1
|
Abstract
Neuroimaging studies of patients with chronic pain have shown that neurotransmitter abnormalities, including increases in glutamate and decreases in GABA, could be responsible for the cortical hyperactivity and hyperalgesia/allodynia observed in some pain conditions. These finding are particularly evident in the insula, a brain region known to play a role in both the sensory-discriminative and the affective-motivational aspects of pain processing. However, clinical studies are not entirely able to determine the directionality of these findings, nor whether they are causal or epiphenomenon. Thus, a set of animal studies was performed to determine whether alterations in glutamate and GABA are the result of injury, the cause of augmented pain processing, or both. Compared with controls, the excitatory neurotransmitters glutamate and aspartate are significantly higher in the rat insula after chronic constriction injury of the sciatic nerve (CCI). The CCI also produced significant increases in allodynia (mechanical and cold), thermal hyperalgesia, and nociceptive aversiveness. Unilateral microinjection of ionotropic glutamate receptor antagonists restored these nociceptive behaviors to preinjury values. Increasing endogenous levels of GABA or enhancing signaling at inhibitory glycinergic receptors had similar effects as the glutamate receptor antagonists. In naive rats, increasing endogenous levels of glutamate, decreasing endogenous levels of GABA, or blocking strychnine-sensitive glycine receptors in the insula significantly increased thermal hyperalgesia and mechanical allodynia. These data support the hypothesis that an altered balance of excitatory and inhibitory neurotransmitters in brain regions such as the insula occurs in chronic pain states and leads to augmented central pain processing and increased pain sensitivity.
Collapse
|
2
|
Feng M, He Z, Liu B, Li Z, Tao G, Wu D, Xiang H. Consciousness loss during epileptogenesis: implication for VLPO-PnO circuits. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2017; 9:1-7. [PMID: 28337311 PMCID: PMC5344992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/20/2017] [Indexed: 06/06/2023]
Abstract
There is a growing concern about consciousness loss during epileptic seizures. Understanding neural mechanisms could lead to a better comprehension of cerebral circuit function in the control of consciousness loss in intractable epilepsy. We propose that ventrolateral preoptic area (VLPO)- PnO (nucleus pontis oralis) circuits may serve a major role in the loss of consciousness in drug-refractory epilepsy. Future behavioural and neuroimaging studies are clearly needed to understand the functional connectivity between the VLPO and PnO during loss of consciousness in drug-refractory epilepsy, to greatly prevent unconsciousness in this disorder and improve the quality of life in patients with intractable epilepsy.
Collapse
Affiliation(s)
- Maohui Feng
- Department of Oncology, Wuhan Peritoneal Cancer Clinical Medical Research Center, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study CenterWuhan, PR China
| | - Zhigang He
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan, PR China
| | - Baowen Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan, PR China
| | - Zhixiao Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan, PR China
| | - Guorong Tao
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of MedicineShanghai, PR China
| | - Duozhi Wu
- Department of Anesthesiology, People’s Hospital of Hainan ProvinceHaikou, PR China
| | - Hongbing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan, PR China
| |
Collapse
|
3
|
Pillay S, Liu X, Baracskay P, Hudetz AG. Brainstem stimulation increases functional connectivity of basal forebrain-paralimbic network in isoflurane-anesthetized rats. Brain Connect 2015; 4:523-34. [PMID: 25090190 DOI: 10.1089/brain.2014.0254] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Brain states and cognitive-behavioral functions are precisely controlled by subcortical neuromodulatory networks. Manipulating key components of the ascending arousal system (AAS), via deep-brain stimulation, may help facilitate global arousal in anesthetized animals. Here we test the hypothesis that electrical stimulation of the oral part of the pontine reticular nucleus (PnO) under light isoflurane anesthesia, associated with loss of consciousness, leads to cortical desynchronization and specific changes in blood-oxygenation-level-dependent (BOLD) functional connectivity (FC) of the brain. BOLD signals were acquired simultaneously with frontal epidural electroencephalogram before and after PnO stimulation. Whole-brain FC was mapped using correlation analysis with seeds in major centers of the AAS. PnO stimulation produced cortical desynchronization, a decrease in δ- and θ-band power, and an increase in approximate entropy. Significant increases in FC after PnO stimulation occurred between the left nucleus Basalis of Meynert (NBM) as seed and numerous regions of the paralimbic network. Smaller increases in FC were present between the central medial thalamic nucleus and retrosplenium seeds and the left caudate putamen and NBM. The results suggest that, during light anesthesia, PnO stimulation preferentially modulates basal forebrain-paralimbic networks. We speculate that this may be a reflection of disconnected awareness.
Collapse
Affiliation(s)
- Siveshigan Pillay
- 1 Department of Anesthesiology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | | | | | | |
Collapse
|
4
|
Xi M, Fung SJ, Yamuy J, Chase MH. Interactions between hypocretinergic and GABAergic systems in the control of activity of neurons in the cat pontine reticular formation. Neuroscience 2015; 298:190-9. [PMID: 25892701 DOI: 10.1016/j.neuroscience.2015.04.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 04/09/2015] [Accepted: 04/11/2015] [Indexed: 11/30/2022]
Abstract
Anatomical studies have demonstrated that hypocretinergic and GABAergic neurons innervate cells in the nucleus pontis oralis (NPO), a nucleus responsible for the generation of active (rapid eye movement (REM)) sleep (AS) and wakefulness (W). Behavioral and electrophysiological studies have shown that hypocretinergic and GABAergic processes in the NPO are involved in the generation of AS as well as W. An increase in hypocretin in the NPO is associated with both AS and W, whereas GABA levels in the NPO are elevated during W. We therefore examined the manner in which GABA modulates NPO neuronal responses to hypocretin. We hypothesized that interactions between the hypocretinergic and GABAergic systems in the NPO play an important role in determining the occurrence of AS or W. To determine the veracity of this hypothesis, we examined the effects of the juxtacellular application of hypocretin-1 and GABA on the activity of NPO neurons, which were recorded intracellularly, in chloralose-anesthetized cats. The juxtacellular application of hypocretin-1 significantly increased the mean amplitude of spontaneous EPSPs and the frequency of discharge of NPO neurons; in contrast, the juxtacellular microinjection of GABA produced the opposite effects, i.e., there was a significant reduction in the mean amplitude of spontaneous EPSPs and a decrease in the discharge of these cells. When hypocretin-1 and GABA were applied simultaneously, the inhibitory effect of GABA on the activity of NPO neurons was reduced or completely blocked. In addition, hypocretin-1 also blocked GABAergic inhibition of EPSPs evoked by stimulation of the laterodorsal tegmental nucleus. These data indicate that hypocretin and GABA function within the context of a neuronal gate that controls the activity of AS-on neurons. Therefore, we suggest that the occurrence of either AS or W depends upon interactions between hypocretinergic and GABAergic processes as well as inputs from other sites that project to AS-on neurons in the NPO.
