1
|
Wang X, Yang Y, Laforge G, Chen X, Norton L, Owen AM, He J, Cong F. Global Field Time-Frequency Representation-Based Discriminative Similarity Analysis of Passive Auditory ERPs for Diagnosis of Disorders of Consciousness. IEEE Trans Biomed Eng 2024; 71:1820-1830. [PMID: 38215326 DOI: 10.1109/tbme.2024.3353110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Behavioural diagnosis of patients with disorders of consciousness (DOC) is challenging and prone to inaccuracies. Consequently, there have been increased efforts to develop bedside assessment based on EEG and event-related potentials (ERPs) that are more sensitive to the neural factors supporting conscious awareness. However, individual detection of residual consciousness using these techniques is less established. Here, we hypothesize that the cross-state similarity (defined as the similarity between healthy and impaired conscious states) of passive brain responses to auditory stimuli can index the level of awareness in individual DOC patients. To this end, we introduce the global field time-frequency representation-based discriminative similarity analysis (GFTFR-DSA). This method quantifies the average cross-state similarity index between an individual patient and our constructed healthy templates using the GFTFR as an EEG feature. We demonstrate that the proposed GFTFR feature exhibits superior within-group consistency in 34 healthy controls over traditional EEG features such as temporal waveforms. Second, we observed the GFTFR-based similarity index was significantly higher in patients with a minimally conscious state (MCS, 40 patients) than those with unresponsive wakefulness syndrome (UWS, 54 patients), supporting our hypothesis. Finally, applying a linear support vector machine classifier for individual MCS/UWS classification, the model achieved a balanced accuracy and F1 score of 0.77. Overall, our findings indicate that combining discriminative and interpretable markers, along with automatic machine learning algorithms, is effective for the differential diagnosis in patients with DOC. Importantly, this approach can, in principle, be transferred into any ERP of interest to better inform DOC diagnoses.
Collapse
|
2
|
Filosa M, De Rossi E, Carbone GA, Farina B, Massullo C, Panno A, Adenzato M, Ardito RB, Imperatori C. Altered connectivity between the central executive network and the salience network in delusion-prone individuals: A resting state eLORETA report. Neurosci Lett 2024; 825:137686. [PMID: 38364996 DOI: 10.1016/j.neulet.2024.137686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/30/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
Although the Triple Network (TN) model has been proposed as a valid neurophysiological framework for conceptualizing delusion-like experiences, the neurodynamics of TN in relation to delusion proneness have been relatively understudied in nonclinical samples so far. Therefore, the main aim of the current study was to investigate the functional connectivity of resting state electroencephalography (EEG) in subjects with high levels of delusion proneness. Twenty-one delusion-prone (DP) individuals and thirty-seven non-delusion prone (N-DP) individuals were included in the study. The exact Low-Resolution Electromagnetic Tomography (eLORETA) software was used for all EEG analyses. Compared to N-DP participants, DP individuals showed an increas of theta connectivity (T = 3.618; p = 0.045) between the Salience Network (i.e., the left anterior insula) and the Central Executive Network (i.e., the left posterior parietal cortex). Increased theta connectivity was also positively correlated with the frequency of delusional experiences (rho = 0.317; p = 0.015). Our results suggest that increased theta connectivity between the Salience Network and the Central Executive Network may underline brain correlates of altered resting state salience detection, information processing, and cognitive control processes typical of delusional thinking.
