1
|
Lu C, Linden JF. Auditory evoked-potential abnormalities in a mouse model of 22q11.2 Deletion Syndrome and their interactions with hearing impairment. Transl Psychiatry 2025; 15:4. [PMID: 39779687 PMCID: PMC11711659 DOI: 10.1038/s41398-024-03218-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/02/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
The 22q11.2 deletion is a risk factor for multiple psychiatric disorders including schizophrenia and also increases vulnerability to middle-ear problems that can cause hearing impairment. Up to 60% of deletion carriers experience hearing impairment and ~30% develop schizophrenia in adulthood. It is not known if these risks interact. Here we used the Df1/+ mouse model of the 22q11.2 deletion to investigate how hearing impairment might interact with increased genetic vulnerability to psychiatric disease to affect brain function. We measured brain function using cortical auditory evoked potentials (AEPs), which are commonly measured non-invasively in humans. After identifying one of the simplest and best-validated methods for AEP measurement in mice from the diversity of previous approaches, we measured peripheral hearing sensitivity and cortical AEPs in Df1/+ mice and their WT littermates. We exploited large inter-individual variation in hearing ability among Df1/+ mice to distinguish effects of genetic background from effects of hearing impairment. Central auditory gain and adaptation were quantified by comparing brainstem activity and cortical AEPs and by analyzing the growth of cortical AEPs with increasing sound level or inter-tone interval duration. We found that level-dependent AEP growth was abnormally large in Df1/+ mice regardless of hearing impairment, but other AEP measures of central auditory gain and adaptation depended on both genotype and hearing phenotype. Our results demonstrate the relevance of comorbid hearing loss to auditory brain dysfunction in 22q11.2DS and also identify potential biomarkers for psychiatric disease that are robust to hearing impairment.
Collapse
Affiliation(s)
- Chen Lu
- Ear Institute, University College London, London, UK
| | - Jennifer F Linden
- Ear Institute, University College London, London, UK.
- Department of Neuroscience, Physiology, & Pharmacology, University College London, London, UK.
| |
Collapse
|
2
|
Li Y, Zheng Y, Rong L, Zhou Y, Zhu Z, Xie Q, Liang Z, Zhao X. Altered Function and Structure of the Cerebellum Associated with Gut-Brain Regulation in Crohn's Disease: a Structural and Functional MRI Study. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2285-2296. [PMID: 39096431 DOI: 10.1007/s12311-024-01715-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/22/2024] [Indexed: 08/05/2024]
Abstract
This study employed structural and functional magnetic resonance imaging (MRI) to investigate changes in the function and structure of the cerebellum associated with gut-brain axis (GBA) regulation in patients diagnosed with Crohn's disease (CD). The study comprised 20 CD patients, including 12 with active disease (CD-A) and 8 in remission (CD-R), as well as 21 healthy controls. Voxel-based morphometry (VBM) was utilized for structural analysis of cerebellar gray matter volume, while independent component analysis (ICA) was applied for functional analysis of cerebellar functional connectivity (FC). The results showed significant GMV reduction in the left posterior cerebellar lobe across all CD patients compared to HCs, with more pronounced differences in the CD-A subgroup. Additionally, an increase in mean FC of the cerebellar network was observed in all CD patients, particularly in the CD-A subgroup, which demonstrated elevated FC in the vermis and bilateral posterior cerebellum. Correlation analysis revealed a positive relationship between cerebellar FC and the Crohn's Disease Activity Index (CDAI) and a trend toward a negative association with the reciprocal of the Self-rating Depression Scale (SDS) score in CD patients. The study's findings suggest that the cerebellum may play a role in the abnormal regulation of the GBA in CD patients, contributing to a better understanding of the neural mechanisms underlying CD and highlighting the cerebellum's potential role in modulating gut-brain interactions.
