1
|
Komatsu H, Sato Y, Tomimoto K, Onoguchi G, Matsuki T, Hamaie Y, Sakuma A, Ohmuro N, Katsura M, Ito F, Ono T, Matsumoto K, Tomita H. Autistic symptoms and clinical features of individuals at clinical high risk for psychosis and first-episode psychosis. Asian J Psychiatr 2025; 103:104345. [PMID: 39719760 DOI: 10.1016/j.ajp.2024.104345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 12/26/2024]
Abstract
INTRODUCTION Autistic symptoms in schizophrenia are reportedly associated with cognitive and social functions. However, few studies have investigated the association between autistic symptoms and clinical features in individuals with a clinical high risk for psychosis (CHR-P) and first-episode psychosis (FEP). We aimed to determine the association between autistic symptoms and clinical features in a cohort of individuals with CHR-P or FEP. METHODS This cross-sectional study included 111 participants (CHR-P: 61, FEP: 50). Autistic symptoms were assessed using the Positive and Negative Syndrome Scale for Schizophrenia Autism Severity Scale. We assessed the association between autistic symptoms and global and social functioning, and cognitive function in individuals with CHR-P or EFP. Multiple regression analysis was also performed using age and sex as covariates to determine the association between autistic symptoms and global functioning. RESULTS The participants with FEP had more severe autistic symptoms than those with CHR-P. The results of bivariate correlation analysis showed a significantly negative association of autistic symptoms with global and cognitive functions in both participants with CHR-P and those with FEP. Multiple regression analysis showed that sex, autistic symptoms, and positive symptoms were significant predictors of overall functioning in those participants. CONCLUSION These findings suggest that autistic symptoms are associated with lower global functioning with both individuals at CHR-P and those with FEP. Further longitudinal analysis is needed to characterize the association between autistic symptoms and global functioning in CHR-P and FEP.
Collapse
Affiliation(s)
- Hiroshi Komatsu
- Department of Psychiatry, Tohoku University Hospital, Sendai, Miyagi, Japan; Miyagi Psychiatric Center, Natori, Miyagi, Japan.
| | - Yutaro Sato
- Department of Psychiatry, Tohoku University Hospital, Sendai, Miyagi, Japan.
| | - Kazuho Tomimoto
- Department of Psychiatry, Tohoku University Hospital, Sendai, Miyagi, Japan.
| | - Goh Onoguchi
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan.
| | - Tasuku Matsuki
- Department of Psychiatry, Tohoku University Hospital, Sendai, Miyagi, Japan.
| | - Yumiko Hamaie
- Department of Disaster Psychiatry, International Research Institute of Disaster Sciences, Tohoku University, Sendai, Japan.
| | - Atsushi Sakuma
- Department of Psychiatry, National Hospital Organization Sendai Medical Center, Sendai, Miyagi, Japan.
| | | | - Masahiro Katsura
- Department of Psychiatry, Tohoku University Hospital, Sendai, Miyagi, Japan; Canal Kotodai General Mental Clinic, Sendai, Miyagi, Japan.
| | - Fumiaki Ito
- National Hospital Organization Hanamaki Hospital, Hanamaki, Iwate, Japan.
| | - Takashi Ono
- Miyagi Psychiatric Center, Natori, Miyagi, Japan.
| | | | - Hiroaki Tomita
- Department of Psychiatry, Tohoku University Hospital, Sendai, Miyagi, Japan; Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan.
