1
|
Tachi R, Ohi K, Nishizawa D, Soda M, Fujikane D, Hasegawa J, Kuramitsu A, Takai K, Muto Y, Sugiyama S, Kitaichi K, Hashimoto R, Ikeda K, Shioiri T. Mitochondrial genetic variants associated with bipolar disorder and Schizophrenia in a Japanese population. Int J Bipolar Disord 2023; 11:26. [PMID: 37477801 PMCID: PMC10361950 DOI: 10.1186/s40345-023-00307-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Bipolar disorder (BD) and schizophrenia (SZ) are complex psychotic disorders (PSY), with both environmental and genetic factors including possible maternal inheritance playing a role. Some studies have investigated whether genetic variants in the mitochondrial chromosome are associated with BD and SZ. However, the genetic variants identified as being associated are not identical among studies, and the participants were limited to individuals of European ancestry. Here, we investigate associations of genome-wide genetic variants in the mitochondrial chromosome with BD, SZ, and PSY in a Japanese population. METHODS After performing quality control for individuals and genetic variants, we investigated whether mitochondrial genetic variants [minor allele frequency (MAF) > 0.01, n = 45 variants) are associated with BD, SZ, and PSY in 420 Japanese individuals consisting of patients with BD (n = 51), patients with SZ (n = 172), and healthy controls (HCs, n = 197). RESULTS Of mitochondrial genetic variants, three (rs200478835, rs200044200 and rs28359178 on or near NADH dehydrogenase) and one (rs200478835) were significantly associated with BD and PSY, respectively, even after correcting for multiple comparisons (PGC=0.045-4.9 × 10- 3). In particular, individuals with the minor G-allele of rs200044200, a missense variant, were only observed among patients with BD (MAF = 0.059) but not HCs (MAF = 0) (odds ratio=∞). Three patients commonly had neuropsychiatric family histories. CONCLUSIONS We suggest that mitochondrial genetic variants in NADH dehydrogenase-related genes may contribute to the pathogenesis of BD and PSY in the Japanese population through dysfunction of energy production.
Collapse
Affiliation(s)
- Ryobu Tachi
- School of Medicine, Gifu University, Gifu, Japan
| | - Kazutaka Ohi
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan.
- Department of General Internal Medicine, Kanazawa Medical University, Ishikawa, Japan.
| | - Daisuke Nishizawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Midori Soda
- Laboratory of Pharmaceutics, Department of Biomedical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Daisuke Fujikane
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Junko Hasegawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Ayumi Kuramitsu
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kentaro Takai
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yukimasa Muto
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shunsuke Sugiyama
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kiyoyuki Kitaichi
- Laboratory of Pharmaceutics, Department of Biomedical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Toshiki Shioiri
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
2
|
Schulmann A, Ryu E, Goncalves V, Rollins B, Christiansen M, Frye MA, Biernacka J, Vawter MP. Novel Complex Interactions between Mitochondrial and Nuclear DNA in Schizophrenia and Bipolar Disorder. MOLECULAR NEUROPSYCHIATRY 2019; 5:13-27. [PMID: 31019915 PMCID: PMC6465701 DOI: 10.1159/000495658] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/20/2018] [Indexed: 12/21/2022]
Abstract
Mitochondrial dysfunction has been associated with schizophrenia (SZ) and bipolar disorder (BD). This review examines recent publications and novel associations between mitochondrial genes and SZ and BD. Associations of nuclear-encoded mitochondrial variants with SZ were found using gene- and pathway-based approaches. Two control region mitochondrial DNA (mtDNA) SNPs, T16519C and T195C, both showed an association with SZ and BD. A review of 4 studies of A15218G located in the cytochrome B oxidase gene (CYTB, SZ = 11,311, control = 35,735) shows a moderate association with SZ (p = 2.15E-03). Another mtDNA allele A12308G was nominally associated with psychosis in BD type I subjects and SZ. The first published study testing the epistatic interaction between nuclear-encoded and mitochondria-encoded genes demonstrated evidence for potential interactions between mtDNA and the nuclear genome for BD. A similar analysis for the risk of SZ revealed significant joint effects (34 nuclear-mitochondria SNP pairs with joint effect p ≤ 5E-07) and significant enrichment of projection neurons. The mitochondria-encoded gene CYTB was found in both the epistatic interactions for SZ and BD and the single SNP association of SZ. Future efforts considering population stratification and polygenic risk scores will test the role of mitochondrial variants in psychiatric disorders.