Collapse
Affiliation(s)
- Yunfei Li
- Department of Radiology, The Fifth People's Hospital of Shanghai Fudan University, Shanghai, China
| | - Yanling Zheng
- Department of Radiology, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Lan Rong
- Department of Gastroenterology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Zhou
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Zhu
- Department of Radiology, Putuo People's Hospital, Tongji University, Shanghai, China
| | - Qian Xie
- Department of Radiology, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Zonghui Liang
- Department of Radiology, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, China.
| | - Xiaohu Zhao
- Department of Radiology, The Fifth People's Hospital of Shanghai Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Li X, Wei W, Wang Q, Deng W, Li M, Ma X, Zeng J, Zhao L, Guo W, Hall MH, Li T. Identify Potential Causal Relationships Between Cortical Thickness, Mismatch Negativity, Neurocognition, and Psychosocial Functioning in Drug-Naïve First-Episode Psychosis Patients. Schizophr Bull 2024; 50:827-838. [PMID: 38635296 PMCID: PMC11283193 DOI: 10.1093/schbul/sbae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
BACKGROUND Cortical thickness (CT) alterations, mismatch negativity (MMN) reductions, and cognitive deficits are robust findings in first-episode psychosis (FEP). However, most studies focused on medicated patients, leaving gaps in our understanding of the interrelationships between CT, MMN, neurocognition, and psychosocial functioning in unmedicated FEP. This study aimed to employ multiple mediation analysis to investigate potential pathways among these variables in unmedicated drug-naïve FEP. METHODS We enrolled 28 drug-naïve FEP and 34 age and sex-matched healthy controls. Clinical symptoms, neurocognition, psychosocial functioning, auditory duration MMN, and T1 structural magnetic resonance imaging data were collected. We measured CT in the superior temporal gyrus (STG), a primary MMN-generating region. RESULTS We found a significant negative correlation between MMN amplitude and bilateral CT of STG (CT_STG) in FEP (left: r = -.709, P < .001; right: r = -.612, P = .008). Multiple mediation models revealed that a thinner left STG cortex affected functioning through both direct (24.66%) and indirect effects (75.34%). In contrast, the effects of the right CT_STG on functioning were mainly mediated through MMN and neurocognitive pathways. CONCLUSIONS Bilateral CT_STG showed significant association with MMN, and MMN plays a mediating role between CT and cognition. Both MMN alone and its interaction with cognition mediated the effects of structural alterations on psychosocial function. The decline in overall function in FEP may stem from decreased CT_STG, leading to subsequent MMN deficits and neurocognitive dysfunction. These findings underline the crucial role of MMN in elucidating how subtle structural alterations can impact neurocognition and psychosocial function in FEP.
Collapse
Affiliation(s)
- Xiaojing Li
- Affiliated Mental Health Center and Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Wei Wei
- Affiliated Mental Health Center and Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Qiang Wang
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Wei Deng
- Affiliated Mental Health Center and Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Mingli Li
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiaohong Ma
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Jinkun Zeng
- Affiliated Mental Health Center and Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Liansheng Zhao
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Wanjun Guo
- Affiliated Mental Health Center and Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Mei-Hua Hall
- Psychosis Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Tao Li
- Affiliated Mental Health Center and Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Rué-Queralt J, Mancini V, Rochas V, Latrèche C, Uhlhaas PJ, Michel CM, Plomp G, Eliez S, Hagmann P. The coupling between the spatial and temporal scales of neural processes revealed by a joint time-vertex connectome spectral analysis. Neuroimage 2023; 280:120337. [PMID: 37604296 DOI: 10.1016/j.neuroimage.2023.120337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023] Open
Abstract
Brain oscillations are produced by the coordinated activity of large groups of neurons and different rhythms are thought to reflect different modes of information processing. These modes, in turn, are known to occur at different spatial scales. Nevertheless, how these rhythms support different spatial modes of information processing at the brain scale is not yet fully understood. Here we use "Joint Time-Vertex Spectral Analysis" to characterize the joint spectral content of brain activity both in time (temporal frequencies) and in space over the connectivity graph (spatial connectome harmonics). This method allows us to characterize the relationship between spatially localized or distributed neural processes on one side and their respective temporal frequency bands in source-reconstructed M/EEG signals. We explore this approach on two different datasets, an auditory steady-state response (ASSR) and a visual grating task. Our results suggest that different information processing mechanisms are carried out at different frequency bands: while spatially distributed activity (which may also be interpreted as integration) specifically occurs at low temporal frequencies (alpha and theta) and low graph spatial frequencies, localized electrical activity (i.e., segregation) is observed at high temporal frequencies (high and low gamma) over restricted high spatial graph frequencies. Crucially, the estimated contribution of the distributed and localized neural activity predicts performance in a behavioral task, demonstrating the neurophysiological relevance of the joint time-vertex spectral representation.