| |
Collapse
|
2
|
Komatsu H, Onoguchi G, Silverstein SM, Jerotic S, Sakuma A, Kanahara N, Kakuto Y, Ono T, Yabana T, Nakazawa T, Tomita H. Retina as a potential biomarker in schizophrenia spectrum disorders: a systematic review and meta-analysis of optical coherence tomography and electroretinography. Mol Psychiatry 2024; 29:464-482. [PMID: 38081943 PMCID: PMC11116118 DOI: 10.1038/s41380-023-02340-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 05/25/2024]
Abstract
INTRODUCTION Abnormal findings on optical coherence tomography (OCT) and electroretinography (ERG) have been reported in participants with schizophrenia spectrum disorders (SSDs). This study aims to reveal the pooled standard mean difference (SMD) in retinal parameters on OCT and ERG among participants with SSDs and healthy controls and their association with demographic characteristics, clinical symptoms, smoking, diabetes mellitus, and hypertension. METHODS Using PubMed, Scopus, Web of Science, and PSYNDEX, we searched the literature from inception to March 31, 2023, using specific search terms. This study was registered with PROSPERO (CRD4202235795) and conducted according to PRISMA 2020. RESULTS We included 65 studies in the systematic review and 44 in the meta-analysis. Participants with SSDs showed thinning of the peripapillary retinal nerve fiber layer (pRNFL), macular ganglion cell layer- inner plexiform cell layer, and retinal thickness in all other segments of the macula. A meta-analysis of studies that excluded SSD participants with diabetes and hypertension showed no change in results, except for pRNFL inferior and nasal thickness. Furthermore, a significant difference was found in the pooled SMD of pRNFL temporal thickness between the left and right eyes. Meta-regression analysis revealed an association between retinal thinning and duration of illness, positive and negative symptoms. In OCT angiography, no differences were found in the foveal avascular zone and superficial layer foveal vessel density between SSD participants and controls. In flash ERG, the meta-analysis showed reduced amplitude of both a- and b-waves under photopic and scotopic conditions in SSD participants. Furthermore, the latency of photopic a-wave was significantly shorter in SSD participants in comparison with HCs. DISCUSSION Considering the prior report of retinal thinning in unaffected first-degree relatives and the results of the meta-analysis, the findings suggest that retinal changes in SSDs have both trait and state aspects. Future longitudinal multimodal retinal imaging studies are needed to clarify the pathophysiological mechanisms of these changes and to clarify their utility in individual patient monitoring efforts.
Collapse
Affiliation(s)
- Hiroshi Komatsu
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan.
- Miyagi Psychiatric Center, Natori, Japan.
| | - Goh Onoguchi
- Department of Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Steven M Silverstein
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
| | - Stefan Jerotic
- Clinic for Psychiatry, University Clinical Centre of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Atsushi Sakuma
- Department of Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobuhisa Kanahara
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
- Division of Medical Treatment and Rehabilitation, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Yoshihisa Kakuto
- Miyagi Psychiatric Center, Natori, Japan
- Department of Community Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Takeshi Yabana
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Tomita
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan
- Department of Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
3
|
Liang C, Huang C, Nong Z, Li S, Lin M, Qin Z. Correlation between ABCB1 and OLIG2 polymorphisms and the severity and prognosis of patients with cerebral infarction. Open Med (Wars) 2024; 19:20230841. [PMID: 38221931 PMCID: PMC10787307 DOI: 10.1515/med-2023-0841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 01/16/2024] Open
Abstract
This study investigated the relationship between ATP-binding cassette sub-family B member 1 (ABCB1) and OLIG2 single nucleotide polymorphism (SNP) and neurological injury severity and outcome in cerebral infarction (CI). The neurological injury severity of 298 CI patients was evaluated by the National Institutes of Health Stroke Scale. The prognosis of CI patients at 30 days after admission was evaluated by the modified Rankin Scale. And 322 healthy people were selected as the control group. The SNPs of the ABCB1 gene (rs1045642) and OLIG2 gene (rs1059004 and rs9653711) were detected by TaqMan probe PCR, and the distribution of SNPs genotype was analyzed. SNP rs9653711 was correlated with CI. Recessive models of rs1045642 and rs9653711 were correlated with CI. The genotypes of rs1045642 and rs9653711 and genetic models were associated with CI severity. rs1045642 had no correlation with CI prognosis, while rs9653711 had less correlation. The genotype distribution and recessive model were associated with CI prognosis. SNP rs1059004 was not associated with CI severity and prognosis. Alcohol consumption, hypertension, diabetes, hyperlipidemia, and high levels of homocysteine (HCY) were independent risk factors for CI, while hypertension, hyperlipidemia, and HCY were associated with poor prognosis of CI. ABCB1 rs1045642 and OLOG2 rs9653711 are associated with CI severity.