Collapse
Affiliation(s)
- M Xi
- Websciences International, Los Angeles, CA 90024, USA; VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA.
| | - S J Fung
- Websciences International, Los Angeles, CA 90024, USA; VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - J Yamuy
- VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA; UCLA School of Medicine, Los Angeles, CA 90095, USA
| | - M H Chase
- Websciences International, Los Angeles, CA 90024, USA; VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA; UCLA School of Medicine, Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Hambrecht-Wiedbusch VS, Mitchell MF, Firn KA, Baghdoyan HA, Lydic R. Benzodiazepine site agonists differentially alter acetylcholine release in rat amygdala. Anesth Analg 2014; 118:1293-300. [PMID: 24842176 DOI: 10.1213/ane.0000000000000201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Agonist binding at the benzodiazepine site of γ-aminobutric acid type A receptors diminishes anxiety and insomnia by actions in the amygdala. The neurochemical effects of benzodiazepine site agonists remain incompletely understood. Cholinergic neurotransmission modulates amygdala function, and this study tested the hypothesis that benzodiazepine site agonists alter acetylcholine (ACh) release in the amygdala. METHODS Microdialysis and high-performance liquid chromatography quantified ACh release in the amygdala of Sprague-Dawley rats (n = 33). ACh was measured before and after IV administration (3 mg/kg) of midazolam or eszopiclone, with and without anesthesia. ACh in isoflurane-anesthetized rats during dialysis with Ringer's solution (control) was compared with ACh release during dialysis with Ringer's solution containing (100 μM) midazolam, diazepam, eszopiclone, or zolpidem. RESULTS In unanesthetized rats, ACh in the amygdala was decreased by IV midazolam (-51.1%; P = 0.0029; 95% confidence interval [CI], -73.0% to -29.2%) and eszopiclone (-39.6%; P = 0.0222; 95% CI, -69.8% to -9.3%). In anesthetized rats, ACh in the amygdala was decreased by IV administration of midazolam (-46.2%; P = 0.0041; 95% CI, -67.9% to -24.5%) and eszopiclone (-34.0%; P = 0.0009; 95% CI, -44.7% to -23.3%), and increased by amygdala delivery of diazepam (43.2%; P = 0.0434; 95% CI, 2.1% to 84.3%) and eszopiclone (222.2%; P = 0.0159; 95% CI, 68.5% to 375.8%). CONCLUSIONS ACh release in the amygdala was decreased by IV delivery of midazolam and eszopiclone. Dialysis delivery directly into the amygdala caused either increased (eszopiclone and diazepam) or likely no significant change (midazolam and zolpidem) in ACh release. These contrasting effects of delivery route on ACh release support the interpretation that systemically administered midazolam and eszopiclone decrease ACh release in the amygdala by acting on neuronal systems outside the amygdala.
Collapse
|
6
|
Vanini G, Nemanis K, Baghdoyan HA, Lydic R. GABAergic transmission in rat pontine reticular formation regulates the induction phase of anesthesia and modulates hyperalgesia caused by sleep deprivation. Eur J Neurosci 2014; 40:2264-73. [PMID: 24674578 DOI: 10.1111/ejn.12571] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/19/2014] [Accepted: 02/21/2014] [Indexed: 01/03/2023]
Abstract
The oral part of the pontine reticular formation (PnO) contributes to the regulation of sleep, anesthesia and pain. The role of PnO γ-aminobutyric acid (GABA) in modulating these states remains incompletely understood. The present study used time to loss and time to resumption of righting response (LoRR and RoRR) as surrogate measures of loss and resumption of consciousness. This study tested three hypotheses: (i) pharmacologically manipulating GABA levels in rat PnO alters LoRR, RoRR and nociception; (ii) propofol decreases GABA levels in the PnO; and (iii) inhibiting GABA synthesis in the PnO blocks hyperalgesia caused by sleep deprivation. Administering a GABA synthesis inhibitor [3-mercaptopropionic acid (3-MPA)] or a GABA uptake inhibitor [nipecotic acid (NPA)] into rat PnO significantly altered LoRR caused by propofol. 3-MPA significantly decreased LoRR for propofol (-18%). NPA significantly increased LoRR during administration of propofol (36%). Neither 3-MPA nor NPA altered RoRR following cessation of propofol or isoflurane delivery. The finding that LoRR was decreased by 3-MPA and increased by NPA is consistent with measures showing that extracellular GABA levels in the PnO were decreased (41%) by propofol. Thermal nociception was significantly decreased by 3-MPA and increased by NPA, and 3-MPA blocked the hyperalgesia caused by sleep deprivation. The results demonstrate that GABA levels in the PnO regulate the time for loss of consciousness caused by propofol, extend the concept that anesthetic induction and emergence are not inverse processes, and suggest that GABAergic transmission in the PnO mediates hyperalgesia caused by sleep loss.
Collapse
Affiliation(s)
- Giancarlo Vanini
- Department of Anesthesiology, University of Michigan, 7433 Medical Science Building I, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-5615, USA
| | | | | | | |
Collapse
|
7
|
Torterolo P, Chase MH. The hypocretins (orexins) mediate the "phasic" components of REM sleep: A new hypothesis. Sleep Sci 2014; 7:19-29. [PMID: 26483897 PMCID: PMC4521687 DOI: 10.1016/j.slsci.2014.07.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 01/27/2014] [Indexed: 12/17/2022] Open
Abstract
In 1998, a group of phenotypically distinct neurons were discovered in the postero-lateral hypothalamus which contained the neuropeptides hypocretin 1 and hypocretin 2 (also called orexin A and orexin B), which are excitatory neuromodulators. Hypocretinergic neurons project throughout the central nervous system and have been involved in the generation and maintenance of wakefulness. The sleep disorder narcolepsy, characterized by hypersomnia and cataplexy, is produced by degeneration of these neurons. The hypocretinergic neurons are active during wakefulness in conjunction with the presence of motor activity that occurs during survival-related behaviors. These neurons decrease their firing rate during non-REM sleep; however there is still controversy upon the activity and role of these neurons during REM sleep. Hence, in the present report we conducted a critical review of the literature of the hypocretinergic system during REM sleep, and hypothesize a possible role of this system in the generation of REM sleep.