Collapse
Affiliation(s)
- Joan Rué-Queralt
- Department of Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland; Perceptual Networks Lab, Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Valentina Mancini
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland.
| | - Vincent Rochas
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland; Human Neuroscience Platform, Fondation Campus Biotech Geneva, Switzerland
| | - Caren Latrèche
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | - Peter J Uhlhaas
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland, United Kingdom; Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Charité Universitätsmedizin, Berlin, Germany
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Gijs Plomp
- Perceptual Networks Lab, Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland; Department of Genetic Medicine and Development, University of Geneva School of Medicine, Geneva, Switzerland
| | - Patric Hagmann
- Department of Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| |
Collapse
|
5
|
Mancini V, Saleh MG, Delavari F, Bagautdinova J, Eliez S. Excitatory/Inhibitory Imbalance Underlies Hippocampal Atrophy in Individuals With 22q11.2 Deletion Syndrome With Psychotic Symptoms. Biol Psychiatry 2023; 94:569-579. [PMID: 37011759 DOI: 10.1016/j.biopsych.2023.03.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/10/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND Abnormal neurotransmitter levels have been reported in individuals at high risk for schizophrenia, leading to a shift in the excitatory/inhibitory balance. However, it is unclear whether these alterations predate the onset of clinically relevant symptoms. Our aim was to explore in vivo measures of excitatory/inhibitory balance in 22q11.2 deletion carriers, a population at genetic risk for psychosis. METHODS Glx (glutamate+glutamine) and GABA+ (gamma-aminobutyric acid with macromolecules and homocarnosine) concentrations were estimated in the anterior cingulate cortex, superior temporal cortex, and hippocampus using the Mescher-Garwood point-resolved spectroscopy (MEGA-PRESS) sequence and the Gannet toolbox in 52 deletion carriers and 42 control participants. T1-weighted images were acquired longitudinally and processed with FreeSurfer version 6 to extract hippocampal volume. Subgroup analyses were conducted in deletion carriers with psychotic symptoms. RESULTS While no differences were found in the anterior cingulate cortex, deletion carriers had higher levels of Glx in the hippocampus and superior temporal cortex and lower levels of GABA+ in the hippocampus than control participants. We additionally found a higher Glx concentration in the hippocampus of deletion carriers with psychotic symptoms. Finally, more pronounced hippocampal atrophy was significantly associated with increased Glx levels in deletion carriers. CONCLUSIONS We provide evidence for an excitatory/inhibitory imbalance in temporal brain structures of deletion carriers, with a further hippocampal Glx increase in individuals with psychotic symptoms that was associated with hippocampal atrophy. These results are in line with theories proposing abnormally enhanced glutamate levels as a mechanistic explanation for hippocampal atrophy via excitotoxicity. Our results highlight a central role of glutamate in the hippocampus of individuals at genetic risk for schizophrenia.
Collapse
Affiliation(s)
- Valentina Mancini
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland.
| | - Muhammad G Saleh
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Farnaz Delavari
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | - Joëlle Bagautdinova
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland; Department of Genetic Medicine and Development, University of Geneva School of Medicine, Geneva, Switzerland
| |
Collapse
|
6
|
Francisco AA, Foxe JJ, Molholm S. Event-related potential (ERP) markers of 22q11.2 deletion syndrome and associated psychosis. J Neurodev Disord 2023; 15:19. [PMID: 37328766 PMCID: PMC10273715 DOI: 10.1186/s11689-023-09487-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/07/2023] [Indexed: 06/18/2023] Open
Abstract
22q11.2 deletion syndrome (22q11.2DS) is a multisystemic disorder characterized by a wide range of clinical features, ranging from life-threatening to less severe conditions. One-third of individuals with the deletion live with mild to moderate intellectual disability; approximately 60% meet criteria for at least one psychiatric condition.22q11.2DS has become an important model for several medical, developmental, and psychiatric disorders. We have been particularly interested in understanding the risk for psychosis in this population: Approximately 30% of the individuals with the deletion go on to develop schizophrenia. The characterization of cognitive and neural differences between those individuals who develop schizophrenia and those who do not, despite being at genetic risk, holds important promise in what pertains to the clarification of paths to disease and to the development of tools for early identification and intervention.Here, we review our previous event-related potential (ERP) findings as potential markers for 22q11.2DS and the associated risk for psychosis, while discussing others' work. We focus on auditory processing (auditory-evoked potentials, auditory adaptation, and auditory sensory memory), visual processing (visual-evoked potentials and visual adaptation), and inhibition and error monitoring.The findings discussed suggest basic mechanistic and disease process effects on neural processing in 22q11.2DS that are present in both early sensory and later cognitive processing, with possible implications for phenotype. In early sensory processes, both during auditory and visual processing, two mechanisms that impact neural responses in opposite ways seem to coexist-one related to the deletion, which increases brain responses; another linked to psychosis, decreasing neural activity. Later, higher-order cognitive processes may be equally relevant as markers for psychosis. More specifically, we argue that components related to error monitoring may hold particular promise in the study of risk for schizophrenia in the general population.