Collapse
Affiliation(s)
- ChaoYing Liang
- Department of Neurology, The First People’s Hospital of Qinzhou, Qinzhou City, Guangxi Zhuang Autonomous Region, 535099, China
| | - CuiYan Huang
- Department of Neurology, The First People’s Hospital of Qinzhou, Qinzhou City, Guangxi Zhuang Autonomous Region, 535099, China
| | - ZhenRu Nong
- Department of Neurology, The First People’s Hospital of Qinzhou, Qinzhou City, Guangxi Zhuang Autonomous Region, 535099, China
| | - SongLiang Li
- Department of Neurology, The First People’s Hospital of Qinzhou, Qinzhou City, Guangxi Zhuang Autonomous Region, 535099, China
| | - MinShi Lin
- Department of Neurology, The First People’s Hospital of Qinzhou, Qinzhou City, Guangxi Zhuang Autonomous Region, 535099, China
| | - ZuYe Qin
- Department of Neurology, The First People’s Hospital of Qinzhou, Qinzhou City, Guangxi Zhuang Autonomous Region, 535099, China
| |
Collapse
|
4
|
Miyahara K, Hino M, Shishido R, Izumi R, Nagaoka A, Hayashi H, Kakita A, Yabe H, Tomita H, Kunii Y. Ethnicity-dependent effect of rs1799971 polymorphism on OPRM1 expression in the postmortem brain and responsiveness to antipsychotics. J Psychiatr Res 2023; 166:10-16. [PMID: 37659266 DOI: 10.1016/j.jpsychires.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023]
Abstract
Schizophrenia is associated with aberration of inhibitory neurons. Although the mu-opioid receptor (MOR) is an essential modulator of inhibitory neurons, the effect of rs1799971 polymorphism in the MOR gene on risk of schizophrenia is controversial. Moreover, the disturbance of opioids systems in patients with schizophrenia has not been fully examined. We firstly conducted preliminary meta-analyses integrating Asian and European populations separately over 12,000 subjects to assess the effect of rs1799971 on risk of schizophrenia. Based on the above result, we also investigated the effect on the expression levels of MOR mRNA in the prefrontal cortex (PFC) and caudate nucleus of 41 postmortem brains. In addition, we determined whether these levels were related to antemortem schizophrenia symptoms and pharmacotherapeutic effects. The rs1799971 G-allele reduced the risk of schizophrenia in Asian populations (OR: 0.56, 95%CI: 0.32-0.98, p = 0.042) but increased it in European populations (OR: 1.66, 95%CI: 1.08-2.56, p = 0.022). It decreased MOR mRNA levels in PFC in the Japanese population (p = 0.031). Increased MOR mRNA level in PFC correlated with higher total score of antemortem schizophrenia symptoms (p = 0.017). Furthermore, the pharmacotherapeutic effect of first-generation antipsychotics was higher for genotype AA than AG/GG of rs1799971 (p = 0.036). The rs1799971 affects risk of schizophrenia and MOR mRNA expression and the effect varies according to ethnicity. Overexpression of MOR might induce severe schizophrenia symptoms. Therefore, MOR modulation may be the key clue for treating antipsychotics-resistant schizophrenia, and genotyping rs1799971 may provide a better pharmacotherapeutic strategy.
Collapse
Affiliation(s)
- Kazusa Miyahara
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Mizuki Hino
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan; Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Risa Shishido
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Ryuta Izumi
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Atsuko Nagaoka
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hideki Hayashi
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hirooki Yabe
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hiroaki Tomita
- Department of Psychiatry, Tohoku University Hospital, Miyagi, Japan; Department of Psychiatry, Graduate School of Medicine, Tohoku University, Miyagi, Japan
| | - Yasuto Kunii
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan; Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan.
