1
|
Yuan X, Li X, Hei G, Zhang X, Song X. Intestinal mycobiota dysbiosis associated inflammation activation in chronic schizophrenia. Behav Brain Res 2024; 472:115149. [PMID: 39013529 DOI: 10.1016/j.bbr.2024.115149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
The microbiome-gut-brain axis is related to schizophrenia (SCZ). The role of intestinal mycobiota in SCZ has been under investigated. We present a half-year follow-up study involving 109 chronic SCZ patients and 77 healthy controls. Intestinal mycobiota was tested by internal transcribed spacer (ITS). Untargeted liquid chromatography-mass spectrometry (LC-MS) was used to measure fecal metabolites. Symptom severity was assessed using the Positive and Negative Syndrome Scale. Enterotype analysis showed that Candida-type patients exhibited severer positive symptoms and depression factors than Saccharomyces-type patients. Candida and its top species and operational taxonomic units (OTUs) were positively correlated with depression factors (all p=0.001). Fecal metabolites analysis showed that upregulated metabolites were associated with chronic inflammation (NF-κB pathway and T helper cell differentiation), downregulated metabolites were associated with glutamate metabolism, serotonergic and dopaminergic synapse. Procrustes analysis revealed significant correlation between intestinal mycobiota and fecal metabolites (M2=0.937, p<0.001). Metabolic module analysis showed that the top module, MEturquoise (associated with Th1 and Th2 cell differentiation), was negatively correlated with SCZ (r=-0.783, p<0.0001), positively correlated with Candida, Aspergillus, Trichosporon and Talaromyces (decreased in SCZ) and negatively correlated with Saccharomyces (increased in SCZ). We also found impairments of intestinal barrier in SCZ, characterized by increased in blood D-lactate (mucosa impairment marker) and decreased in blood mucin 2 (mucosal barrier protective protein). Serum levels of TNF-α was increased and showed stable high levels during treatment. This study suggests that mycobiota dysbiosis-related chronic inflammation and an impaired intestinal mucosal barrier are associated with chronic SCZ.
Collapse
Affiliation(s)
- Xiuxia Yuan
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan International Joint Laboratory of Biological Psychiatry, Zhengzhou, China; Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Xue Li
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan International Joint Laboratory of Biological Psychiatry, Zhengzhou, China; Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Gangrui Hei
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan International Joint Laboratory of Biological Psychiatry, Zhengzhou, China; Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Xiaoyun Zhang
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan International Joint Laboratory of Biological Psychiatry, Zhengzhou, China; Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Xueqin Song
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan International Joint Laboratory of Biological Psychiatry, Zhengzhou, China; Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
2
|
Bryant AG, Aquino K, Parkes L, Fornito A, Fulcher BD. Extracting interpretable signatures of whole-brain dynamics through systematic comparison. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.573372. [PMID: 38915560 PMCID: PMC11195072 DOI: 10.1101/2024.01.10.573372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The brain's complex distributed dynamics are typically quantified using a limited set of manually selected statistical properties, leaving the possibility that alternative dynamical properties may outperform those reported for a given application. Here, we address this limitation by systematically comparing diverse, interpretable features of both intra-regional activity and inter-regional functional coupling from resting-state functional magnetic resonance imaging (rs-fMRI) data, demonstrating our method using case-control comparisons of four neuropsychiatric disorders. Our findings generally support the use of linear time-series analysis techniques for rs-fMRI case-control analyses, while also identifying new ways to quantify informative dynamical fMRI structures. While simple statistical representations of fMRI dynamics performed surprisingly well (e.g., properties within a single brain region), combining intra-regional properties with inter-regional coupling generally improved performance, underscoring the distributed, multifaceted changes to fMRI dynamics in neuropsychiatric disorders. The comprehensive, data-driven method introduced here enables systematic identification and interpretation of quantitative dynamical signatures of multivariate time-series data, with applicability beyond neuroimaging to diverse scientific problems involving complex time-varying systems.
Collapse
Affiliation(s)
- Annie G. Bryant
- School of Physics, The University of Sydney, Camperdown, NSW, Australia
| | - Kevin Aquino
- School of Physics, The University of Sydney, Camperdown, NSW, Australia
- Brain Key Incorporated, San Francisco, CA, USA
| | - Linden Parkes
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, USA
- Turner Institute for Brain & Mental Health, Monash University, VIC, Australia
| | - Alex Fornito
- Turner Institute for Brain & Mental Health, Monash University, VIC, Australia
| | - Ben D. Fulcher
- School of Physics, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
3
|
Dong D, Wang Y, Zhou F, Chang X, Qiu J, Feng T, He Q, Lei X, Chen H. Functional Connectome Hierarchy in Schizotypy and Its Associations With Expression of Schizophrenia-Related Genes. Schizophr Bull 2023:sbad179. [PMID: 38156676 DOI: 10.1093/schbul/sbad179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
BACKGROUND AND HYPOTHESIS Schizotypy has been conceptualized as a continuum of symptoms with marked genetic, neurobiological, and sensory-cognitive overlaps to schizophrenia. Hierarchical organization represents a general organizing principle for both the cortical connectome supporting sensation-to-cognition continuum and gene expression variability across the cortex. However, a mapping of connectome hierarchy to schizotypy remains to be established. Importantly, the underlying changes of the cortical connectome hierarchy that mechanistically link gene expressions to schizotypy are unclear. STUDY DESIGN The present study applied novel connectome gradient on resting-state fMRI data from 1013 healthy young adults to investigate schizotypy-associated sensorimotor-to-transmodal connectome hierarchy and assessed its similarity with the connectome hierarchy of schizophrenia. Furthermore, normative and differential postmortem gene expression data were utilized to examine transcriptional profiles linked to schizotypy-associated connectome hierarchy. STUDY RESULTS We found that schizotypy was associated with a compressed functional connectome hierarchy. Moreover, the pattern of schizotypy-related hierarchy exhibited a positive correlation with the connectome hierarchy observed in schizophrenia. This pattern was closely colocated with the expression of schizophrenia-related genes, with the correlated genes being enriched in transsynaptic, receptor signaling and calcium ion binding. CONCLUSIONS The compressed connectome hierarchy suggests diminished functional system differentiation, providing a novel and holistic system-level basis for various sensory-cognition deficits in schizotypy. Importantly, its linkage with schizophrenia-altered hierarchy and schizophrenia-related gene expression yields new insights into the neurobiological continuum of psychosis. It also provides mechanistic insight into how gene variation may drive alterations in functional hierarchy, mediating biological vulnerability of schizotypy to schizophrenia.
Collapse
Affiliation(s)
- Debo Dong
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Yulin Wang
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, China
| | - Feng Zhou
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Xuebin Chang
- Department of Information Sciences, School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
- Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Chongqing, China
| | - Tingyong Feng
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
- Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing, China
| | - Qinghua He
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
- Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Chongqing, China
| | - Xu Lei
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, China
| | - Hong Chen
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
- Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|