Collapse
Affiliation(s)
- Pablo Torterolo
- Laboratorio de Neurobiología del Sueño, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, General Flores 2125, 11800 Montevideo, Uruguay
| | - Michael H. Chase
- WebSciences International, Los Angeles, USA
- UCLA School of Medicine, Los Angeles, USA
| |
Collapse
|
8
|
Pillay S, Vizuete J, Liu X, Juhasz G, Hudetz AG. Brainstem stimulation augments information integration in the cerebral cortex of desflurane-anesthetized rats. Front Integr Neurosci 2014; 8:8. [PMID: 24605091 PMCID: PMC3932553 DOI: 10.3389/fnint.2014.00008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 01/13/2014] [Indexed: 11/16/2022] Open
Abstract
States of consciousness have been associated with information integration in the brain as modulated by anesthesia and the ascending arousal system. The present study was designed to test the hypothesis that electrical stimulation of the oral part of the pontine reticular nucleus (PnO) can augment information integration in the cerebral cortex of anesthetized rats. Extracellular unit activity and local field potentials were recorded in freely moving animals from parietal association (PtA) and secondary visual (V2) cortices via chronically implanted microwire arrays at three levels of anesthesia produced by desflurane: 3.5, 4.5, and 6.0% (where 4.5% corresponds to that critical for the loss of consciousness). Information integration was characterized by integration (multiinformation) and interaction entropy, estimated from the statistical distribution of coincident spike patterns. PnO stimulation elicited electrocortical activation as indicated by the reductions in δ- and θ-band powers at the intermediate level of anesthesia. PnO stimulation augmented integration from 1.13 ± 0.03 to 6.12 ± 1.98 × 103 bits and interaction entropy from 0.44 ± 0.11 to 2.18 ± 0.72 × 103 bits; these changes were most consistent in the PtA at all desflurane concentrations. Stimulation of the retina with discrete light flashes after PnO stimulation elicited an additional 166 ± 25 and 92 ± 12% increase in interaction entropy in V2 during light and intermediate levels. The results suggest that the PnO may modulate spontaneous ongoing and sensory stimulus-related cortical information integration under anesthesia.
Collapse
Affiliation(s)
- Siveshigan Pillay
- Department of Anesthesiology, Medical College of Wisconsin Milwaukee, WI, USA
| | - Jeannette Vizuete
- Department of Anesthesiology, Medical College of Wisconsin Milwaukee, WI, USA
| | - Xiping Liu
- Department of Anesthesiology, Medical College of Wisconsin Milwaukee, WI, USA
| | - Gabor Juhasz
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University Budapest, Hungary
| | - Anthony G Hudetz
- Department of Anesthesiology, Medical College of Wisconsin Milwaukee, WI, USA
| |
Collapse
|
9
|
Chase MH. Motor control during sleep and wakefulness: Clarifying controversies and resolving paradoxes. Sleep Med Rev 2013; 17:299-312. [DOI: 10.1016/j.smrv.2012.09.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 08/29/2012] [Accepted: 09/12/2012] [Indexed: 11/16/2022]
|
10
|
Chase MH. A unified survival theory of the functioning of the hypocretinergic system. J Appl Physiol (1985) 2013; 115:954-71. [PMID: 23640599 DOI: 10.1152/japplphysiol.00700.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This article advances the theory that the hypocretinergic (orexinergic) system initiates, coordinates, and maintains survival behaviors and survival-related processes (i.e., the Unified Survival Theory of the Functioning of the Hypocretinergic System or "Unified Hypocretinergic Survival Theory"). A priori presumptive support for the Unified Hypocretinergic Survival Theory emanates from the fact that neurons that contain hypocretin are located in the key executive central nervous system (CNS) site, the lateral hypothalamus, that for decades has been well-documented to govern core survival behaviors such as fight, flight, and food consumption. In addition, the hypocretinergic system exhibits the requisite morphological and electrophysiological capabilities to control survival behaviors and related processes. Complementary behavioral data demonstrate that all facets of "survival" are coordinated by the hypocretinergic system and that hypocretinergic directives are not promulgated except during survival behaviors. Importantly, it has been shown that survival behaviors are selectively impacted when the hypocretinergic system is impaired or rendered nonfunctional, whereas other behaviors are relatively unaffected. The Unified Hypocretinergic Survival Theory resolves the disparate, perplexing, and often paradoxical-appearing results of previous studies; it also provides a foundation for future hypothesis-driven basic science and clinical explorations of the hypocretinergic system.
Collapse
Affiliation(s)
- Michael H Chase
- WebSciences International, Veterans Affairs-Greater Los Angeles Healthcare System, University of California, Los Angeles School of Medicine, Los Angeles, California
| |
Collapse
|
11
|
Vanini G, Baghdoyan HA. Extrasynaptic GABAA receptors in rat pontine reticular formation increase wakefulness. Sleep 2013; 36:337-43. [PMID: 23450652 DOI: 10.5665/sleep.2444] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Gamma-aminobutyric acid (GABA) causes phasic inhibition via synaptic GABAA receptors and tonic inhibition via extrasynaptic GABAA receptors. GABA levels in the extracellular space regulate arousal state and cognition by volume transmission via extrasynaptic GABAA receptors. GABAergic transmission in the pontine reticular formation promotes wakefulness. No previous studies have determined whether an agonist at extrasynaptic GABAA receptors administered into the pontine reticular formation alters sleep and wakefulness. Therefore, this study used gaboxadol (THIP; agonist at extrasynaptic GABAA receptors that contain a δ subunit) to test the hypothesis that extrasynaptic GABAA receptors within the pontine reticular formation modulate sleep and wakefulness. DESIGN Within/between subjects. SETTING University of Michigan. PATIENTS OR PARTICIPANTS Adult male Crl:CD*(SD) (Sprague-Dawley) rats (n = 10). INTERVENTIONS Microinjection of gaboxadol, the nonsubtype selective GABAA receptor agonist muscimol (positive control), and saline (negative control) into the rostral pontine reticular formation. MEASUREMENTS AND RESULTS Gaboxadol significantly increased wakefulness and decreased both nonrapid eye movement sleep and rapid eye movement sleep in a concentration-dependent manner. Relative to saline, gaboxadol did not alter electroencephalogram power. Microinjection of muscimol into the pontine reticular formation of the same rats that received gaboxadol increased wakefulness and decreased sleep. CONCLUSION Tonic inhibition via extrasynaptic GABAA receptors that contain a δ subunit may be one mechanism by which the extracellular pool of endogenous GABA in the rostral pontine reticular formation promotes wakefulness. CITATION Vanini G; Baghdoyan HA. Extrasynaptic GABAA receptors in rat pontine reticular formation increase wakefulness. SLEEP 2013;36(3):337-343.