Collapse
Affiliation(s)
- Anton Schulmann
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Euijung Ryu
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Vanessa Goncalves
- Molecular Brain Science Department, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Brandi Rollins
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, California, USA
| | - Michael Christiansen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Department of Biomedical Science, University of Copenhagen, Copenhagen, Denmark
| | - Mark A. Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Joanna Biernacka
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Marquis P. Vawter
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, California, USA
| |
Collapse
|
3
|
Xu FL, Ding M, Yao J, Shi ZS, Wu X, Zhang JJ, Pang H, Xing JX, Xuan JF, Wang BJ. Association between mitochondrial DNA variations and schizophrenia in the northern Chinese Han population. PLoS One 2017; 12:e0182769. [PMID: 28846698 PMCID: PMC5573569 DOI: 10.1371/journal.pone.0182769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 07/24/2017] [Indexed: 12/20/2022] Open
Abstract
To determine whether mitochondrial DNA (mtDNA) variations are associated with schizophrenia, 313 patients with schizophrenia and 326 unaffected participants of the northern Chinese Han population were included in a prospective study. Single-nucleotide polymorphisms (SNPs) including C5178A, A10398G, G13708A, and C13928G were analyzed by polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP). Hypervariable regions I and II (HVSI and HVSII) were analyzed by sequencing. The results showed that the 4 SNPs and 11 haplotypes, composed of the 4 SNPs, did not differ significantly between patient and control groups. No significant association between haplogroups and the risk of schizophrenia was ascertained after Bonferroni correction. Drawing a conclusion, there was no evidence of an association between mtDNA (the 4 SNPs and the control region) and schizophrenia in the northern Chinese Han population.
Collapse
Affiliation(s)
- Feng-ling Xu
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Mei Ding
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Jun Yao
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Zhang-sen Shi
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Xue Wu
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Jing-jing Zhang
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Hao Pang
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Jia-xin Xing
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Jin-feng Xuan
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Bao-jie Wang
- School of Forensic Medicine, China Medical University, Shenyang, China
- * E-mail:
| |
Collapse
|
4
|
Abstract
Mitochondrial diseases are a clinically heterogeneous group of disorders that ultimately result from dysfunction of the mitochondrial respiratory chain. There is some evidence to suggest that mitochondrial dysfunction plays a role in neuropsychiatric illness; however, the data are inconclusive. This article summarizes the available literature published in the area of neuropsychiatric manifestations in both children and adults with primary mitochondrial disease, with a focus on autism spectrum disorder in children and mood disorders and schizophrenia in adults.
Collapse
Affiliation(s)
- Samantha E Marin
- Department of Neurosciences, University of California, San Diego (UCSD), 9500 Gilman Drive #0935, La Jolla, CA 92093-0935, USA
| | - Russell P Saneto
- Department of Neurology, Seattle Children's Hospital, University of Washington, 4800 Sand Point Way Northeast, Seattle, WA 98105, USA; Department of Pediatrics, Seattle Children's Hospital, University of Washington, 4800 Sand Point Way Northeast, Seattle, WA 98105, USA.
| |
Collapse
|
5
|
Li H, Bi R, Fan Y, Wu Y, Tang Y, Li Z, He Y, Zhou J, Tang J, Chen X, Yao YG. mtDNA Heteroplasmy in Monozygotic Twins Discordant for Schizophrenia. Mol Neurobiol 2016; 54:4343-4352. [DOI: 10.1007/s12035-016-9996-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 06/14/2016] [Indexed: 12/30/2022]
|
6
|
Mitochondrial genome variations and functional characterization in Han Chinese families with schizophrenia. Schizophr Res 2016; 171:200-6. [PMID: 26822593 DOI: 10.1016/j.schres.2016.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 12/09/2015] [Accepted: 01/04/2016] [Indexed: 11/23/2022]
Abstract
The relationship between mitochondrial DNA (mtDNA) variants and schizophrenia has been strongly debated. To test whether mtDNA variants are involved in schizophrenia in Han Chinese patients, we sequenced the entire mitochondrial genomes of probands from 11 families with a family history and maternal inheritance pattern of schizophrenia. Besides the haplogroup-specific variants, we found 11 nonsynonymous private variants, one rRNA variant, and one tRNA variant in 5 of 11 probands. Among the nonsynonymous private variants, mutations m.15395 A>G and m.8536 A>G were predicted to be deleterious after web-based searches and in silico program affiliated analysis. Functional characterization further supported the potential pathogenicity of the two variants m.15395 A>G and m.8536 A>G to cause mitochondrial dysfunction at the cellular level. Our results showed that mtDNA variants were actively involved in schizophrenia in some families with maternal inheritance of this disease.