Collapse
Affiliation(s)
- Ana A Francisco
- Department of Pediatrics, The Cognitive Neurophysiology Laboratory, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - John J Foxe
- Department of Pediatrics, The Cognitive Neurophysiology Laboratory, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, The Frederick J. and Marion A, Schindler Cognitive Neurophysiology Laboratory, The Ernest J. Del Monde Institute for Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA
| | - Sophie Molholm
- Department of Pediatrics, The Cognitive Neurophysiology Laboratory, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Neuroscience, The Frederick J. and Marion A, Schindler Cognitive Neurophysiology Laboratory, The Ernest J. Del Monde Institute for Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
7
|
Mancini V, Rochas V, Seeber M, Grent-'t-Jong T, Rihs TA, Latrèche C, Uhlhaas PJ, Michel CM, Eliez S. Oscillatory Neural Signatures of Visual Perception Across Developmental Stages in Individuals With 22q11.2 Deletion Syndrome. Biol Psychiatry 2022; 92:407-418. [PMID: 35550793 DOI: 10.1016/j.biopsych.2022.02.961] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Numerous behavioral studies have highlighted the contribution of visual perceptual deficits to the nonverbal cognitive profile of individuals with 22q11.2 deletion syndrome. However, the neurobiological processes underlying these widespread behavioral alterations are yet to be fully understood. Thus, in this paper, we investigated the role of neural oscillations toward visuoperceptual deficits to elucidate the neurobiology of sensory impairments in deletion carriers. METHODS We acquired 125 high-density electroencephalography recordings during a visual grating task in a group of 62 deletion carriers and 63 control subjects. Stimulus-elicited oscillatory responses were analyzed with 1) time-frequency analysis using wavelets decomposition at sensor and source level, 2) intertrial phase coherence, and 3) Granger causality connectivity in source space. Additional analyses examined the development of neural oscillations across age bins. RESULTS Deletion carriers had decreased theta-band (4-8 Hz) and gamma-band (58-68 Hz) spectral power compared with control subjects in response to the visual stimuli, with an absence of age-related increase of theta- and gamma-band responses. Moreover, adult deletion carriers had decreased gamma- and theta-band responses but increased alpha/beta desynchronization (10-25 Hz) that correlated with behavioral performance. Granger causality estimates reflected an increased frontal-occipital connectivity in the beta range (22-40 Hz). CONCLUSIONS Deletion carriers exhibited decreased theta- and gamma-band responses to visual stimuli, while alpha/beta desynchronization was preserved. Overall, the lack of age-related changes in deletion carriers implicates developmental impairments in circuit mechanisms underlying neural oscillations. The dissociation between the maturation of theta/gamma- and alpha/beta-band responses may indicate a selective impairment in supragranular cortical layers, leading to compensatory top-down connectivity.
Collapse
Affiliation(s)
- Valentina Mancini
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland.
| | - Vincent Rochas
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland; Human Neuroscience Platform, Fondation Campus Biotech Geneva, Geneva, Switzerland
| | - Martin Seeber
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Tineke Grent-'t-Jong
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland; Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Charité Universitätsmedizin, Berlin, Germany
| | - Tonia A Rihs
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Caren Latrèche
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | - Peter J Uhlhaas
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland; Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Charité Universitätsmedizin, Berlin, Germany
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland; Center for Biomedical Imaging, Lausanne, Switzerland
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland; Department of Genetic Medicine and Development, University of Geneva School of Medicine, Geneva, Switzerland
| |
Collapse
|
8
|
Perez-Rando M, Elvira UKA, García-Martí G, Gadea M, Aguilar EJ, Escarti MJ, Ahulló-Fuster MA, Grasa E, Corripio I, Sanjuan J, Nacher J. Alterations in the volume of thalamic nuclei in patients with schizophrenia and persistent auditory hallucinations. Neuroimage Clin 2022; 35:103070. [PMID: 35667173 PMCID: PMC9168692 DOI: 10.1016/j.nicl.2022.103070] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/02/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
Analysis of structural MRI images using a probabilistic atlas for segmentation of several nuclei of the thalamus. Comparison of chronic patients with schizophrenia, with and without auditory hallucinations and matched healthy controls. Volumetric reductions in patients with AH vs controls: Medial geniculate nucleus, anterior pulvinar nucleus and lateral and medial mediodorsal nuclei. In patients without AH we found reductions in the volume of the pulvinar and mediodorsal nuclei, but not in the medial geniculate nucleus. Found also some significant correlations between the volume of these nuclei and the total score of the PSYRATS scale.