Collapse
Affiliation(s)
- Giancarlo Vanini
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48109-5615, USA.
| | | |
Collapse
|
12
|
Torterolo P, Sampogna S, Chase MH. Hypocretinergic and non-hypocretinergic projections from the hypothalamus to the REM sleep executive area of the pons. Brain Res 2013; 1491:68-77. [PMID: 23122879 PMCID: PMC3529971 DOI: 10.1016/j.brainres.2012.10.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/19/2012] [Accepted: 10/25/2012] [Indexed: 12/28/2022]
Abstract
Within the postero-lateral hypothalamus neurons that utilize hypocretin or melanin-concentrating hormone (MCH) as neuromodulators are co-distributed. These neurons have been involved in the control of behavioral states, and a deficit in the hypocretinergic system is the pathogenic basis of narcolepsy with cataplexy. In this report, utilizing immunohistochemistry and retrograde tracing techniques, we examined the hypocretinergic innervation of the nucleus pontis oralis (NPO), which is the executive site that is responsible for the generation of REM sleep in the cat. The retrograde tracer cholera toxin subunit b (CTb) was administered in pontine regions where carbachol microinjections induced REM sleep. Utilizing immunohistochemical techniques, we found that approximately 1% of hypocretinergic neurons in the tuberal area of the hypothalamus project to the NPO. In addition, approximately 6% of all CTb+ neurons in this region were hypocretinergic. The hypocretinergic innervation of the NPO was also compared with the innervation of the same site by MCH-containing neurons. More than three times as many MCHergic neurons were found to project to the NPO compared with hypocretinergic cells; both neuronal types exhibited bilateral projections. We also identified a group of non-hypocretinergic non-MCHergic neuronal group of neurons that were intermingled with both hypocretinergic and MCHergic neurons that also projected to this same brainstem region. These neurons were grater in number that either hypocretin or MCH-containing neurons; their soma size was also smaller and their projections were mainly ipsilateral. The present anatomical data suggest that hypocretinergic, MCHergic and an unidentified companion group of neurons of the postero-lateral hypothalamus participate in the regulation of the neuronal activity of NPO neurons, and therefore, are likely to participate in the control of wakefulness and REM sleep.
Collapse
Affiliation(s)
- Pablo Torterolo
- Laboratorio de Neurobiología del Sueño, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, General Flores 2125, Montevideo, Uruguay.
| | | | | |
Collapse
|
13
|
Abstract
Anesthetics have been used in clinical practice for over a hundred years, yet their mechanisms of action remain poorly understood. One tempting hypothesis to explain their hypnotic properties posits that anesthetics exert a component of their effects by "hijacking" the endogenous arousal circuitry of the brain. Modulation of activity within sleep- and wake-related neuroanatomic systems could thus explain some of the varied effects produced by anesthetics. There has been a recent explosion of research into the neuroanatomic substrates affected by various anesthetics. In this review, we will highlight the relevant sleep architecture and systems and focus on studies over the past few years that implicate these sleep-related structures as targets of anesthetics. These studies highlight a promising area of investigation regarding the mechanisms of action of anesthetics and provide an important model for future study.
Collapse
|
14
|
Vanini G, Lydic R, Baghdoyan HA. GABA-to-ACh ratio in basal forebrain and cerebral cortex varies significantly during sleep. Sleep 2012; 35:1325-34. [PMID: 23024430 DOI: 10.5665/sleep.2106] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES GABAergic and cholinergic transmission within the basal forebrain and cerebral cortex contribute to the regulation of sleep and wakefulness. In contrast to levels of acetylcholine (ACh), levels of endogenous GABA in basal forebrain and cortex during sleep and wakefulness have not previously been quantified. This study (1) tested the hypothesis that there are differential, state-specific changes in GABA levels within the substantia innominata (SI) region of the basal forebrain and somatosensory cortex; and (2) quantified the ratio of GABAergic to cholinergic transmission in the SI, cortex, and pontine reticular formation during rapid eye movement sleep (REM), non-REM sleep (NREM), and wakefulness. DESIGN Within/between subjects. SETTING University of Michigan. PATIENTS OR PARTICIPANTS Adult, male, purpose bred cats (n = 5). INTERVENTIONS In vivo microdialysis, high performance liquid chromatography, electrophysiological recordings. MEASUREMENTS AND RESULTS In the SI, GABA levels were significantly greater during NREM (17%) than during REM. In the cortex, GABA levels were significantly greater during NREM than during wakefulness (39%) and REM (63%). During prolonged wakefulness, there was a linear increase in cortical GABA levels, and the amount of time spent awake accounted for 87% of the variance in GABA. The GABA-to-ACh ratio was largest during NREM for all brain regions. REM was characterized by a 68% decrease in the GABA-to-ACh ratio across brain regions, always due to a decrease in GABA levels. CONCLUSION Three of the brain regions that comprise the anatomically distributed, sleep-generating network have in common a GABA-mediated, sleep-dependent decrease in the GABA-to-ACh ratio.
Collapse
Affiliation(s)
- Giancarlo Vanini
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
15
|
Abstract
The development of sedative/hypnotic molecules has been empiric rather than rational. The empiric approach has produced clinically useful drugs but for no drug is the mechanism of action completely understood. All available sedative/hypnotic medications have unwanted side effects and none of these medications creates a sleep architecture that is identical to the architecture of naturally occurring sleep. This chapter reviews recent advances in research aiming to elucidate the neurochemical mechanisms regulating sleep and wakefulness. One promise of rational drug design is that understanding the mechanisms of sedative/hypnotic action will significantly enhance drug safety and efficacy.