Collapse
|
7
|
Affiliation(s)
- David Roofeh
- a Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Divya Tumuluru
- b Department of Psychiatry, University of Pittsburgh School of Medicine
| | - Sona Shilpakar
- b Department of Psychiatry, University of Pittsburgh School of Medicine
| | | |
Collapse
|
8
|
Torrell H, Salas A, Abasolo N, Morén C, Garrabou G, Valero J, Alonso Y, Vilella E, Costas J, Martorell L. Mitochondrial DNA (mtDNA) variants in the European haplogroups HV, JT, and U do not have a major role in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2014; 165B:607-17. [PMID: 25132006 DOI: 10.1002/ajmg.b.32264] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 07/18/2014] [Indexed: 12/17/2022]
Abstract
It has been reported that certain genetic factors involved in schizophrenia could be located in the mitochondrial DNA (mtDNA). Therefore, we hypothesized that mtDNA mutations and/or variants would be present in schizophrenia patients and may be related to schizophrenia characteristics and mitochondrial function. This study was performed in three steps: (1) identification of pathogenic mutations and variants in 14 schizophrenia patients with an apparent maternal inheritance of the disease by sequencing the entire mtDNA; (2) case-control association study of 23 variants identified in step 1 (16 missense, 3 rRNA, and 4 tRNA variants) in 495 patients and 615 controls, and (3) analyses of the associated variants according to the clinical, psychopathological, and neuropsychological characteristics and according to the oxidative and enzymatic activities of the mitochondrial respiratory chain. We did not identify pathogenic mtDNA mutations in the 14 sequenced patients. Two known variants were nominally associated with schizophrenia and were further studied. The MT-RNR2 1811A > G variant likely does not play a major role in schizophrenia, as it was not associated with clinical, psychopathological, or neuropsychological variables, and the MT-ATP6 9110T > C p.Ile195Thr variant did not result in differences in the oxidative and enzymatic functions of the mitochondrial respiratory chain. The patients with apparent maternal inheritance of schizophrenia did not exhibit any mutations in their mtDNA. The variants nominally associated with schizophrenia in the present study were not related either to phenotypic characteristics or to mitochondrial function. We did not find evidence pointing to a role for mtDNA sequence variation in schizophrenia.
Collapse
Affiliation(s)
- Helena Torrell
- Hospital Universitari Institut Pere Mata. IISPV. Universitat Rovirai Virgili. CIBERSAM, Reus, Catalunya, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhang W, Tang J, Zhang AM, Peng MS, Xie HB, Tan L, Xu L, Zhang YP, Chen X, Yao YG. A Matrilineal Genetic Legacy from the Last Glacial Maximum Confers Susceptibility to Schizophrenia in Han Chinese. J Genet Genomics 2014; 41:397-407. [DOI: 10.1016/j.jgg.2014.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/16/2014] [Accepted: 05/21/2014] [Indexed: 10/25/2022]
|
10
|
Wang GX, Zhang Y, Zhang YT, Dong YS, Lv ZW, Sun M, Wu D, Wu YM. Mitochondrial haplogroups and hypervariable region polymorphisms in schizophrenia: a case-control study. Psychiatry Res 2013; 209:279-83. [PMID: 23374981 DOI: 10.1016/j.psychres.2013.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 01/02/2013] [Accepted: 01/06/2013] [Indexed: 12/25/2022]
Abstract
Previous studies have detected associations between mitochondrial haplogroups and schizophrenia (SZ). However, no study has examined the relationship between major mitochondrial DNA (mtDNA) haplogroups and SZ in the Chinese population. The aim of this study was to assess the association between mtDNA haplogroups and SZ genesis in the Chinese Han population. We used a case-control study and sequenced the mtDNA hypervariable regions (HVR1, HVR2, and HVR3) in the Han population. We analyzed mtDNA haplogroups and HVR polymorphisms in 298 SZ patients and 298 controls. The haplotypes were classified into 10 major haplogroups: A, B, CZ, D, F, G, M, N, N9a, and R. Statistical analysis revealed that only N9a showed a nominally significant association with protection from SZ [1.68% vs. 6.38%, p=0.004, OR=0.251 (0.092-0.680); after adjustment for age and sex: p=0.006, OR=0.246 (0.090-0.669)]. Three HVR polymorphisms were found to be nominally significantly different between subjects with SZ and controls, and all except one (m.204T>C) are linked to the N9a haplogroup. Our results indicate that mtDNA haplogroup N9a might be a protective factor for SZ.
