1
|
Bian WJ, González OC, de Lecea L. Adolescent sleep defects and dopaminergic hyperactivity in mice with a schizophrenia-linked Shank3 mutation. Sleep 2023; 46:zsad131. [PMID: 37144901 PMCID: PMC10334736 DOI: 10.1093/sleep/zsad131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/03/2023] [Indexed: 05/06/2023] Open
Abstract
Shank3 is a shared risk gene for autism spectrum disorders and schizophrenia. Sleep defects have been characterized for autism models with Shank3 mutations; however, evidence has been lacking for the potential sleep defects caused by Shank3 mutation associated with schizophrenia and how early in development these defects may occur. Here we characterized the sleep architecture of adolescent mice carrying a schizophrenia-linked, R1117X mutation in Shank3. We further employed GRABDA dopamine sensor and fiber photometry to record dopamine release in the nucleus accumbens during sleep/wake states. Our results show that homozygous mutant R1117X mice have significantly reduced sleep in the dark phase during adolescence, altered electroencephalogram power, especially during the rapid-eye-movement sleep, and dopamine hyperactivity during sleep but not during wakefulness. Further analyses suggest that these adolescent defects in sleep architecture and dopaminergic neuromodulation tightly correlate with the social novelty preference later in adulthood and predict adult social performance during same-sex social interactions. Our results provide novel insights into the sleep phenotypes in mouse models of schizophrenia and the potential use of developmental sleep as a predictive metric for adult social symptoms. Together with recent studies in other Shank3 models, our work underscores the idea that Shank3-involved circuit disruptions may be one of the shared pathologies in certain types of schizophrenia and autism. Future research is needed to establish the causal relationship among adolescent sleep defects, dopaminergic dysregulation, and adult behavioral changes in Shank3 mutation animals and other models.
Collapse
Affiliation(s)
- Wen-Jie Bian
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Oscar C González
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
2
|
Lin Y, Roy K, Ioka S, Otani R, Amezawa M, Ishikawa Y, Cherasse Y, Kaushik MK, Klewe-Nebenius D, Zhou L, Yanagisawa M, Oishi Y, Saitoh T, Lazarus M. Positive allosteric adenosine A 2A receptor modulation suppresses insomnia associated with mania- and schizophrenia-like behaviors in mice. Front Pharmacol 2023; 14:1138666. [PMID: 37153764 PMCID: PMC10155833 DOI: 10.3389/fphar.2023.1138666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
Background: Insomnia is associated with psychiatric illnesses such as bipolar disorder or schizophrenia. Treating insomnia improves psychotic symptoms severity, quality of life, and functional outcomes. Patients with psychiatric disorders are often dissatisfied with the available therapeutic options for their insomnia. In contrast, positive allosteric modulation of adenosine A2A receptors (A2ARs) leads to slow-wave sleep without cardiovascular side effects in contrast to A2AR agonists. Methods: We investigated the hypnotic effects of A2AR positive allosteric modulators (PAMs) in mice with mania-like behavior produced by ablating GABAergic neurons in the ventral medial midbrain/pons area and in a mouse model of schizophrenia by knocking out of microtubule-associated protein 6. We also compared the properties of sleep induced by A2AR PAMs in mice with mania-like behavior with those induced by DORA-22, a dual orexin receptor antagonist that improves sleep in pre-clinical models, and the benzodiazepine diazepam. Results: A2AR PAMs suppress insomnia associated with mania- or schizophrenia-like behaviors in mice. A2AR PAM-mediated suppression of insomnia in mice with mania-like behavior was similar to that mediated by DORA-22, and, unlike diazepam, did not result in abnormal sleep. Conclusion: A2AR allosteric modulation may represent a new therapeutic avenue for sleep disruption associated with bipolar disorder or psychosis.