| |
Collapse
|
5
|
Miyahara K, Hino M, Yu Z, Ono C, Nagaoka A, Hatano M, Shishido R, Yabe H, Tomita H, Kunii Y. The influence of tissue pH and RNA integrity number on gene expression of human postmortem brain. Front Psychiatry 2023; 14:1156524. [PMID: 37520228 PMCID: PMC10379646 DOI: 10.3389/fpsyt.2023.1156524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Background Evaluating and controlling confounders are necessary when investigating molecular pathogenesis using human postmortem brain tissue. Particularly, tissue pH and RNA integrity number (RIN) are valuable indicators for controlling confounders. However, the influences of these indicators on the expression of each gene in postmortem brain have not been fully investigated. Therefore, we aimed to assess these effects on gene expressions of human brain samples. Methods We isolated total RNA from occipital lobes of 13 patients with schizophrenia and measured the RIN and tissue pH. Gene expression was analyzed and gene sets affected by tissue pH and RIN were identified. Moreover, we examined the functions of these genes by enrichment analysis and upstream regulator analysis. Results We identified 2,043 genes (24.7%) whose expressions were highly correlated with pH; 3,004 genes (36.3%) whose expressions were highly correlated with RIN; and 1,293 genes (15.6%) whose expressions were highly correlated with both pH and RIN. Genes commonly affected by tissue pH and RIN were highly associated with energy production and the immune system. In addition, genes uniquely affected by tissue pH were highly associated with the cell cycle, whereas those uniquely affected by RIN were highly associated with RNA processing. Conclusion The current study elucidated the influence of pH and RIN on gene expression profiling and identified gene sets whose expressions were affected by tissue pH or RIN. These findings would be helpful in the control of confounders for future postmortem brain studies.
Collapse
Affiliation(s)
- Kazusa Miyahara
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Mizuki Hino
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Zhiqian Yu
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Chiaki Ono
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Atsuko Nagaoka
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Masataka Hatano
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Risa Shishido
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hirooki Yabe
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hiroaki Tomita
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
- Department of Psychiatry, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Yasuto Kunii
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
6
|
Dolma S, Joshi A. The Node of Ranvier as an Interface for Axo-Glial Interactions: Perturbation of Axo-Glial Interactions in Various Neurological Disorders. J Neuroimmune Pharmacol 2023; 18:215-234. [PMID: 37285016 DOI: 10.1007/s11481-023-10072-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 05/19/2023] [Indexed: 06/08/2023]
Abstract
The action potential conduction along the axon is highly dependent on the healthy interactions between the axon and myelin-producing glial cells. Myelin, which facilitates action potential, is the protective insulation around the axon formed by Schwann cells and oligodendrocytes in the peripheral (PNS) and central nervous system (CNS), respectively. Myelin is a continuous structure with intermittent gaps called nodes of Ranvier, which are the sites enriched with ion channels, transmembrane, scaffolding, and cytoskeletal proteins. Decades-long extensive research has identified a comprehensive proteome with strictly regularized localization at the node of Ranvier. Concurrently, axon-glia interactions at the node of Ranvier have gathered significant attention as the pathophysiological targets for various neurodegenerative disorders. Numerous studies have shown the alterations in the axon-glia interactions culminating in neurological diseases. In this review, we have provided an update on the molecular composition of the node of Ranvier. Further, we have discussed in detail the consequences of disruption of axon-glia interactions during the pathogenesis of various CNS and PNS disorders.
Collapse
Affiliation(s)
- Sonam Dolma
- Department of Pharmacy, Birla Institute of Technology and Sciences- Pilani, Hyderabad campus, Telangana state, India
| | - Abhijeet Joshi
- Department of Pharmacy, Birla Institute of Technology and Sciences- Pilani, Hyderabad campus, Telangana state, India.
| |
Collapse
|
7
|
Morello G, La Cognata V, Guarnaccia M, D’Agata V, Cavallaro S. Cracking the Code of Neuronal Cell Fate. Cells 2023; 12:1057. [PMID: 37048129 PMCID: PMC10093029 DOI: 10.3390/cells12071057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Transcriptional regulation is fundamental to most biological processes and reverse-engineering programs can be used to decipher the underlying programs. In this review, we describe how genomics is offering a systems biology-based perspective of the intricate and temporally coordinated transcriptional programs that control neuronal apoptosis and survival. In addition to providing a new standpoint in human pathology focused on the regulatory program, cracking the code of neuronal cell fate may offer innovative therapeutic approaches focused on downstream targets and regulatory networks. Similar to computers, where faults often arise from a software bug, neuronal fate may critically depend on its transcription program. Thus, cracking the code of neuronal life or death may help finding a patch for neurodegeneration and cancer.