Collapse
Affiliation(s)
- Margherita Filosa
- Experimental and Applied Psychology Laboratory, Department of Human Sciences, European University of Rome, Italy
| | - Elena De Rossi
- Experimental and Applied Psychology Laboratory, Department of Human Sciences, European University of Rome, Italy
| | | | - Benedetto Farina
- Experimental and Applied Psychology Laboratory, Department of Human Sciences, European University of Rome, Italy
| | - Chiara Massullo
- Experimental Psychology Laboratory, Department of Education, Roma Tre University, Italy
| | - Angelo Panno
- Experimental and Applied Psychology Laboratory, Department of Human Sciences, European University of Rome, Italy
| | | | - Rita B Ardito
- Department of Psychology, University of Turin, Italy
| | - Claudio Imperatori
- Experimental and Applied Psychology Laboratory, Department of Human Sciences, European University of Rome, Italy
| |
Collapse
|
3
|
Wolff A, Northoff G. Temporal imprecision of phase coherence in schizophrenia and psychosis-dynamic mechanisms and diagnostic marker. Mol Psychiatry 2024; 29:425-438. [PMID: 38228893 DOI: 10.1038/s41380-023-02337-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 01/18/2024]
Abstract
Schizophrenia (SCZ) is a complex disorder in which various pathophysiological models have been postulated. Brain imaging studies using EEG/MEG and fMRI show altered amplitude and, more recently, decrease in phase coherence in response to external stimuli. What are the dynamic mechanisms of such phase incoherence, and can it serve as a differential-diagnostic marker? Addressing this gap in our knowledge, we uniquely combine a review of previous findings, novel empirical data, and computational-dynamic simulation. The main findings are: (i) the review shows decreased phase coherence in SCZ across a variety of different tasks and frequencies, e.g., task- and frequency-unspecific, which is further supported by our own novel data; (ii) our own data demonstrate diagnostic specificity of decreased phase coherence for SCZ as distinguished from major depressive disorder; (iii) simulation data exhibit increased phase offset in SCZ leading to a precision index, in the millisecond range, of the phase coherence relative to the timing of the external stimulus. Together, we demonstrate the key role of temporal imprecision in phase coherence of SCZ, including its mechanisms (phase offsets, precision index) on the basis of which we propose a phase-based temporal imprecision model of psychosis (PTP). The PTP targets a deeper dynamic layer of a basic disturbance. This converges well with other models of psychosis like the basic self-disturbance and time-space experience changes, as discussed in phenomenological and spatiotemporal psychopathology, as well as with the models of aberrant predictive coding and disconnection as in computational psychiatry. Finally, our results show that temporal imprecision as manifest in decreased phase coherence is a promising candidate biomarker for clinical differential diagnosis of SCZ, and more broadly, psychosis.
Collapse
Affiliation(s)
- Annemarie Wolff
- University of Ottawa Institute of Mental Health Research, 1145 Carling Avenue, Ottawa, ON, K1Z 7K4, Canada.
| | - Georg Northoff
- University of Ottawa Institute of Mental Health Research, 1145 Carling Avenue, Ottawa, ON, K1Z 7K4, Canada.
| |
Collapse
|
4
|
Hamilton HK, Mathalon DH. Neurophysiological Models in Individuals at Clinical High Risk for Psychosis: Using Translational EEG Paradigms to Forecast Psychosis Risk and Resilience. ADVANCES IN NEUROBIOLOGY 2024; 40:385-410. [PMID: 39562452 DOI: 10.1007/978-3-031-69491-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Over the last several decades, there have been major research efforts to improve the identification of youth and young adults at clinical high-risk for psychosis (CHR-P). Among individuals identified as CHR-P based on clinical criteria, approximately 20% progress to full-blown psychosis over 2-3 years and 30% achieve remission. In more recent years, neurophysiological measures with established sensitivity to schizophrenia have gained traction in the study of CHR-P and its range of clinical outcomes, with the goal of identifying specific biomarkers that precede psychosis onset that 7 chapter, we review studies examining several translational electroencephalography (EEG) and event-related potential (ERP) measures, which have known sensitivity to schizophrenia and reflect abnormal sensory, perceptual, and cognitive processing of task stimuli, as predictors of future clinical outcomes in CHR-P individuals. We discuss the promise of these EEG/ERP biomarkers of psychosis risk, including their potential to provide (a) translational bridges between human studies and animal models focused on drug development for early psychosis, (b) target engagement measures for clinical trials, and (c) prognostic indicators that could enhance personalized treatment planning.
Collapse
Affiliation(s)
- Holly K Hamilton
- Department of Psychiatry & Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA
| | - Daniel H Mathalon
- Department of Psychiatry & Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA.