Collapse
Affiliation(s)
- Guo-xia Wang
- Center for DNA Typing, the Fourth Military Medical University, Xi'an 710032, China; Department of Biochemistry and Molecular Biology, the Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Anglin RES, Mazurek MF, Tarnopolsky MA, Rosebush PI. The mitochondrial genome and psychiatric illness. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:749-59. [PMID: 22887963 DOI: 10.1002/ajmg.b.32086] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 07/09/2012] [Indexed: 02/01/2023]
Abstract
Psychiatric disorders are a leading cause of morbidity and mortality, yet their underlying pathophysiology remains unclear. Searches for a genetic cause of bipolar disorder, schizophrenia, and major depressive disorder have yielded inconclusive results. There is increasing interest in the possibility that defects in the mitochondrial genome may play an important role in psychiatric illness. We undertook a review of the literature investigating mitochondria and adult psychiatric disorders. MEDLINE, PsycINFO, and EMBASE were searched from their inception through September 2011, and the reference lists of identified articles were reviewed for additional studies. While multiple lines of evidence, including clinical, genetic, ultrastructural, and biochemical studies, support the involvement of mitochondria in the pathophysiology of psychiatric illness, many studies have methodological limitations and their findings have not been replicated. Clinical studies suggest that psychiatric features can be prominent, and the presenting features of mitochondrial disorders. There is limited but inconsistent evidence for the involvement of mitochondrial DNA haplogroups and mitochondria-related nuclear gene polymorphisms, and for mitochondrial ultrastructural and biochemical abnormalities in psychiatric illness. The current literature suggests that mitochondrial dysfunction and mitochondrial genetic variations may play an important role in psychiatric disorders, but additional methodologically rigorous and adequately powered studies are needed before definitive conclusions can be drawn.
Collapse
Affiliation(s)
- Rebecca E S Anglin
- Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada.
| | | | | | | |
Collapse
|
12
|
Doi N, Hoshi Y, Itokawa M, Yoshikawa T, Ichikawa T, Arai M, Usui C, Tachikawa H. Paradox of schizophrenia genetics: is a paradigm shift occurring? BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2012; 8:28. [PMID: 22650965 PMCID: PMC3487746 DOI: 10.1186/1744-9081-8-28] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 04/27/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND Genetic research of schizophrenia (SCZ) based on the nuclear genome model (NGM) has been one of the most active areas in psychiatry for the past two decades. Although this effort is ongoing, the current situation of the molecular genetics of SCZ seems disappointing or rather perplexing. Furthermore, a prominent discrepancy between persistence of the disease at a relatively high prevalence and a low reproductive fitness of patients creates a paradox. Heterozygote advantage works to sustain the frequency of a putative susceptibility gene in the mitochondrial genome model (MGM) but not in the NGM. METHODS We deduced a criterion that every nuclear susceptibility gene for SCZ should fulfill for the persistence of the disease under general assumptions of the multifactorial threshold model. SCZ-associated variants listed in the top 45 in the SZGene Database (the version of the 23rd December, 2011) were selected, and the distribution of the genes that could meet or do not meet the criterion was surveyed. RESULTS 19 SCZ-associated variants that do not meet the criterion are located outside the regions where the SCZ-associated variants that could meet the criterion are located. Since a SCZ-associated variant that does not meet the criterion cannot be a susceptibility gene, but instead must be a protective gene, it should be linked to a susceptibility gene in the NGM, which is contrary to these results. On the other hand, every protective gene on any chromosome can be associated with SCZ in the MGM. Based on the MGM we propose a new hypothesis that assumes brain-specific antioxidant defenses in which trans-synaptic activations of dopamine- and N-methyl-d-aspartate-receptors are involved. Most of the ten predictions of this hypothesis seem to accord with the major epidemiological facts and the results of association studies to date. CONCLUSION The central paradox of SCZ genetics and the results of association studies to date argue against the NGM, and in its place the MGM is emerging as a viable option to account for genomic and pathophysiological research findings involving SCZ.