Collapse
Affiliation(s)
- Giovanna Morello
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), 95126 Catania, Italy
| | - Valentina La Cognata
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), 95126 Catania, Italy
| | - Maria Guarnaccia
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), 95126 Catania, Italy
| | - Velia D’Agata
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), 95126 Catania, Italy
| |
Collapse
|
8
|
Komatsu H, Onoguchi G, Jerotic S, Kanahara N, Kakuto Y, Ono T, Funakoshi S, Yabana T, Nakazawa T, Tomita H. Retinal layers and associated clinical factors in schizophrenia spectrum disorders: a systematic review and meta-analysis. Mol Psychiatry 2022; 27:3592-3616. [PMID: 35501407 DOI: 10.1038/s41380-022-01591-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The retina shares structural and functional similarities with the brain. Furthermore, structural changes in the retina have been observed in patients with schizophrenia spectrum disorders (SSDs). This systematic review and meta-analysis investigated retinal abnormalities and their association with clinical factors for SSD. METHODS Studies related to retinal layers in SSD patients were retrieved from PubMed, Scopus, Web of Science, Cochrane Controlled Register of Trials, International Clinical Trials Registry Platform, and PSYNDEX databases from inception to March 31, 2021. We screened and assessed the eligibility of the identified studies. EZR ver.1.54 and the metafor package in R were used for the meta-analysis and a random-effects or fixed-effects model was used to report standardized mean differences (SMDs). RESULTS Twenty-three studies (2079 eyes of patients and 1571 eyes of controls) were included in the systematic review and meta-analysis. The average peripapillary retinal nerve fiber layer (pRNFL) thickness, average macular thickness (MT), and macular ganglion cell layer-inner plexiform layer (GCL-IPL) thickness were significantly lower in patients than in controls (n = 14, 6, and 3, respectively; SMD = -0.33, -0.49, and -0.43, respectively). Patients also had significantly reduced macular volume (MV) compared to controls (n = 7; SMD = -0.53). The optic cup volume (OCV) was significantly larger in patients than in controls (n = 3; SMD = 0.28). The meta-regression analysis indicated an association between several clinical factors, such as duration of illness and the effect size of the pRNFL, macular GCL-IPL, MT, and MV. CONCLUSION Thinning of the pRNFL, macular GCL-IPL, MT, and MV and enlargement of the OCV in SSD were observed. Retinal abnormalities may be applicable as state/trait markers in SSDs. The accumulated evidence was mainly cross-sectional and requires verification by longitudinal studies to characterize the relationship between OCT findings and clinical factors.
Collapse
Affiliation(s)
- Hiroshi Komatsu
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan. .,Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan. .,Miyagi Psychiatric Center, Natori, Japan.
| | - Goh Onoguchi
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Stefan Jerotic
- Clinic for Psychiatry, University Clinical Centre of Serbia, Belgrade, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nobuhisa Kanahara
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan.,Division of Medical Treatment and Rehabilitation, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Yoshihisa Kakuto
- Miyagi Psychiatric Center, Natori, Japan.,Department of Community Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | | | - Shunichi Funakoshi
- Miyagi Psychiatric Center, Natori, Japan.,Department of Community Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Takeshi Yabana
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Collaborative Program for Ophthalmic Drug Discovery, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Tomita
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan.,Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Department of Disaster Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan.,Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| |
Collapse
|
9
|
The Molecular Genetics of Dissociative Symptomatology: A Transdiagnostic Literature Review. Genes (Basel) 2022; 13:genes13050843. [PMID: 35627228 PMCID: PMC9141026 DOI: 10.3390/genes13050843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/04/2022] Open
Abstract
Dissociative disorders are a common and frequently undiagnosed group of psychiatric disorders, characterized by disruptions in the normal integration of awareness, personality, emotion and behavior. The available evidence suggests that these disorders arise from an interaction between genetic vulnerability and stress, particularly traumatic stress, but the attention paid to the underlying genetic diatheses has been sparse. In this paper, the existing literature on the molecular genetics of dissociative disorders, as well as of clinically significant dissociative symptoms not reaching the threshold of a disorder, is reviewed comprehensively across clinical and non-clinical samples. Association studies suggest a link between dissociative symptoms and genes related to serotonergic, dopaminergic and peptidergic transmission, neural plasticity and cortisol receptor sensitivity, particularly following exposure to childhood trauma. Genome-wide association studies have identified loci of interest related to second messenger signaling and synaptic integration. Though these findings are inconsistent, they suggest biologically plausible mechanisms through which traumatic stress can lead to pathological dissociation. However, methodological concerns related to phenotype definition, study power, and correction for the confounding factors limit the value of these findings, and they require replication and extension in studies with better design.