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA.
| |
Collapse
|
5
|
Haigh SM, Van Key L, Brosseau P, Eack SM, Leitman DI, Salisbury DF, Behrmann M. Assessing Trial-to-Trial Variability in Auditory ERPs in Autism and Schizophrenia. J Autism Dev Disord 2023; 53:4856-4871. [PMID: 36207652 PMCID: PMC10079782 DOI: 10.1007/s10803-022-05771-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2022] [Indexed: 01/12/2023]
Abstract
Sensory abnormalities are characteristic of autism and schizophrenia. In autism, greater trial-to-trial variability (TTV) in sensory neural responses suggest that the system is more unstable. However, these findings have only been identified in the amplitude and not in the timing of neural responses, and have not been fully explored in schizophrenia. TTV in event-related potential amplitudes and inter-trial coherence (ITC) were assessed in the auditory mismatch negativity (MMN) in autism, schizophrenia, and controls. MMN was largest in autism and smallest in schizophrenia, and TTV was greater in autism and schizophrenia compared to controls. There were no differences in ITC. Greater TTV appears to be characteristic of both autism and schizophrenia, implicating several neural mechanisms that could underlie sensory instability.
Collapse
Affiliation(s)
- Sarah M Haigh
- Department of Psychology and Center for Integrative Neuroscience, University of Nevada, Reno, Reno, NV, USA.
- Department of Psychology and the Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Laura Van Key
- Department of Psychology and Center for Integrative Neuroscience, University of Nevada, Reno, Reno, NV, USA
| | - Pat Brosseau
- Department of Psychology and the Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Shaun M Eack
- School of Social Work, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Dean F Salisbury
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marlene Behrmann
- Department of Psychology and the Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Beño-Ruiz-de-la-Sierra RM, Arjona-Valladares A, Fondevila Estevez S, Fernández-Linsenbarth I, Díez Á, Molina V. Corollary discharge function in healthy controls: Evidence about self-speech and external speech processing. Eur J Neurosci 2023; 58:3705-3713. [PMID: 37635264 DOI: 10.1111/ejn.16125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023]
Abstract
As we speak, corollary discharge mechanisms suppress the auditory conscious perception of the self-generated voice in healthy subjects. This suppression has been associated with the attenuation of the auditory N1 component. To analyse this corollary discharge phenomenon (agency and ownership), we registered the event-related potentials of 42 healthy subjects. The N1 and P2 components were elicited by spoken vowels (talk condition; agency), by played-back vowels recorded with their own voice (listen-self condition; ownership) and by played-back vowels recorded with an external voice (listen-other condition). The N1 amplitude elicited by the talk condition was smaller compared with the listen-self and listen-other conditions. There were no amplitude differences in N1 between listen-self and listen-other conditions. The P2 component did not show differences between conditions. Additionally, a peak latency analysis of N1 and P2 components between the three conditions showed no differences. These findings corroborate previous results showing that the corollary discharge mechanisms dampen sensory responses to self-generated speech (agency experience) and provide new neurophysiological evidence about the similarities in the processing of played-back vowels with our own voice (ownership experience) and with an external voice.