The thalamus is a subcortical structure formed by different nuclei that relay information to the neocortex. Several reports have already described alterations of this structure in patients of schizophrenia that experience auditory hallucinations. However, to date no study has addressed whether the volumes of specific thalamic nuclei are altered in chronic patients experiencing persistent auditory hallucinations. We have processed structural MRI images using Freesurfer, and have segmented them into 25 nuclei using the probabilistic atlas developed by Iglesias and collaborators (Iglesias et al., 2018). To homogenize the sample, we have matched patients of schizophrenia, with and without persistent auditory hallucinations, with control subjects, considering sex, age and their estimated intracranial volume. This rendered a group number of 41 patients experiencing persistent auditory hallucinations, 35 patients without auditory hallucinations, and 55 healthy controls. In addition, we have also correlated the volume of the altered thalamic nuclei with the total score of the PSYRATS, a clinical scale used to evaluate the positive symptoms of this disorder. We have found alterations in the volume of 8 thalamic nuclei in both cohorts of patients with schizophrenia: The medial and lateral geniculate nuclei, the anterior, inferior, and lateral pulvinar nuclei, the lateral complex and the lateral and medial mediodorsal nuclei. We have also found some significant correlations between the volume of these nuclei in patients experiencing auditory hallucinations, and the total score of the PSYRATS scale. Altogether our results indicate that volumetric alterations of thalamic nuclei involved in audition may be related to persistent auditory hallucinations in chronic schizophrenia patients, whereas alterations in nuclei related to association cortices are evident in all patients. Future studies should explore whether the structural alterations are cause or consequence of these positive symptoms and whether they are already present in first episodes of psychosis.
Collapse
Affiliation(s)
- Marta Perez-Rando
- Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain; Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Institute of Research of the Clinic Hospital from Valencia (INCLIVA), Valencia, Spain.
| | - Uriel K A Elvira
- Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain; Institutes of Biomedical Technologies and Neuroscience, University of La Laguna, San Cristóbal de La Laguna, Spain
| | - Gracian García-Martí
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Quironsalud Hospital, Valencia, Spain
| | - Marien Gadea
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Institute of Research of the Clinic Hospital from Valencia (INCLIVA), Valencia, Spain; Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Eduardo J Aguilar
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Psychiatry Unit, Faculty of Medicine, Universitat de València, Valencia, Spain
| | - Maria J Escarti
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain
| | - Mónica Alba Ahulló-Fuster
- Department of Radiology, Rehabilitation and Physiotherapy. Faculty of Nursing, Physiotherapy and Podiatry. Universidad Complutense de Madrid, Spain
| | - Eva Grasa
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Servicio de Psiquiatría. Instituto de Investigación Biomédica Sant Pau (IIB-SANT PAU), Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Iluminada Corripio
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Servicio de Psiquiatría. Instituto de Investigación Biomédica Sant Pau (IIB-SANT PAU), Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Julio Sanjuan
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Quironsalud Hospital, Valencia, Spain
| | - Juan Nacher
- Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain; Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Institute of Research of the Clinic Hospital from Valencia (INCLIVA), Valencia, Spain.
| |
Collapse
|
9
|
Identifying novel biomarkers with TMS-EEG - Methodological possibilities and challenges. J Neurosci Methods 2022; 377:109631. [PMID: 35623474 DOI: 10.1016/j.jneumeth.2022.109631] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 05/09/2022] [Accepted: 05/21/2022] [Indexed: 12/17/2022]
Abstract
Biomarkers are essential for understanding the underlying pathologies in brain disorders and for developing effective treatments. Combined transcranial magnetic stimulation and electroencephalography (TMS-EEG) is an emerging neurophysiological tool that can be used for biomarker development. This method can identify biomarkers associated with the function and dynamics of the inhibitory and excitatory neurotransmitter systems and effective connectivity between brain areas. In this review, we outline the current state of the TMS-EEG biomarker field by summarizing the existing protocols and the possibilities and challenges associated with this methodology.
Collapse
|