Collapse
|
10
|
Valdés-Tovar M, Rodríguez-Ramírez AM, Rodríguez-Cárdenas L, Sotelo-Ramírez CE, Camarena B, Sanabrais-Jiménez MA, Solís-Chagoyán H, Argueta J, López-Riquelme GO. Insights into myelin dysfunction in schizophrenia and bipolar disorder. World J Psychiatry 2022; 12:264-285. [PMID: 35317338 PMCID: PMC8900585 DOI: 10.5498/wjp.v12.i2.264] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/10/2021] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia and bipolar disorder are disabling psychiatric disorders with a worldwide prevalence of approximately 1%. Both disorders present chronic and deteriorating prognoses that impose a large burden, not only on patients but also on society and health systems. These mental illnesses share several clinical and neurobiological traits; of these traits, oligodendroglial dysfunction and alterations to white matter (WM) tracts could underlie the disconnection between brain regions related to their symptomatic domains. WM is mainly composed of heavily myelinated axons and glial cells. Myelin internodes are discrete axon-wrapping membrane sheaths formed by oligodendrocyte processes. Myelin ensheathment allows fast and efficient conduction of nerve impulses through the nodes of Ranvier, improving the overall function of neuronal circuits. Rapid and precisely synchronized nerve impulse conduction through fibers that connect distant brain structures is crucial for higher-level functions, such as cognition, memory, mood, and language. Several cellular and subcellular anomalies related to myelin and oligodendrocytes have been found in postmortem samples from patients with schizophrenia or bipolar disorder, and neuroimaging techniques have revealed consistent alterations at the macroscale connectomic level in both disorders. In this work, evidence regarding these multilevel alterations in oligodendrocytes and myelinated tracts is discussed, and the involvement of proteins in key functions of the oligodendroglial lineage, such as oligodendrogenesis and myelination, is highlighted. The molecular components of the axo-myelin unit could be important targets for novel therapeutic approaches to schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Marcela Valdés-Tovar
- Departamento de Farmacogenética, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | | | - Leslye Rodríguez-Cárdenas
- Departamento de Farmacogenética, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Carlo E Sotelo-Ramírez
- Departamento de Farmacogenética, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
- Doctorado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
| | - Beatriz Camarena
- Departamento de Farmacogenética, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | | | - Héctor Solís-Chagoyán
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Jesús Argueta
- Doctorado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Germán Octavio López-Riquelme
- Laboratorio de Socioneurobiología, Centro de Investigación en Ciencias Cognitivas, Universidad del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico
| |
Collapse
|
11
|
Morello G, Villari A, Spampinato AG, La Cognata V, Guarnaccia M, Gentile G, Ciotti MT, Calissano P, D’Agata V, Severini C, Cavallaro S. Transcriptional Profiles of Cell Fate Transitions Reveal Early Drivers of Neuronal Apoptosis and Survival. Cells 2021; 10:3238. [PMID: 34831459 PMCID: PMC8620386 DOI: 10.3390/cells10113238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 11/23/2022] Open
Abstract
Neuronal apoptosis and survival are regulated at the transcriptional level. To identify key genes and upstream regulators primarily responsible for these processes, we overlayed the temporal transcriptome of cerebellar granule neurons following induction of apoptosis and their rescue by three different neurotrophic factors. We identified a core set of 175 genes showing opposite expression trends at the intersection of apoptosis and survival. Their functional annotations and expression signatures significantly correlated to neurological, psychiatric and oncological disorders. Transcription regulatory network analysis revealed the action of nine upstream transcription factors, converging pro-apoptosis and pro-survival-inducing signals in a highly interconnected functionally and temporally ordered manner. Five of these transcription factors are potential drug targets. Transcriptome-based computational drug repurposing produced a list of drug candidates that may revert the apoptotic core set signature. Besides elucidating early drivers of neuronal apoptosis and survival, our systems biology-based perspective paves the way to innovative pharmacology focused on upstream targets and regulatory networks.