Collapse
|
16
|
Abstract
This review summarizes the brain mechanisms controlling sleep and wakefulness. Wakefulness promoting systems cause low-voltage, fast activity in the electroencephalogram (EEG). Multiple interacting neurotransmitter systems in the brain stem, hypothalamus, and basal forebrain converge onto common effector systems in the thalamus and cortex. Sleep results from the inhibition of wake-promoting systems by homeostatic sleep factors such as adenosine and nitric oxide and GABAergic neurons in the preoptic area of the hypothalamus, resulting in large-amplitude, slow EEG oscillations. Local, activity-dependent factors modulate the amplitude and frequency of cortical slow oscillations. Non-rapid-eye-movement (NREM) sleep results in conservation of brain energy and facilitates memory consolidation through the modulation of synaptic weights. Rapid-eye-movement (REM) sleep results from the interaction of brain stem cholinergic, aminergic, and GABAergic neurons which control the activity of glutamatergic reticular formation neurons leading to REM sleep phenomena such as muscle atonia, REMs, dreaming, and cortical activation. Strong activation of limbic regions during REM sleep suggests a role in regulation of emotion. Genetic studies suggest that brain mechanisms controlling waking and NREM sleep are strongly conserved throughout evolution, underscoring their enormous importance for brain function. Sleep disruption interferes with the normal restorative functions of NREM and REM sleep, resulting in disruptions of breathing and cardiovascular function, changes in emotional reactivity, and cognitive impairments in attention, memory, and decision making.
Collapse
Affiliation(s)
- Ritchie E Brown
- Laboratory of Neuroscience, VA Boston Healthcare System and Harvard Medical School, Brockton, Massachusetts 02301, USA
| | | | | | | | | |
Collapse
|
17
|
Activation of inactivation process initiates rapid eye movement sleep. Prog Neurobiol 2012; 97:259-76. [PMID: 22521402 DOI: 10.1016/j.pneurobio.2012.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 04/01/2012] [Accepted: 04/02/2012] [Indexed: 02/07/2023]
Abstract
Interactions among REM-ON and REM-OFF neurons form the basic scaffold for rapid eye movement sleep (REMS) regulation; however, precise mechanism of their activation and cessation, respectively, was unclear. Locus coeruleus (LC) noradrenalin (NA)-ergic neurons are REM-OFF type and receive GABA-ergic inputs among others. GABA acts postsynaptically on the NA-ergic REM-OFF neurons in the LC and presynaptically on the latter's projection terminals and modulates NA-release on the REM-ON neurons. Normally during wakefulness and non-REMS continuous release of NA from the REM-OFF neurons, which however, is reduced during the latter phase, inhibits the REM-ON neurons and prevents REMS. At this stage GABA from substantia nigra pars reticulate acting presynaptically on NA-ergic terminals on REM-ON neurons withdraws NA-release causing the REM-ON neurons to escape inhibition and being active, may be even momentarily. A working-model showing neurochemical-map explaining activation of inactivation process, showing contribution of GABA-ergic presynaptic inhibition in withdrawing NA-release and dis-inhibition induced activation of REM-ON neurons, which in turn activates other GABA-ergic neurons and shutting-off REM-OFF neurons for the initiation of REMS-generation has been explained. Our model satisfactorily explains yet unexplained puzzles (i) why normally REMS does not appear during waking, rather, appears following non-REMS; (ii) why cessation of LC-NA-ergic-REM-OFF neurons is essential for REMS-generation; (iii) factor(s) which does not allow cessation of REM-OFF neurons causes REMS-loss; (iv) the association of changes in levels of GABA and NA in the brain during REMS and its deprivation and associated symptoms; v) why often dreams are associated with REMS.
Collapse
|
18
|
Abstracts presented at the 8th International Symposium on Memory and Awareness in Anesthesia (MAA8). Br J Anaesth 2012. [DOI: 10.1093/bja/aer442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
19
|
Buprenorphine disrupts sleep and decreases adenosine concentrations in sleep-regulating brain regions of Sprague Dawley rat. Anesthesiology 2011; 115:743-53. [PMID: 21857500 DOI: 10.1097/aln.0b013e31822e9f85] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Buprenorphine, a partial μ-opioid receptor agonist and κ-opioid receptor antagonist, is an effective analgesic. The effects of buprenorphine on sleep have not been well characterized. This study tested the hypothesis that an antinociceptive dose of buprenorphine decreases sleep and decreases adenosine concentrations in regions of the basal forebrain and pontine brainstem that regulate sleep. METHODS Male Sprague Dawley rats were implanted with intravenous catheters and electrodes for recording states of wakefulness and sleep. Buprenorphine (1 mg/kg) was administered systemically via an indwelling catheter and sleep-wake states were recorded for 24 h. In additional rats, buprenorphine was delivered by microdialysis to the pontine reticular formation and substantia innominata of the basal forebrain while adenosine was simultaneously measured. RESULTS An antinociceptive dose of buprenorphine caused a significant increase in wakefulness (25.2%) and a decrease in nonrapid eye movement sleep (-22.1%) and rapid eye movement sleep (-3.1%). Buprenorphine also increased electroencephalographic delta power during nonrapid eye movement sleep. Coadministration of the sedative-hypnotic eszopiclone diminished the buprenorphine-induced decrease in sleep. Dialysis delivery of buprenorphine significantly decreased adenosine concentrations in the pontine reticular formation (-14.6%) and substantia innominata (-36.7%). Intravenous administration of buprenorphine significantly decreased (-20%) adenosine in the substantia innominata. CONCLUSIONS Buprenorphine significantly increased time spent awake, decreased nonrapid eye movement sleep, and increased latency to sleep onset. These disruptions in sleep architecture were mitigated by coadministration of the nonbenzodiazepine sedative-hypnotic eszopiclone. The buprenorphine-induced decrease in adenosine concentrations in basal forebrain and pontine reticular formation is consistent with the interpretation that decreasing adenosine in sleep-regulating brain regions is one mechanism by which opioids disrupt sleep.