Collapse
Affiliation(s)
- Yang Lin
- International Institute for Integrative Sleep Medicine (WPI-IIIS), Tsukuba, Ibaraki, Japan
| | - Koustav Roy
- International Institute for Integrative Sleep Medicine (WPI-IIIS), Tsukuba, Ibaraki, Japan
| | - Shuji Ioka
- International Institute for Integrative Sleep Medicine (WPI-IIIS), Tsukuba, Ibaraki, Japan
| | - Rintaro Otani
- International Institute for Integrative Sleep Medicine (WPI-IIIS), Tsukuba, Ibaraki, Japan
| | - Mao Amezawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), Tsukuba, Ibaraki, Japan
| | - Yukiko Ishikawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), Tsukuba, Ibaraki, Japan
| | - Yoan Cherasse
- International Institute for Integrative Sleep Medicine (WPI-IIIS), Tsukuba, Ibaraki, Japan
| | - Mahesh K. Kaushik
- International Institute for Integrative Sleep Medicine (WPI-IIIS), Tsukuba, Ibaraki, Japan
| | - Daniela Klewe-Nebenius
- International Institute for Integrative Sleep Medicine (WPI-IIIS), Tsukuba, Ibaraki, Japan
| | - Li Zhou
- International Institute for Integrative Sleep Medicine (WPI-IIIS), Tsukuba, Ibaraki, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), Tsukuba, Ibaraki, Japan
| | - Yo Oishi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), Tsukuba, Ibaraki, Japan
- Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tsuyoshi Saitoh
- International Institute for Integrative Sleep Medicine (WPI-IIIS), Tsukuba, Ibaraki, Japan
- Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- *Correspondence: Tsuyoshi Saitoh, ; Michael Lazarus,
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS), Tsukuba, Ibaraki, Japan
- Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- *Correspondence: Tsuyoshi Saitoh, ; Michael Lazarus,
| |
Collapse
|
3
|
Barbato E, Darrah R, Kelley TJ. The circadian system in cystic fibrosis mice is regulated by histone deacetylase 6. Am J Physiol Cell Physiol 2022; 323:C1112-C1120. [PMID: 36062879 PMCID: PMC9555305 DOI: 10.1152/ajpcell.00248.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Disordered sleep experienced by people with cystic fibrosis (CF) suggest a possible disruption in circadian regulation being associated with the loss of cystic fibrosis transmembrane conductance regulator (Cftr) function. To test this hypothesis, circadian regulation was assessed in an F508del/F508del CF mouse model. CF mice exhibited significant alterations in both timing of locomotor activity and in mean activity per hour in both light-dark (LD) and dark-dark (DD) photoperiods compared with wild-type (WT) controls. It was also noted that in DD periodicity increased in CF mice, whereas shortening in WT mice as is expected. CF mice also exhibited altered timing of circadian gene expression and a reduction of melatonin production at all time points. Mechanistically, the role of microtubules in regulating these outcomes was explored. Mice lacking expression of tubulin polymerization promoting protein (Tppp) effectively mimicked CF mouse phenotypes with each measured outcome. Depleting expression of the microtubule regulatory protein histone deacetylase 6 (Hdac6) from CF mice (CF/Hdac6) resulted in the reversal of each phenotype to WT profiles. These data demonstrate an innate disruption of circadian regulation in CF mice and identify a novel microtubule-related mechanism leading to this disruption that can be targeted for therapeutic intervention.
Collapse
|
4
|
Adlan LG, Csordás-Nagy M, Bodosi B, Kalmár G, Nyúl LG, Nagy A, Kekesi G, Büki A, Horvath G. Sleep-Wake Rhythm and Oscillatory Pattern Analysis in a Multiple Hit Schizophrenia Rat Model (Wisket). Front Behav Neurosci 2022; 15:799271. [PMID: 35153694 PMCID: PMC8831724 DOI: 10.3389/fnbeh.2021.799271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Electroencephalography studies in schizophrenia reported impairments in circadian rhythm and oscillatory activity, which may reflect the deficits in cognitive and sensory processing. The current study evaluated the circadian rhythm and the state-dependent oscillatory pattern in control Wistar and a multiple hit schizophrenia rat model (Wisket) using custom-made software for identification of the artifacts and the classification of sleep-wake stages and the active and quiet awake substages. The Wisket animals have a clear light-dark cycle similar to controls, and their sleep-wake rhythm showed only a tendency to spend more time in non-rapid eye movement (NREM) and less in rapid eye movement (REM) stages. In spite of the weak diurnal variation in oscillation in both groups, the Wisket rats had higher power in the low-frequency delta, alpha, and beta bands and lower power in the high-frequency theta and gamma bands in most stages. Furthermore, the significant differences between the two groups were pronounced in the active waking substage. These data suggest that the special changes in the oscillatory pattern of this schizophrenia rat model may have a significant role in the impaired cognitive functions observed in previous studies.