Collapse
Affiliation(s)
| | | | | | | | - Álvaro Díez
- Department of Psychiatry, School of Medicine, University of Valladolid, Valladolid, Spain
| | - Vicente Molina
- Department of Psychiatry, School of Medicine, University of Valladolid, Valladolid, Spain
- Psychiatry Service, University Clinical Hospital of Valladolid, Valladolid, Spain
| |
Collapse
|
7
|
Hua L, Adams RA, Grent-'t-Jong T, Gajwani R, Gross J, Gumley AI, Krishnadas R, Lawrie SM, Schultze-Lutter F, Schwannauer M, Uhlhaas PJ. Thalamo-cortical circuits during sensory attenuation in emerging psychosis: a combined magnetoencephalography and dynamic causal modelling study. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:25. [PMID: 37117187 PMCID: PMC10147678 DOI: 10.1038/s41537-023-00341-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 02/28/2023] [Indexed: 04/30/2023]
Abstract
Evidence suggests that schizophrenia (ScZ) involves impairments in sensory attenuation. It is currently unclear, however, whether such deficits are present during early-stage psychosis as well as the underlying network and the potential as a biomarker. To address these questions, Magnetoencephalography (MEG) was used in combination with computational modeling to examine M100 responses that involved a "passive" condition during which tones were binaurally presented, while in an "active" condition participants were asked to generate a tone via a button press. MEG data were obtained from 109 clinical high-risk for psychosis (CHR-P) participants, 23 people with a first-episode psychosis (FEP), and 48 healthy controls (HC). M100 responses at sensor and source level in the left and right thalamus (THA), Heschl's gyrus (HES), superior temporal gyrus (STG) and right inferior parietal cortex (IPL) were examined and dynamic causal modeling (DCM) was performed. Furthermore, the relationship between sensory attenuation and persistence of attenuated psychotic symptoms (APS) and transition to psychosis was investigated in CHR-P participants. Sensory attenuation was impaired in left HES, left STG and left THA in FEP patients, while in the CHR-P group deficits were observed only in right HES. DCM results revealed that CHR-P participants showed reduced top-down modulation from the right IPL to the right HES. Importantly, deficits in sensory attenuation did not predict clinical outcomes in the CHR-P group. Our results show that early-stage psychosis involves impaired sensory attenuation in auditory and thalamic regions but may not predict clinical outcomes in CHR-P participants.
Collapse
Affiliation(s)
- Lingling Hua
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, China
| | - Rick A Adams
- Centre for Medical Image Computing and AI, University College London, 90 High Holborn, London, WC1V 6LJ, UK
- Max Planck-UCL Centre for Computational Psychiatry and Ageing Research, 10-12 Russell Square, London, WC1B 5EH, UK
| | - Tineke Grent-'t-Jong
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
- Department of Child and Adolescent Psychiatry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Ruchika Gajwani
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Joachim Gross
- Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Muenster, Germany
| | - Andrew I Gumley
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Rajeev Krishnadas
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Stephen M Lawrie
- Department of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Frauke Schultze-Lutter
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Department of Psychology, Faculty of Psychology, Airlangga University, Surabaya, Indonesia
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | | | - Peter J Uhlhaas
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK.
- Department of Child and Adolescent Psychiatry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
8
|
Griffiths O, Jack BN, Pearson D, Elijah R, Mifsud N, Han N, Libesman S, Rita Barreiros A, Turnbull L, Balzan R, Le Pelley M, Harris A, Whitford TJ. Disrupted auditory N1, theta power and coherence suppression to willed speech in people with schizophrenia. Neuroimage Clin 2023; 37:103290. [PMID: 36535137 PMCID: PMC9792888 DOI: 10.1016/j.nicl.2022.103290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 11/17/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
The phenomenon of sensory self-suppression - also known as sensory attenuation - occurs when a person generates a perceptible stimulus (such as a sound) by performing an action (such as speaking). The sensorimotor control system is thought to actively predict and then suppress the vocal sound in the course of speaking, resulting in lowered cortical responsiveness when speaking than when passively listening to an identical sound. It has been hypothesized that auditory hallucinations in schizophrenia result from a reduction in self-suppression due to a disruption of predictive mechanisms required to anticipate and suppress a specific, self-generated sound. It has further been hypothesized that this suppression is evident primarily in theta band activity. Fifty-one people, half of whom had a diagnosis of schizophrenia, were asked to repeatedly utter a single syllable, which was played back to them concurrently over headphones while EEG was continuously recorded. In other conditions, recordings of the same spoken syllables were played back to participants while they passively listened, or were played back with their onsets preceded by a visual cue. All participants experienced these conditions with their voice artificially shifted in pitch and also with their unaltered voice. Suppression was measured using event-related potentials (N1 component), theta phase coherence and power. We found that suppression was generally reduced on all metrics in the patient sample, and when voice alteration was applied. We additionally observed reduced theta coherence and power in the patient sample across all conditions. Visual cueing affected theta coherence only. In aggregate, the results suggest that sensory self-suppression of theta power and coherence is disrupted in schizophrenia.