Collapse
Affiliation(s)
- Nagafumi Doi
- Ibaraki Prefectural Medical Center of Psychiatry, 654Asahi-machi, Kasama-shi, Ibaraki, 309-1717, Japan
| | - Yoko Hoshi
- Integrated Neuroscience Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| | - Masanari Itokawa
- Project for Schizophrenia and Affective Disorders Research, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, 2-1Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Tomoe Ichikawa
- Project for Schizophrenia and Affective Disorders Research, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| | - Makoto Arai
- Project for Schizophrenia and Affective Disorders Research, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| | - Chie Usui
- Department of Psychiatry, Juntendo University Nerima Hospital, 3-1-10 Takanodai, Nerima-ku, Tokyo, 177-8521, Japan
| | - Hirokazu Tachikawa
- Department of Psychiatry, Graduate School of Comprehensive Human Science, Tsukuba University, Tsukuba-shi, Ibaraki, Japan
| |
Collapse
|
13
|
Chowdari KV, Bamne MN, Nimgaonkar VL. Genetic association studies of antioxidant pathway genes and schizophrenia. Antioxid Redox Signal 2011; 15:2037-45. [PMID: 20673164 PMCID: PMC3159115 DOI: 10.1089/ars.2010.3508] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The endogenous production of highly reactive oxidation species is an inherent by-product of cellular energy metabolism. Cellular antioxidant defense systems (AODS) comprising various antioxidants counter these damaging effects. Several lines of evidence, including postmortem studies, suggest increased oxidative stress in patients with schizophrenia. Some genetic association studies and gene-expression studies suggest that patients also may have altered ability to mount antioxidative mechanisms. As the genetic associations may provide etiologic evidence in support of the oxidative-stress hypothesis of schizophrenia, a focused review has been conducted. We also suggest avenues for further research.
Collapse
Affiliation(s)
- Kodavali V Chowdari
- Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O’Hara St., Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
14
|
Verge B, Alonso Y, Valero J, Miralles C, Vilella E, Martorell L. Mitochondrial DNA (mtDNA) and schizophrenia. Eur Psychiatry 2010; 26:45-56. [PMID: 20980130 DOI: 10.1016/j.eurpsy.2010.08.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 06/17/2010] [Accepted: 08/22/2010] [Indexed: 11/16/2022] Open
Abstract
The poorly understood aetiology of schizophrenia is known to involve a major genetic contribution even though the genetic factors remain elusive. Most genetic studies are based on Mendelian rules and focus on the nuclear genome, but current studies indicate that other genetic mechanisms are probably involved. This review focuses on mitochondrial DNA (mtDNA), a maternally inherited, 16.6-Kb molecule crucial for energy production that is implicated in numerous human traits and disorders. The aim of this review is to summarise the studies that have explored mtDNA in schizophrenia patients and those which provide evidence for its implication in this illness. Alterations in mitochondrial morphometry, brain energy metabolism, and enzymatic activity in the mitochondrial respiratory chain suggest a mitochondrial dysfunction in schizophrenia that could be related to the genetic characteristics of mtDNA. Moreover, evidence of maternal inheritance and the presence of schizophrenia symptoms in patients suffering from a mitochondrial disorder related to an mtDNA mutation suggest that mtDNA is involved in schizophrenia. The association of specific variants has been reported at the molecular level; however, additional studies are needed to determine whether the mitochondrial genome is involved in schizophrenia.