Collapse
|
20
|
Effects of intranasal hypocretin-1 (orexin A) on sleep in narcolepsy with cataplexy. Sleep Med 2011; 12:941-6. [PMID: 22036605 DOI: 10.1016/j.sleep.2011.06.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 06/17/2011] [Accepted: 06/29/2011] [Indexed: 01/11/2023]
Abstract
BACKGROUND The neuropeptides hypocretin-1 and -2 (hcrt-1 and -2, also known as orexin A and B) are crucially involved in the regulation of sleep/wake states. On the one hand, the sleep-wake disorder narcolepsy can be caused by an hcrt-1 deficiency. On the other, intracerebral administration of hcrt-1 produces an increase in wakefulness at the expense of REM sleep in normal and narcoleptic animals. In humans intranasal administration has been shown to effectively deliver neuropeptides directly to the central nervous system. We hypothesised that the intranasal application of hcrt-1 increases wakefulness and reduces REM sleep in the natural human hcrt-1 deficiency narcolepsy with cataplexy. METHODS In this double-blind, random-order crossover, placebo-controlled, within-subject design study we administered human recombinant hcrt-1 (435 nmol) intranasally to eight subjects with narcolepsy with cataplexy before night sleep, followed by standard polysomnography. RESULTS Although intranasal administration of hcrt-1 had no statistically significant effect on nocturnal wakefulness, we found that it reduced REM sleep quantity, particularly during the second half of the recording. Furthermore, intranasal hcrt-1 had a clear REM sleep stabilising effect and led to significantly reduced direct wake to REM transitions. CONCLUSION In this pilot study we found, first, evidence that the intranasal administration of hcrt-1 has functional effects on sleep in narcolepsy with cataplexy. Our results may encourage the use of the intranasal approach in further studies on hypocretinergic sleep regulation and might also contribute to the future development of a causal treatment for narcolepsy with cataplexy.
Collapse
|
21
|
Watson CJ, Lydic R, Baghdoyan HA. Sleep duration varies as a function of glutamate and GABA in rat pontine reticular formation. J Neurochem 2011; 118:571-80. [PMID: 21679185 DOI: 10.1111/j.1471-4159.2011.07350.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The oral part of the pontine reticular formation (PnO) is a component of the ascending reticular activating system and plays a role in the regulation of sleep and wakefulness. The PnO receives glutamatergic and GABAergic projections from many brain regions that regulate behavioral state. Indirect, pharmacological evidence has suggested that glutamatergic and GABAergic signaling within the PnO alters traits that characterize wakefulness and sleep. No previous studies have simultaneously measured endogenous glutamate and GABA from rat PnO in relation to sleep and wakefulness. The present study utilized in vivo microdialysis coupled on-line to capillary electrophoresis with laser-induced fluorescence to test the hypothesis that concentrations of glutamate and GABA in the PnO vary across the sleep/wake cycle. Concentrations of glutamate and GABA were significantly higher during wakefulness than during non-rapid eye movement sleep and rapid eye movement sleep. Regression analysis revealed that decreases in glutamate and GABA accounted for a significant portion of the variance in the duration of non-rapid eye movement sleep and rapid eye movement sleep episodes. These data provide novel support for the hypothesis that endogenous glutamate and GABA in the PnO contribute to the regulation of sleep duration.
Collapse
Affiliation(s)
- Christopher J Watson
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan 48109-5615, USA.
| | | | | |
Collapse
|
22
|
Endogenous GABA levels in the pontine reticular formation are greater during wakefulness than during rapid eye movement sleep. J Neurosci 2011; 31:2649-56. [PMID: 21325533 DOI: 10.1523/jneurosci.5674-10.2011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Studies using drugs that increase or decrease GABAergic transmission suggest that GABA in the pontine reticular formation (PRF) promotes wakefulness and inhibits rapid eye movement (REM) sleep. Cholinergic transmission in the PRF promotes REM sleep, and levels of endogenous acetylcholine (ACh) in the PRF are significantly greater during REM sleep than during wakefulness or non-REM (NREM) sleep. No previous studies have determined whether levels of endogenous GABA in the PRF vary as a function of sleep and wakefulness. This study tested the hypothesis that GABA levels in cat PRF are greatest during wakefulness and lowest during REM sleep. Extracellular GABA levels were measured during wakefulness, NREM sleep, REM sleep, and the REM sleep-like state (REM(Neo)) caused by microinjecting neostigmine into the PRF. GABA levels varied significantly as a function of sleep and wakefulness, and decreased significantly below waking levels during REM sleep (-42%) and REM(Neo) (-63%). The decrease in GABA levels during NREM sleep (22% below waking levels) was not statistically significant. Compared with NREM sleep, GABA levels decreased significantly during REM sleep (-27%) and REM(Neo) (-52%). Comparisons of REM sleep and REM(Neo) revealed no differences in GABA levels or cortical EEG power. GABA levels did not vary significantly as a function of dialysis site within the PRF. The inverse relationship between changes in PRF levels of GABA and ACh during REM sleep indicates that low GABAergic tone combined with high cholinergic tone in the PRF contributes to the generation of REM sleep.
Collapse
|
23
|
Xi M, Chase MH. The injection of hypocretin-1 into the nucleus pontis oralis induces either active sleep or wakefulness depending on the behavioral state when it is administered. Sleep 2010; 33:1236-43. [PMID: 20857871 DOI: 10.1093/sleep/33.9.1236] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
STUDY OBJECTIVES We previously reported that the microinjection of hypocretin (orexin) into the nucleus pontis oralis (NPO) induces a behavioral state that is comparable to naturally occurring active (rapid eye movement) sleep. However, other laboratories have found that wakefulness occurs following injections of hypocretin into the NPO. The present study tested the hypothesis that the discrepancy in behavioral state responses to hypocretin injections is due to the fact that hypocretin was not administered during the same states of sleep or wakefulness. DESIGN Adult cats were implanted with electrodes to record sleep and waking states. Hypocretin-1 (0.25 microL, 500microM) was microinjected into the NPO while the animals were awake or in quiet (non-rapid eye movement) sleep. MEASUREMENTS AND RESULTS When hyprocretin-1 was microinjected into the NPO during quiet sleep, active sleep occurred with a short latency. In addition, there was a significant increase in the time spent in active sleep and in the number of episodes of this state. On the other hand, the injection of hyprocretin-1 during wakefulness resulted not only in a significant increase in wakefulness, but also in a decrease in the percentage and frequency of episodes of active sleep. CONCLUSIONS The present data demonstrate that the behavioral state of the animal dictates whether active sleep or wakefulness is induced following the injection of hypocretin. Therefore, we suggest that hypocretin-1 enhances ongoing states of wakefulness and their accompanying patterns of physiologic activity and that hypocretin-1 is also capable of promoting active sleep and the changes in various processes that occur during this state.