Collapse
Affiliation(s)
- Oren Griffiths
- College of Education, Psychology and Social Work, Flinders University, Adelaide, Australia; Flinders Institute for Mental Health and Wellbeing, Adelaide, Australia.
| | - Bradley N Jack
- Research School of Psychology, Australian National University, Canberra, Australia
| | | | - Ruth Elijah
- School of Psychology, UNSW Sydney, Sydney, Australia
| | - Nathan Mifsud
- School of Psychology, UNSW Sydney, Sydney, Australia
| | - Nathan Han
- School of Psychology, UNSW Sydney, Sydney, Australia
| | - Sol Libesman
- School of Psychology, UNSW Sydney, Sydney, Australia
| | - Ana Rita Barreiros
- Specialty of Psychiatry, The University of Sydney, Faculty of Medicine and Health, The University of Sydney, Australia; Brain Dynamics Centre, The Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia
| | - Luke Turnbull
- College of Education, Psychology and Social Work, Flinders University, Adelaide, Australia
| | - Ryan Balzan
- College of Education, Psychology and Social Work, Flinders University, Adelaide, Australia; Flinders Institute for Mental Health and Wellbeing, Adelaide, Australia
| | | | - Anthony Harris
- Specialty of Psychiatry, The University of Sydney, Faculty of Medicine and Health, The University of Sydney, Australia; Brain Dynamics Centre, The Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia
| | - Thomas J Whitford
- Specialty of Psychiatry, The University of Sydney, Faculty of Medicine and Health, The University of Sydney, Australia
| |
Collapse
|
9
|
Abram SV, Hua JPY, Ford JM. Consider the pons: bridging the gap on sensory prediction abnormalities in schizophrenia. Trends Neurosci 2022; 45:798-808. [PMID: 36123224 PMCID: PMC9588719 DOI: 10.1016/j.tins.2022.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/04/2022] [Accepted: 08/23/2022] [Indexed: 01/18/2023]
Abstract
A shared mechanism across species heralds the arrival of self-generated sensations, helping the brain to anticipate, and therefore distinguish, self-generated from externally generated sensations. In mammals, this sensory prediction mechanism is supported by communication within a cortico-ponto-cerebellar-thalamo-cortical loop. Schizophrenia is associated with impaired sensory prediction as well as abnormal structural and functional connections between nodes in this circuit. Despite the pons' principal role in relaying and processing sensory information passed from the cortex to cerebellum, few studies have examined pons connectivity in schizophrenia. Here, we first briefly describe how the pons contributes to sensory prediction. We then summarize schizophrenia-related abnormalities in the cortico-ponto-cerebellar-thalamo-cortical loop, emphasizing the dearth of research on the pons relative to thalamic and cerebellar connections. We conclude with recommendations for advancing our understanding of how the pons relates to sensory prediction failures in schizophrenia.
Collapse
Affiliation(s)
- Samantha V Abram
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; University of California, San Francisco, CA, USA
| | - Jessica P Y Hua
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; University of California, San Francisco, CA, USA; Sierra Pacific Mental Illness Research Education and Clinical Centers, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Psychiatry and Behavioral Sciences, The University of California, San Francisco, CA, USA
| | - Judith M Ford
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; University of California, San Francisco, CA, USA.
