Sciences (NIPS), Okazaki 444-8585, Japan
| | - Norihiro Sadato
- Division of Cerebral Integration, Department of System Neuroscience, National Institute for Physiological Sciences (NIPS), Okazaki 444-8585, Japan
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Japan
- Correspondence: (H.C.T.); (N.S.); Tel.: +81-52-789-2256 (H.C.T.); +81-564-55-7841 (N.S.); Fax: +81-52-789-2256 (H.C.T.); +81-564-55-7843 (N.S.)
| |
Collapse
|
8
|
Tsoi L, Burns SM, Falk EB, Tamir DI. The promises and pitfalls of functional magnetic resonance imaging hyperscanning for social interaction research. SOCIAL AND PERSONALITY PSYCHOLOGY COMPASS 2022; 16:e12707. [PMID: 36407123 PMCID: PMC9667901 DOI: 10.1111/spc3.12707] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/28/2022]
Abstract
Social neuroscience combines tools and perspectives from social psychology and neuroscience to understand how people interact with their social world. Here we discuss a relatively new method-hyperscanning-to study real-time, interactive social interactions using functional magnetic resonance imaging (fMRI). We highlight three contributions that fMRI hyperscanning makes to the study of the social mind: (1) Naturalism: it shifts the focus from tightly-controlled stimuli to more naturalistic social interactions; (2) Multi-person Dynamics: it shifts the focus from individuals as the unit of analysis to dyads and groups; and (3) Neural Resolution: fMRI hyperscanning captures high-resolution neural patterns and dynamics across the whole brain, unlike other neuroimaging hyperscanning methods (e.g., electroencephalogram, functional near-infrared spectroscopy). Finally, we describe the practical considerations and challenges that fMRI hyperscanning researchers must navigate. We hope researchers will harness this powerful new paradigm to address pressing questions in today's society.
Collapse
Affiliation(s)
- Lily Tsoi
- School of Psychology and CounselingCaldwell UniversityCaldwellNew JerseyUSA
| | - Shannon M. Burns
- Department of Psychological SciencePomona CollegeClaremontCaliforniaUSA
- Department of NeurosciencePomona CollegeClaremontCaliforniaUSA
| | - Emily B. Falk
- Annenberg School for CommunicationUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of PsychologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Wharton Marketing DepartmentUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Operations, Information, and Decisions DepartmentUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Diana I. Tamir
- Department of PsychologyPrinceton UniversityPrincetonNew JerseyUSA
- Princeton Neuroscience InstitutePrinceton UniversityPrincetonNew JerseyUSA
| |
Collapse
|
9
|
An Optimization Analysis Model of Tourism Specialized Villages Based on Neural Network and System Dynamics. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:2207814. [PMID: 35619754 PMCID: PMC9129928 DOI: 10.1155/2022/2207814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 11/18/2022]
Abstract
With the rapid development of tourism, professional tourism villages emerge one after another, which has become the focus of the tourism industry. At present, there are some problems in tourism professional villages, such as imperfect management and inaccurate prediction of future development, which affect the rational allocation of tourism resources. In order to improve the distribution of tourism resources and better predict the development of tourism professional villages, it is necessary to make comprehensive judgment and analysis, especially the analysis of indicators such as the prediction and development judgment of tourism professional villages. This paper discusses the optimization analysis of the agglomeration of tourism specialized villages by backpropagation (BP) neural network and system dynamics model, analyzes the system structure of the agglomeration factors of tourism specialized villages, and promotes the intelligent integration of the agglomeration factors. The development of clusters of professional villages promotes data integration among resources, economy, society, and other elements and presents the characteristics of big data. As the level of concentration of professional villages increases, the complexity of the associated factors also increases, which increases the difficulty and effectiveness of tourism analysis. In view of this situation, taking mountain tourism as the research object, this paper proposes an improved system dynamics model based on BP, extracts features from cross factor (resource, economic, and social) data, and optimizes the relationship between professional village agglomeration and various factors. The MATLAB simulation results show that based on the improved system dynamics analysis, the simplification rate of (resources, economy, and society) data can be controlled at more than 24%, the degree of agglomeration is more than 95%, and the construction time of the relationship map of related factors is less than 40 s. Therefore, the analysis method proposed in this paper is suitable for the calculation of the agglomeration of tourism professional villages in the mountain area and can meet the needs of the development of tourism professional villages in the mountain area.
Collapse
|
10
|
Young A, Robbins I, Shelat S. From Micro to Macro: The Combination of Consciousness. Front Psychol 2022; 13:755465. [PMID: 35432082 PMCID: PMC9008346 DOI: 10.3389/fpsyg.2022.755465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 03/10/2022] [Indexed: 11/18/2022] Open
Abstract
Crick and Koch’s 1990 “neurobiological theory of consciousness” sparked the race for the physical correlates of subjective experience. 30 years later, cognitive sciences trend toward consideration of the brain’s electromagnetic field as the primary seat of consciousness, the “to be” of the individual. Recent advancements in laboratory tools have preceded an influx of studies reporting a synchronization between the neuronally generated EM fields of interacting individuals. An embodied and enactive neuroscientific approach has gained traction in the wake of these findings wherein consciousness and cognition are theorized to be regulated and distributed beyond the individual. We approach this frontier to extend the implications of person-to-person synchrony to propose a process of combination whereby coupled individual agents merge into a hierarchical cognitive system to which they are subsidiary. Such is to say, the complex mammalian consciousness humans possess may not be the tip of the iceberg, but another step in a succeeding staircase. To this end, the axioms and conjectures of General Resonance Theory are utilized to describe this phenomenon of interpersonal resonant combination. Our proposal describes a coupled system of spatially distributed EM fields that are synchronized through recurrent, entraining behavioral interactions. The system, having achieved sufficient synchronization, enjoys an optimization of information flow that alters the conscious states of its merging agents and enhances group performance capabilities. In the race for the neurobiological correlates of subjective experience, we attempt the first steps in the journey toward defining the physical basis of “group consciousness.” The establishment of a concrete account of the combination of consciousness at a scale superseding individual human consciousness remains speculation, but our suggested approach provides a framework for empirical testing of these possibilities.