Collapse
Affiliation(s)
- Mingchu Xi
- WebSciences International, Los Angeles, CA 90024, USA.
| | | |
Collapse
|
24
|
Brevig HN, Watson CJ, Lydic R, Baghdoyan HA. Hypocretin and GABA interact in the pontine reticular formation to increase wakefulness. Sleep 2010; 33:1285-93. [PMID: 21061850 DOI: 10.1093/sleep/33.10.1285] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
STUDY OBJECTIVES Hypocretin-1/orexin A administered directly into the oral part of rat pontine reticular formation (PnO) causes an increase in wakefulness and extracellular gamma-aminobutyric acid (GABA) levels. The receptors in the PnO that mediate these effects have not been identified. Therefore, this study tested the hypothesis that the increase in wakefulness caused by administration of hypocretin-1 into the PnO occurs via activation of GABAA receptors and hypocretin receptors. DESIGN Within/between subjects. SETTING University of Michigan. PATIENTS OR PARTICIPANTS Twenty-three adult male Crl:CD*(SD) (Sprague Dawley) rats. INTERVENTIONS Microinjection of hypocretin-1, bicuculline (GABAA receptor antagonist), SB-334867 (hypocretin receptor-1 antagonist), and Ringer solution (vehicle control) into the PnO. MEASUREMENTS AND RESULTS Hypocretin-1 caused a significant concentration-dependent increase in wakefulness and decrease in rapid eye movement (REM) sleep and non-REM (NREM) sleep. Coadministration of SB-334867 and hypocretin-1 blocked the hypocretin-1-induced increase in wakefulness and decrease in both the NREM and REM phases of sleep. Coadministration of bicuculline and hypocretin-1 blocked the hypocretin-1-induced increase in wakefulness and decrease in NREM sleep caused by hypocretin-1. CONCLUSION The increase in wakefulness caused by administering hypocretin-1 to the PnO is mediated by hypocretin receptors and GABAA receptors in the PnO. These results show for the first time that hypocretinergic and GABAergic transmission in the PnO can interact to promote wakefulness.
Collapse
Affiliation(s)
- Holly N Brevig
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48109-5615, USA
| | | | | | | |
Collapse
|
25
|
Abstract
The development of sedative/hypnotic molecules has been empiric rather than rational. The empiric approach has produced clinically useful drugs but for no drug is the mechanism of action completely understood. All available sedative/hypnotic medications have unwanted side effects and none of these medications creates a sleep architecture that is identical to the architecture of naturally occurring sleep. This chapter reviews recent advances in research aiming to elucidate the neurochemical mechanisms regulating sleep and wakefulness. One promise of rational drug design is that understanding the mechanisms of sedative/hypnotic action will significantly enhance drug safety and efficacy.
Collapse
|
26
|
Muncey AR, Saulles AR, Koch LG, Britton SL, Baghdoyan HA, Lydic R. Disrupted sleep and delayed recovery from chronic peripheral neuropathy are distinct phenotypes in a rat model of metabolic syndrome. Anesthesiology 2010; 113:1176-85. [PMID: 20938334 PMCID: PMC2962768 DOI: 10.1097/aln.0b013e3181f56248] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Sleep apnea, hypertension, atherosclerosis, and obesity are features of metabolic syndrome associated with decreased restorative sleep and increased pain. These traits are relevant for anesthesiology because they confer increased risks of a negative anesthetic outcome. This study tested the one-tailed hypothesis that rats bred for low intrinsic aerobic capacity have enhanced nociception and disordered sleep. METHODS Rats were developed from a breeding strategy that selected for low aerobic capacity runners (LCR) and high aerobic capacity runners (HCR). Four phenotypes were quantified. Rats underwent von Frey sensory testing (n = 12), thermal nociceptive testing (n = 12), electrographic recordings of sleep and wakefulness (n = 16), and thermal nociceptive testing (n = 14) before and for 6 weeks after a unilateral chronic neuropathy of the sciatic nerve. RESULTS Paw withdrawal latency to a thermal nociceptive stimulus was significantly (P < 0.01) lower in LCR than HCR rats. There were also significant differences in sleep, with LCR rats spending significantly (P < 0.01) more time awake (18%) and less time in nonrapid eye movement sleep (-19%) than HCR rats. Nonrapid eye movement sleep episodes were of shorter duration (-34%) in LCR than HCR rats. Rapid eye movement sleep of LCR rats was significantly more fragmented than rapid eye movement sleep of HCR rats. LCR rats required 2 weeks longer than HCR rats to recover from peripheral neuropathy. CONCLUSIONS Rodents with low aerobic capacity exhibit features homologous to human metabolic syndrome. This rodent model offers a novel tool for characterizing the mechanisms through which low aerobic function and obesity might confer increased risks for anesthesia.
Collapse
Affiliation(s)
- Aaron R Muncey
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | |
Collapse
|
27
|
GABA(A) receptors in the pontine reticular formation of C57BL/6J mouse modulate neurochemical, electrographic, and behavioral phenotypes of wakefulness. J Neurosci 2010; 30:12301-9. [PMID: 20844126 DOI: 10.1523/jneurosci.1119-10.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Drugs that potentiate transmission at GABA(A) receptors are widely used to enhance sleep and to cause general anesthesia. The mechanisms underlying these effects are unknown. This study tested the hypothesis that GABA(A) receptors in the pontine reticular nucleus, oral part (PnO) of mouse modulate five phenotypes of arousal: sleep and wakefulness, cortical electroencephalogram (EEG) activity, acetylcholine (ACh) release in the PnO, breathing, and recovery time from general anesthesia. Microinjections into the PnO of saline (vehicle control), the GABA(A) receptor agonist muscimol, muscimol with the GABA(A) receptor antagonist bicuculline, and bicuculline alone were performed in male C57BL/6J mice (n = 33) implanted with EEG recording electrodes. Muscimol caused a significant increase in wakefulness and decrease in rapid eye movement (REM) and non-REM (NREM) sleep. These effects were reversed by coadministration of bicuculline. Bicuculline administered alone caused a significant decrease in wakefulness and increase in NREM sleep and REM sleep. Muscimol significantly increased EEG power in the delta range (0.5-4 Hz) during wakefulness and in the theta range (4-9 Hz) during REM sleep. Dialysis delivery of bicuculline to the PnO of male mice (n = 18) anesthetized with isoflurane significantly increased ACh release in the PnO, decreased breathing rate, and increased anesthesia recovery time. All drug effects were concentration dependent. The effects on phenotypes of arousal support the conclusion that GABA(A) receptors in the PnO promote wakefulness and suggest that increasing GABAergic transmission in the PnO may be one mechanism underlying the phenomenon of paradoxical behavioral activation by some benzodiazepines.