| |
Collapse
|
10
|
Hu Y, Wu J, Cao Y, Tang X, Wu G, Guo Q, Xu L, Qian Z, Wei Y, Tang Y, Li C, Zhang T, Wang J. Abnormal neural oscillations in clinical high risk for psychosis: a magnetoencephalography method study. Gen Psychiatr 2022; 35:e100712. [PMID: 35572772 PMCID: PMC9052050 DOI: 10.1136/gpsych-2021-100712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/07/2022] [Indexed: 11/04/2022] Open
Abstract
Background Neural oscillations directly reflect the rhythmic changes of brain activities during the resting state or while performing specific tasks. Abnormal neural oscillations have been discovered in patients with schizophrenia. However, there is limited evidence available on abnormal spontaneous neural oscillations in clinical high risk for psychosis (CHR-P). The brain signals recorded by the magnetoencephalography (MEG) technique are not to be disrupted by the skull and scalp. Methods In this study, we applied the MEG technique to record the resting-state neural activities in CHR-P. This was followed by a detailed MEG analysis method including three steps: (1) preprocessing, which was band-pass filtering based on the 0.5-60 Hz frequency range, removal of 50 Hz power frequency interference, and removal of electrocardiography (ECG) and electrooculography (EOG) artefacts by independent component analysis; (2) time-frequency analysis, a multitaper time-frequency transformation based on the Hanning window, and (3) source localisation, an exact low-resolution brain electromagnetic tomography. The method was verified by comparing a participant with CHR-P with a healthy control during the MEG recordings with an eyes-closed resting state. Results Experimental results show that the neural oscillations in CHR-P were significantly abnormal in the theta frequency band (4-7 Hz) and the delta frequency band (1-3 Hz). Also, relevant brain regions were located in the left occipital lobe and left temporo-occipital junction for the theta band and in the right dorsolateral prefrontal lobe and near orbitofrontal gyrus for the delta band. Conclusions Abnormal neural oscillations based on specific frequency bands and corresponding brain sources may become biomarkers for high-risk groups. Further work will validate these characteristics in CHR-P cohorts.
Collapse
Affiliation(s)
- Yegang Hu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Wu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - YuJiao Cao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - XiaoChen Tang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - GuiSen Wu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Guo
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - LiHua Xu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - ZhenYing Qian
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - YanYan Wei
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - YingYing Tang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - ChunBo Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianhong Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jijun Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Wolff A, Gomez-Pilar J, Zhang J, Choueiry J, de la Salle S, Knott V, Northoff G. It's in the Timing: Reduced Temporal Precision in Neural Activity of Schizophrenia. Cereb Cortex 2021; 32:3441-3456. [PMID: 34875019 DOI: 10.1093/cercor/bhab425] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 01/26/2023] Open
Abstract
Studies of perception and cognition in schizophrenia (SCZ) show neuronal background noise (ongoing activity) to intermittently overwhelm the processing of external stimuli. This increased noise, relative to the activity evoked by the stimulus, results in temporal imprecision and higher variability of behavioral responses. What, however, are the neural correlates of temporal imprecision in SCZ behavior? We first report a decrease in electroencephalography signal-to-noise ratio (SNR) in two SCZ datasets and tasks in the broadband (1-80 Hz), theta (4-8 Hz), and alpha (8-13 Hz) bands. SCZ participants also show lower inter-trial phase coherence (ITPC)-consistency over trials in the phase of the signal-in theta. From these ITPC results, we varied phase offsets in a computational simulation, which illustrated phase-based temporal desynchronization. This modeling also provided a necessary link to our results and showed decreased neural synchrony in SCZ in both datasets and tasks when compared with healthy controls. Finally, we showed that reduced SNR and ITPC are related and showed a relationship to temporal precision on the behavioral level, namely reaction times. In conclusion, we demonstrate how temporal imprecision in SCZ neural activity-reduced relative signal strength and phase coherence-mediates temporal imprecision on the behavioral level.