Collapse
Affiliation(s)
- Asa Young
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Isabella Robbins
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Shivang Shelat
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
11
|
Mundy P, Bullen J. The Bidirectional Social-Cognitive Mechanisms of the Social-Attention Symptoms of Autism. Front Psychiatry 2022; 12:752274. [PMID: 35173636 PMCID: PMC8841840 DOI: 10.3389/fpsyt.2021.752274] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Differences in social attention development begin to be apparent in the 6th to 12th month of development in children with Autism Spectrum Disorder (ASD) and theoretically reflect important elements of its neurodevelopmental endophenotype. This paper examines alternative conceptual views of these early social attention symptoms and hypotheses about the mechanisms involved in their development. One model emphasizes mechanism involved in the spontaneous allocation of attention to faces, or social orienting. Alternatively, another model emphasizes mechanisms involved in the coordination of attention with other people, or joint attention, and the socially bi-directional nature of its development. This model raises the possibility that atypical responses of children to the attention or the gaze of a social partner directed toward themselves may be as important in the development of social attention symptoms as differences in the development of social orienting. Another model holds that symptoms of social attention may be important to early development, but may not impact older individuals with ASD. The alterative model is that the social attention symptoms in infancy (social orienting and joint attention), and social cognitive symptoms in childhood and adulthood share common neurodevelopmental substrates. Therefore, differences in early social attention and later social cognition constitute a developmentally continuous axis of symptom presentation in ASD. However, symptoms in older individuals may be best measured with in vivo measures of efficiency of social attention and social cognition in social interactions rather than the accuracy of response on analog tests used in measures with younger children. Finally, a third model suggests that the social attention symptoms may not truly be a symptom of ASD. Rather, they may be best conceptualized as stemming from differences domain general attention and motivation mechanisms. The alternative argued for here that infant social attention symptoms meet all the criteria of a unique dimension of the phenotype of ASD and the bi-directional phenomena involved in social attention cannot be fully explained in terms of domain general aspects of attention development.
Collapse
Affiliation(s)
- Peter Mundy
- Department of Learning and Mind Sciences, School of Education, University of California, Davis, Davis, CA, United States
- Department of Psychiatry and Behavioral Science and The MIND Institute, UC Davis School of Medicine, Sacramento, CA, United States
| | - Jenifer Bullen
- Department of Human Development, School of Human Ecology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
12
|
Yokoyama C, Autio JA, Ikeda T, Sallet J, Mars RB, Van Essen DC, Glasser MF, Sadato N, Hayashi T. Comparative connectomics of the primate social brain. Neuroimage 2021; 245:118693. [PMID: 34732327 PMCID: PMC9159291 DOI: 10.1016/j.neuroimage.2021.118693] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/27/2021] [Accepted: 10/29/2021] [Indexed: 01/13/2023] Open
Abstract
Social interaction is thought to provide a selection pressure for human intelligence, yet little is known about its neurobiological basis and evolution throughout the primate lineage. Recent advances in neuroimaging have enabled whole brain investigation of brain structure, function, and connectivity in humans and non-human primates (NHPs), leading to a nascent field of comparative connectomics. However, linking social behavior to brain organization across the primates remains challenging. Here, we review the current understanding of the macroscale neural mechanisms of social behaviors from the viewpoint of system neuroscience. We first demonstrate an association between the number of cortical neurons and the size of social groups across primates, suggesting a link between neural information-processing capacity and social capabilities. Moreover, by capitalizing on recent advances in species-harmonized functional MRI, we demonstrate that portions of the mirror neuron system and default-mode networks, which are thought to be important for representation of the other's actions and sense of self, respectively, exhibit similarities in functional organization in macaque monkeys and humans, suggesting possible homologies. With respect to these two networks, we describe recent developments in the neurobiology of social perception, joint attention, personality and social complexity. Together, the Human Connectome Project (HCP)-style comparative neuroimaging, hyperscanning, behavioral, and other multi-modal investigations are expected to yield important insights into the evolutionary foundations of human social behavior.
Collapse
Affiliation(s)
- Chihiro Yokoyama
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Joonas A Autio
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Takuro Ikeda
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Jérôme Sallet
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, Oxford University, Oxford, United Kingdom; University of Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - David C Van Essen
- Departments of Neuroscience, Washington University Medical School, St Louis, MO, United States of America
| | - Matthew F Glasser
- Departments of Neuroscience, Washington University Medical School, St Louis, MO, United States of America; Department of Radiology, Washington University Medical School, St Louis, MO, United States of America
| | - Norihiro Sadato
- National Institute for Physiological Sciences, Okazaki, Japan; The Graduate University for Advanced Studies (SOKENDAI), Kanagawa, Japan
| | - Takuya Hayashi
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan; School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|