Collapse
Affiliation(s)
- Giovanna Morello
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Via Paolo Gaifami, 18, 95125 Catania, Italy; (G.M.); (A.V.); (A.G.S.); (V.L.C.); (M.G.); (G.G.)
| | - Ambra Villari
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Via Paolo Gaifami, 18, 95125 Catania, Italy; (G.M.); (A.V.); (A.G.S.); (V.L.C.); (M.G.); (G.G.)
| | - Antonio Gianmaria Spampinato
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Via Paolo Gaifami, 18, 95125 Catania, Italy; (G.M.); (A.V.); (A.G.S.); (V.L.C.); (M.G.); (G.G.)
| | - Valentina La Cognata
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Via Paolo Gaifami, 18, 95125 Catania, Italy; (G.M.); (A.V.); (A.G.S.); (V.L.C.); (M.G.); (G.G.)
| | - Maria Guarnaccia
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Via Paolo Gaifami, 18, 95125 Catania, Italy; (G.M.); (A.V.); (A.G.S.); (V.L.C.); (M.G.); (G.G.)
| | - Giulia Gentile
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Via Paolo Gaifami, 18, 95125 Catania, Italy; (G.M.); (A.V.); (A.G.S.); (V.L.C.); (M.G.); (G.G.)
| | - Maria Teresa Ciotti
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini, 32, Monterotondo Scalo, 00015 Rome, Italy; (M.T.C.); (C.S.)
| | - Pietro Calissano
- European Brain Research Institute (EBRI Foundation), Viale Regina Elena, 295, 00161 Rome, Italy;
| | - Velia D’Agata
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Via Santa Sofia, 87, 95123 Catania, Italy;
| | - Cinzia Severini
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini, 32, Monterotondo Scalo, 00015 Rome, Italy; (M.T.C.); (C.S.)
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Via Paolo Gaifami, 18, 95125 Catania, Italy; (G.M.); (A.V.); (A.G.S.); (V.L.C.); (M.G.); (G.G.)
| |
Collapse
|
12
|
Kunii Y, Matsumoto J, Izumi R, Nagaoka A, Hino M, Shishido R, Sainouchi M, Akatsu H, Hashizume Y, Kakita A, Yabe H. Evidence for Altered Phosphoinositide Signaling-Associated Molecules in the Postmortem Prefrontal Cortex of Patients with Schizophrenia. Int J Mol Sci 2021; 22:8280. [PMID: 34361045 PMCID: PMC8348881 DOI: 10.3390/ijms22158280] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 12/26/2022] Open
Abstract
Phosphoinositides (PIs) play important roles in the structure and function of the brain. Associations between PIs and the pathophysiology of schizophrenia have been studied. However, the significance of the PI metabolic pathway in the pathology of schizophrenia is unknown. We examined the expression of PI signaling-associated proteins in the postmortem brain of schizophrenia patients. Protein expression levels of phosphatidylinositol 4-phosphate 5-kinase type-1 gamma (PIP5K1C), phosphatidylinositol 4-kinase alpha (PIK4CA, also known as PIK4A), phosphatase and tensin homolog deleted from chromosome 10 (PTEN), protein kinase B (Akt), and glycogen synthase kinase 3β (GSK3β) were measured using enzyme-linked immunosorbent assays and multiplex fluorescent bead-based immunoassays of the prefrontal cortex (PFC) of postmortem samples from 23 schizophrenia patients and 47 normal controls. We also examined the association between PIK4CA expression and its genetic variants in the same brain samples. PIK4CA expression was lower, whereas Akt expression was higher, in the PFC of schizophrenia patients than in that of controls; PIP5K1C, PTEN, and GSK3β expression was not different. No single-nucleotide polymorphism significantly affected protein expression. We identified molecules involved in the pathology of schizophrenia via this lipid metabolic pathway. These results suggest that PIK4CA is involved in the mechanism underlying the pathogenesis of schizophrenia and is a potential novel therapeutic target.