Collapse
Affiliation(s)
- B Verge
- Unitat de Psiquiatria, Facultat de Medicina i Ciències de la Salut, Hospital Psiquiàtric, Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Reus, Spain
| | | | | | | | | | | |
Collapse
|
15
|
One-carbon metabolism and schizophrenia: current challenges and future directions. Trends Mol Med 2009; 15:562-70. [PMID: 19896901 DOI: 10.1016/j.molmed.2009.10.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2009] [Revised: 10/05/2009] [Accepted: 10/05/2009] [Indexed: 01/08/2023]
Abstract
Schizophrenia is a heterogeneous disease generally considered to result from a combination of heritable and environmental factors. Although its pathophysiology has not been fully determined, biological studies support the involvement of several possible components including altered DNA methylation, abnormal glutamatergic transmission, altered mitochondrial function, folate deficiency and high maternal homocysteine levels. Although these factors have been explored separately, they all involve one-carbon (C1) metabolism. Furthermore, C1 metabolism is well positioned to integrate gene-environment interactions by influencing epigenetic regulation. Here, we discuss the potential roles of C1 metabolism in the pathophysiology of schizophrenia. Understanding the contribution of these mechanisms could yield new therapeutic approaches aiming to counteract disease onset or progression.
Collapse
|
16
|
Rollins B, Martin MV, Sequeira PA, Moon EA, Morgan LZ, Watson SJ, Schatzberg A, Akil H, Myers RM, Jones EG, Wallace DC, Bunney WE, Vawter MP. Mitochondrial variants in schizophrenia, bipolar disorder, and major depressive disorder. PLoS One 2009; 4:e4913. [PMID: 19290059 PMCID: PMC2654519 DOI: 10.1371/journal.pone.0004913] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 02/15/2009] [Indexed: 02/06/2023] Open
Abstract
Background Mitochondria provide most of the energy for brain cells by the process of oxidative phosphorylation. Mitochondrial abnormalities and deficiencies in oxidative phosphorylation have been reported in individuals with schizophrenia (SZ), bipolar disorder (BD), and major depressive disorder (MDD) in transcriptomic, proteomic, and metabolomic studies. Several mutations in mitochondrial DNA (mtDNA) sequence have been reported in SZ and BD patients. Methodology/Principal Findings Dorsolateral prefrontal cortex (DLPFC) from a cohort of 77 SZ, BD, and MDD subjects and age-matched controls (C) was studied for mtDNA sequence variations and heteroplasmy levels using Affymetrix mtDNA resequencing arrays. Heteroplasmy levels by microarray were compared to levels obtained with SNaPshot and allele specific real-time PCR. This study examined the association between brain pH and mtDNA alleles. The microarray resequencing of mtDNA was 100% concordant with conventional sequencing results for 103 mtDNA variants. The rate of synonymous base pair substitutions in the coding regions of the mtDNA genome was 22% higher (p = 0.0017) in DLPFC of individuals with SZ compared to controls. The association of brain pH and super haplogroup (U, K, UK) was significant (p = 0.004) and independent of postmortem interval time. Conclusions Focusing on haplogroup and individual susceptibility factors in psychiatric disorders by considering mtDNA variants may lead to innovative treatments to improve mitochondrial health and brain function.
Collapse
Affiliation(s)
- Brandi Rollins
- Department of Psychiatry & Human Behavior, University of California Irvine, Irvine, California, United States of America
| | - Maureen V. Martin
- Department of Psychiatry & Human Behavior, University of California Irvine, Irvine, California, United States of America
| | - P. Adolfo Sequeira
- Department of Psychiatry & Human Behavior, University of California Irvine, Irvine, California, United States of America
| | - Emily A. Moon
- Department of Psychiatry & Human Behavior, University of California Irvine, Irvine, California, United States of America
| | - Ling Z. Morgan
- Department of Psychiatry & Human Behavior, University of California Irvine, Irvine, California, United States of America
| | - Stanley J. Watson
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Alan Schatzberg
- Department of Psychiatry, Stanford University, Palo Alto, California, United States of America
| | - Huda Akil
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Richard M. Myers
- Hudson Alpha Institute for Biotechnology, Huntsville, Alabama, United States of America
| | - Edward G. Jones
- Neuroscience Center, University of California Davis, Davis, California, United States of America
| | - Douglas C. Wallace
- Molecular and Mitochondrial Medicine and Genetics, University of California Irvine, Irvine, California, United States of America
| | - William E. Bunney
- Department of Psychiatry & Human Behavior, University of California Irvine, Irvine, California, United States of America
| | - Marquis P. Vawter
- Department of Psychiatry & Human Behavior, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|