Collapse
Affiliation(s)
- Annemarie Wolff
- University of Ottawa Institute of Mental Health Research, Ottawa, ON K1Z 7K4, Canada
| | - Javier Gomez-Pilar
- Biomedical Engineering Group, Higher Technical School of Telecommunications Engineering, University of Valladolid, Valladolid 47011, Spain.,Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| | - Jianfeng Zhang
- Mental Health Center, Zhejiang University School of Medicine, Hangzhou 310058, China.,College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou 310027, China
| | - Joelle Choueiry
- University of Ottawa Institute of Mental Health Research, Ottawa, ON K1Z 7K4, Canada
| | - Sara de la Salle
- University of Ottawa Institute of Mental Health Research, Ottawa, ON K1Z 7K4, Canada
| | - Verner Knott
- University of Ottawa Institute of Mental Health Research, Ottawa, ON K1Z 7K4, Canada
| | - Georg Northoff
- University of Ottawa Institute of Mental Health Research, Ottawa, ON K1Z 7K4, Canada.,Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1Z 7K4, Canada
| |
Collapse
|
12
|
Hamilton A, Northoff G. Abnormal ERPs and Brain Dynamics Mediate Basic Self Disturbance in Schizophrenia: A Review of EEG and MEG Studies. Front Psychiatry 2021; 12:642469. [PMID: 33912085 PMCID: PMC8072007 DOI: 10.3389/fpsyt.2021.642469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/11/2021] [Indexed: 11/05/2022] Open
Abstract
Background: Interest in disordered sense of self in schizophrenia has recently re-emerged in the literature. It has been proposed that there is a basic self disturbance, underlying the diagnostic symptoms of schizophrenia, in which the person's sense of being a bounded individual continuous through time loses stability. This disturbance has been documented phenomenologically and at the level of cognitive tasks. However, the neural correlates of basic self disorder in schizophrenia are poorly understood. Methods: A search of PubMed was used to identify studies on self and schizophrenia that reported EEG or MEG data. Results: Thirty-three studies were identified, 32 using EEG and one using MEG. Their operationalizations of the self were divided into six paradigms: self-monitoring for errors, proprioception, self-other integration, self-referential processing, aberrant salience, and source monitoring. Participants with schizophrenia were less accurate on self-referential processing tasks and had slower response times across most studies. Event-related potential amplitudes differed across many early and late components, with reduced N100 suppression in source monitoring paradigms being the most replicated finding. Several studies found differences in one or more frequency band, but no coherent overall finding emerged in this area. Various other measures of brain dynamics also showed differences in single studies. Only some of the study designs were adequate to establish a causal relationship between the self and EEG or MEG measures. Conclusion: The broad range of changes suggests a global self disturbance at the neuronal level, possibly carried over from the resting state. Further studies that successfully isolate self-related effects are warranted to better understand the temporal-dynamic and spatial-topographic basis of self disorder and its relationship to basic self disturbance on the phenomenological level.
Collapse
Affiliation(s)
- Arthur Hamilton
- Department of Cognitive Science, Carleton University, Ottawa, ON, Canada
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Unit, Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
13
|
Thakkar KN, Mathalon DH, Ford JM. Reconciling competing mechanisms posited to underlie auditory verbal hallucinations. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190702. [PMID: 33308062 PMCID: PMC7741078 DOI: 10.1098/rstb.2019.0702] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 01/21/2023] Open
Abstract
Perception is not the passive registration of incoming sensory data. Rather, it involves some analysis by synthesis, based on past experiences and context. One adaptive consequence of this arrangement is imagination-the ability to richly simulate sensory experiences, interrogate and manipulate those simulations, in service of action and decision making. In this paper, we will discuss one possible cost of this adaptation, namely hallucinations-perceptions without sensory stimulation, which characterize serious mental illnesses like schizophrenia, but which also occur in neurological illnesses, and-crucially for the present piece-are common also in the non-treatment-seeking population. We will draw upon a framework for imagination that distinguishes voluntary from non-voluntary experiences and explore the extent to which the varieties and features of hallucinations map onto this distinction, with a focus on auditory-verbal hallucinations (AVHs)-colloquially, hearing voices. We will propose that sense of agency for the act of imagining is key to meaningfully dissecting different forms and features of AVHs, and we will outline the neural, cognitive and phenomenological sequelae of this sense. We will conclude that a compelling unifying framework for action, perception and belief-predictive processing-can incorporate observations regarding sense of agency, imagination and hallucination. This article is part of the theme issue 'Offline perception: voluntary and spontaneous perceptual experiences without matching external stimulation'.
Collapse
Affiliation(s)
- Katharine N. Thakkar
- Department of Psychology, Michigan State University, East Lansing, MI, USA
- Department of Psychiatry and Behavioral Medicine, Michigan State University, East Lansing, MI, USA
| | - Daniel H. Mathalon
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
- Mental Health Service, Veterans Affairs San Francisco Healthcare System, San Francisco, CA, USA
| | - Judith M. Ford
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
- Mental Health Service, Veterans Affairs San Francisco Healthcare System, San Francisco, CA, USA
| |
Collapse
|