Collapse
Affiliation(s)
- Yasuto Kunii
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan; (J.M.); (R.I.); (A.N.); (M.H.); (R.S.); (H.Y.)
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai 980-8573, Japan
| | - Junya Matsumoto
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan; (J.M.); (R.I.); (A.N.); (M.H.); (R.S.); (H.Y.)
| | - Ryuta Izumi
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan; (J.M.); (R.I.); (A.N.); (M.H.); (R.S.); (H.Y.)
| | - Atsuko Nagaoka
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan; (J.M.); (R.I.); (A.N.); (M.H.); (R.S.); (H.Y.)
| | - Mizuki Hino
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan; (J.M.); (R.I.); (A.N.); (M.H.); (R.S.); (H.Y.)
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai 980-8573, Japan
| | - Risa Shishido
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan; (J.M.); (R.I.); (A.N.); (M.H.); (R.S.); (H.Y.)
| | - Makoto Sainouchi
- Department of Pathology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan; (M.S.); (A.K.)
| | - Hiroyasu Akatsu
- Department of Community-Based Medical Education, Nagoya City University Graduate School of Medical Science, Aichi 467-8601, Japan;
- Department of Community-Based Medicine, Nagoya City University Graduate School of Medical Science, Aichi 467-8601, Japan
- Choju Medical Institute, Fukushimura Hospital, Aichi 441-8124, Japan;
| | - Yoshio Hashizume
- Choju Medical Institute, Fukushimura Hospital, Aichi 441-8124, Japan;
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan; (M.S.); (A.K.)
| | - Hirooki Yabe
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan; (J.M.); (R.I.); (A.N.); (M.H.); (R.S.); (H.Y.)
| |
Collapse
|
13
|
Komatsu H, Takeuchi H, Ono C, Yu Z, Kikuchi Y, Kakuto Y, Funakoshi S, Ono T, Kawashima R, Taki Y, Tomita H. Association Between OLIG2 Gene SNP rs1059004 and Negative Self-Schema Constructing Trait Factors Underlying Susceptibility to Depression. Front Psychiatry 2021; 12:631475. [PMID: 33762978 PMCID: PMC7983671 DOI: 10.3389/fpsyt.2021.631475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/05/2021] [Indexed: 11/23/2022] Open
Abstract
Recent evidence has indicated that the disruption of oligodendrocytes may be involved in the pathogenesis of depression. Genetic factors are likely to affect trait factors, such as characteristics, rather than state factors, such as depressive symptoms. Previously, a negative self-schema had been proposed as the major characteristic of constructing trait factors underlying susceptibility to depression. Thus, the association between a negative self-schema and the functional single nucleotide polymorphism (SNP) rs1059004 in the OLIG2 gene, which influences OLIG2 gene expression, white matter integrity, and cerebral blood flow, was evaluated. A total of 546 healthy subjects were subjected to genotype and psychological evaluation using the Beck Depression Inventory-II (BDI-II) and the Brief Core Schema Scale (BCSS). The rs1059004 SNP was found to be associated with the self-schema subscales of the BCSS and scores on the BDI-II in an allele dose-dependent manner, and to have a predictive impact on depressive symptoms via a negative-self schema. The results suggest the involvement of a genetic factor regulating oligodendrocyte function in generating a negative-self schema as a trait factor underlying susceptibility to depression.
Collapse
Affiliation(s)
- Hiroshi Komatsu
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan.,Miyagi Psychiatric Center, Natori, Japan
| | - Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Chiaki Ono
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Zhiqian Yu
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Yoshie Kikuchi
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | | | - Shunichi Funakoshi
- Miyagi Psychiatric Center, Natori, Japan.,Department of Community Psychiatry, Tohoku University, Sendai, Japan
| | | | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Smart Ageing International Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yasuyuki Taki
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Hiroaki Tomita
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan.,Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan.,Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Disaster Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|