Collapse
Affiliation(s)
- Leatitia Gabriella Adlan
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Mátyás Csordás-Nagy
- Department of Technical Informatics, Faculty of Science and Informatics, Institute of Informatics, University of Szeged, Szeged, Hungary
| | - Balázs Bodosi
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - György Kalmár
- Department of Technical Informatics, Faculty of Science and Informatics, Institute of Informatics, University of Szeged, Szeged, Hungary
| | - László G. Nyúl
- Department of Image Processing and Computer Graphics, Faculty of Science and Informatics, Institute of Informatics, University of Szeged, Szeged, Hungary
| | - Attila Nagy
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gabriella Kekesi
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Alexandra Büki
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gyongyi Horvath
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- *Correspondence: Gyongyi Horvath,
| |
Collapse
|
5
|
Maly IV, Morales MJ, Pletnikov MV. Astrocyte Bioenergetics and Major Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2021; 26:173-227. [PMID: 34888836 DOI: 10.1007/978-3-030-77375-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ongoing research continues to add new elements to the emerging picture of involvement of astrocyte energy metabolism in the pathophysiology of major psychiatric disorders, including schizophrenia, mood disorders, and addictions. This review outlines what is known about the energy metabolism in astrocytes, the most numerous cell type in the brain, and summarizes the recent work on how specific perturbations of astrocyte bioenergetics may contribute to the neuropsychiatric conditions. The role of astrocyte energy metabolism in mental health and disease is reviewed on the organism, organ, and cell level. Data arising from genomic, metabolomic, in vitro, and neurobehavioral studies is critically analyzed to suggest future directions in research and possible metabolism-focused therapeutic interventions.
Collapse
Affiliation(s)
- Ivan V Maly
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Michael J Morales
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Mikhail V Pletnikov
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
6
|
Tubulin Polymerization Promoting Protein Affects the Circadian Timing System in C57Bl/6 Mice. J Circadian Rhythms 2021; 19:5. [PMID: 34046074 PMCID: PMC8139294 DOI: 10.5334/jcr.207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The circadian timing system (CTS) is a complex set of cyclic cellular mechanisms which serve to synchronize discrete cell groups across multiple organ systems to adapt the bodys physiology to a (roughly) 24-hour clock. Many genes and hormones have been shown to be strongly associated with the CTS, some of which include the genes Bmal1, Period1, Period2, Cryptochrome1, and Cryptochrome2, and the hormone melatonin. Previous data suggest that microtubule dynamics play an important role in melatonin function as it relates to the CTS in vitro, though this relationship has never been explored in vivo. The purpose of this study was to determine whether disruption of microtubule regulation in C57Bl/6 mice results in measurable changes to the CTS. To study the potential effects of microtubule dynamics on the CTS in vivo, we utilized a mouse model of microtubule instability, knocked out for the tubulin polymerization promoting protein gene (Tppp -/-), comparing them to their wild type (WT) littermates in three categories: locomotor activity (in light/dark and dark/dark photoperiods), serial clock gene expression, and serial serum melatonin concentration. These comparisons showed differences in all three categories, including significant differences in locomotor characteristics under dark/dark conditions. Our findings support and extend previous reports that microtubule dynamics are a modulator of circadian rhythm regulation likely through a mechanism involving melatonin induced phase shifting.
Collapse
|
7
|
Cuveillier C, Boulan B, Ravanello C, Denarier E, Deloulme JC, Gory-Fauré S, Delphin C, Bosc C, Arnal I, Andrieux A. Beyond Neuronal Microtubule Stabilization: MAP6 and CRMPS, Two Converging Stories. Front Mol Neurosci 2021; 14:665693. [PMID: 34025352 PMCID: PMC8131560 DOI: 10.3389/fnmol.2021.665693] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/09/2021] [Indexed: 12/21/2022] Open
Abstract
The development and function of the central nervous system rely on the microtubule (MT) and actin cytoskeletons and their respective effectors. Although the structural role of the cytoskeleton has long been acknowledged in neuronal morphology and activity, it was recently recognized to play the role of a signaling platform. Following this recognition, research into Microtubule Associated Proteins (MAPs) diversified. Indeed, historically, structural MAPs—including MAP1B, MAP2, Tau, and MAP6 (also known as STOP);—were identified and described as MT-binding and -stabilizing proteins. Extensive data obtained over the last 20 years indicated that these structural MAPs could also contribute to a variety of other molecular roles. Among multi-role MAPs, MAP6 provides a striking example illustrating the diverse molecular and cellular properties of MAPs and showing how their functional versatility contributes to the central nervous system. In this review, in addition to MAP6’s effect on microtubules, we describe its impact on the actin cytoskeleton, on neuroreceptor homeostasis, and its involvement in signaling pathways governing neuron development and maturation. We also discuss its roles in synaptic plasticity, brain connectivity, and cognitive abilities, as well as the potential relationships between the integrated brain functions of MAP6 and its molecular activities. In parallel, the Collapsin Response Mediator Proteins (CRMPs) are presented as examples of how other proteins, not initially identified as MAPs, fall into the broader MAP family. These proteins bind MTs as well as exhibiting molecular and cellular properties very similar to MAP6. Finally, we briefly summarize the multiple similarities between other classical structural MAPs and MAP6 or CRMPs.In summary, this review revisits the molecular properties and the cellular and neuronal roles of the classical MAPs, broadening our definition of what constitutes a MAP.
Collapse
|
8
|
Deurveilher S, Ko KR, Saumure BSC, Robertson GS, Rusak B, Semba K. Altered circadian activity and sleep/wake rhythms in the stable tubule only polypeptide (STOP) null mouse model of schizophrenia. Sleep 2021; 44:5981350. [PMID: 33186470 DOI: 10.1093/sleep/zsaa237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/14/2020] [Indexed: 12/27/2022] Open
Abstract
Sleep and circadian rhythm disruptions commonly occur in individuals with schizophrenia. Stable tubule only polypeptide (STOP) knockout (KO) mice show behavioral impairments resembling symptoms of schizophrenia. We previously reported that STOP KO mice slept less and had more fragmented sleep and waking than wild-type littermates under a light/dark (LD) cycle. Here, we assessed the circadian phenotype of male STOP KO mice by examining wheel-running activity rhythms and EEG/EMG-defined sleep/wake states under both LD and constant darkness (DD) conditions. Wheel-running activity rhythms in KO and wild-type mice were similarly entrained in LD, and had similar free-running periods in DD. The phase delay shift in response to a light pulse given early in the active phase under DD was preserved in KO mice. KO mice had markedly lower activity levels, lower amplitude activity rhythms, less stable activity onsets, and more fragmented activity than wild-type mice in both lighting conditions. KO mice also spent more time awake and less time in rapid eye movement sleep (REMS) and non-REMS (NREMS) in both LD and DD conditions, with the decrease in NREMS concentrated in the active phase. KO mice also showed altered EEG features and higher amplitude rhythms in wake and NREMS (but not REMS) amounts in both lighting conditions, with a longer free-running period in DD, compared to wild-type mice. These results indicate that the STOP null mutation in mice altered the regulation of sleep/wake physiology and activity rhythm expression, but did not grossly disrupt circadian mechanisms.
Collapse
Affiliation(s)
- Samuel Deurveilher
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Kristin Robin Ko
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada
| | - Brock St C Saumure
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - George S Robertson
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada.,Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Benjamin Rusak
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada.,Department of Psychology & Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Kazue Semba
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada.,Department of Psychiatry, Dalhousie University, Halifax, NS, Canada.,Department of Psychology & Neuroscience, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
9
|
Winsky-Sommerer R, de Oliveira P, Loomis S, Wafford K, Dijk DJ, Gilmour G. Disturbances of sleep quality, timing and structure and their relationship with other neuropsychiatric symptoms in Alzheimer’s disease and schizophrenia: Insights from studies in patient populations and animal models. Neurosci Biobehav Rev 2019; 97:112-137. [DOI: 10.1016/j.neubiorev.2018.09.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 08/31/2018] [Accepted: 09/30/2018] [Indexed: 02/06/2023]
|
10
|
Pocivavsek A, Rowland LM. Basic Neuroscience Illuminates Causal Relationship Between Sleep and Memory: Translating to Schizophrenia. Schizophr Bull 2018; 44:7-14. [PMID: 29136236 PMCID: PMC5768044 DOI: 10.1093/schbul/sbx151] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Patients with schizophrenia are often plagued by sleep disturbances that can exacerbate the illness, including potentiating psychosis and cognitive impairments. Cognitive dysfunction is a core feature of schizophrenia with learning and memory being particularly impaired. Sleep disruptions often accompanying the illness and may be key mechanism that contribute to these core dysfunctions. In this special translational neuroscience feature, we highlight the role of sleep in mediating cognitive function, with a special focus on learning and memory. By defining dysfunctional sleep architecture and rhythms in schizophrenia, we focus on the disarray of mechanisms critical to learning and memory and postulate an association between sleep disturbances and cognitive impairments in the disorder. Lastly, we review preclinical models of schizophrenia and highlight exciting translational research that may lead to new therapeutic approaches to alleviating sleep disturbances and effectively improving cognitive function in schizophrenia.
Collapse
Affiliation(s)
- Ana Pocivavsek
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Laura M Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
11
|
Sleep loss and structural plasticity. Curr Opin Neurobiol 2017; 44:1-7. [DOI: 10.1016/j.conb.2016.12.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/21/2016] [Indexed: 12/14/2022]
|