Collapse
|
28
|
Hambrecht-Wiedbusch VS, Gauthier EA, Baghdoyan HA, Lydic R. Benzodiazepine receptor agonists cause drug-specific and state-specific alterations in EEG power and acetylcholine release in rat pontine reticular formation. Sleep 2010; 33:909-18. [PMID: 20614851 PMCID: PMC2894433 DOI: 10.1093/sleep/33.7.909] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES Benzodiazepine (BDZ) and non-benzodiazepine (NBDZ) hypnotics enhance GABAergic transmission and are widely used for the treatment of insomnia. In the pontine reticular formation (PRF), GABA inhibits rapid eye movement (REM) sleep and acetylcholine (ACh) release. No previous studies have characterized the effects of BDZ and NBDZ hypnotics on ACh release in the PRF. This study tested 2 hypotheses: (1) that microdialysis delivery of zolpidem, eszopiclone, and diazepam to rat PRF alters ACh release in PRF and electroencephalographic (EEG) delta power and (2) that intravenous (i.v.) administration of eszopiclone to non-anesthetized rat alters ACh release in the PRF, sleep, and EEG delta power. DESIGN A within- and between-groups experimental design. SETTING University of Michigan. PATIENTS OR PARTICIPANTS Adult male Crl:CD*(SD) (Sprague-Dawley) rats (n = 57). INTERVENTIONS In vivo microdialysis of the PRF in rats anesthetized with isoflurane was used to derive the concentration-response effects of zolpidem, eszopiclone, and diazepam on ACh release. Chronically instrumented rats were used to quantify the effects of eszopiclone (3 mg/kg, i.v.) on ACh release in the PRF, sleep-wake states, and cortical EEG power. MEASUREMENTS AND RESULTS ACh release was significantly increased by microdialysis delivery to the PRF of zolpidem and eszopiclone but not diazepam. EEG delta power was increased by zolpidem and diazepam but not by eszopiclone administered to the PRF. Eszopiclone (i.v.) decreased ACh release in the PRF of both anesthetized and non-anesthetized rats. Eszopiclone (i.v.) prevented REM sleep and increased EEG delta power. CONCLUSION The concentration-response data provide the first functional evidence that multiple GABA(A) receptor subtypes are present in rat PRF. Intravenously administered eszopiclone prevented REM sleep, decreased ACh release in the PRF, and increased EEG delta power. The effects of eszopiclone are consistent with evidence that ACh release in the PRF is lower during NREM sleep than during REM sleep, and with data showing that cholinergic stimulation of the PRF activates the cortical EEG.
Collapse
Affiliation(s)
| | | | - Helen A. Baghdoyan
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
| | - Ralph Lydic
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
29
|
Nuñez A, Rodrigo-Angulo ML, Andrés ID, Garzón M. Hypocretin/Orexin neuropeptides: participation in the control of sleep-wakefulness cycle and energy homeostasis. Curr Neuropharmacol 2010; 7:50-9. [PMID: 19721817 PMCID: PMC2724663 DOI: 10.2174/157015909787602797] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 08/19/2008] [Accepted: 09/17/2008] [Indexed: 11/28/2022] Open
Abstract
Hypocretins or orexins (Hcrt/Orx) are hypothalamic neuropeptides that are synthesized by neurons located mainly in the perifornical area of the posterolateral hypothalamus. These hypothalamic neurons are the origin of an extensive and divergent projection system innervating numerous structures of the central nervous system. In recent years it has become clear that these neuropeptides are involved in the regulation of many organic functions, such as feeding, thermoregulation and neuroendocrine and cardiovascular control, as well as in the control of the sleep-wakefulness cycle. In this respect, Hcrt/Orx activate two subtypes of G protein-coupled receptors (Hcrt/Orx1R and Hcrt/Orx2R) that show a partly segregated and prominent distribution in neural structures involved in sleep-wakefulness regulation. Wakefulness-enhancing and/or sleep-suppressing actions of Hcrt/Orx have been reported in specific areas of the brainstem. Moreover, presently there are animal models of human narcolepsy consisting in modifications of Hcrt/Orx receptors or absence of these peptides. This strongly suggests that narcolepsy is the direct consequence of a hypofunction of the Hcrt/Orx system, which is most likely due to Hcrt/Orx neurons degeneration. The main focus of this review is to update and illustrate the available data on the actions of Hcrt/Orx neuropeptides with special interest in their participation in the control of the sleep-wakefulness cycle and the regulation of energy homeostasis. Current pharmacological treatment of narcolepsy is also discussed.
Collapse
Affiliation(s)
- A Nuñez
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.
| | | | | | | |
Collapse
|
30
|
Adamantidis A, Carter MC, de Lecea L. Optogenetic deconstruction of sleep-wake circuitry in the brain. Front Mol Neurosci 2010; 2:31. [PMID: 20126433 PMCID: PMC2814554 DOI: 10.3389/neuro.02.031.2009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 12/18/2009] [Indexed: 02/04/2023] Open
Abstract
How does the brain regulate the sleep–wake cycle? What are the temporal codes of sleep and wake-promoting neural circuits? How do these circuits interact with each other across the light/dark cycle? Over the past few decades, many studies from a variety of disciplines have made substantial progress in answering these fundamental questions. For example, neurobiologists have identified multiple, redundant wake-promoting circuits in the brainstem, hypothalamus, and basal forebrain. Sleep-promoting circuits have been found in the preoptic area and hypothalamus. One of the greatest challenges in recent years has been to selectively record and manipulate these sleep–wake centers in vivo with high spatial and temporal resolution. Recent developments in microbial opsin-based neuromodulation tools, collectively referred to as “optogenetics,” have provided a novel method to demonstrate causal links between neural activity and specific behaviors. Here, we propose to use optogenetics as a fundamental tool to probe the necessity, sufficiency, and connectivity of defined neural circuits in the regulation of sleep and wakefulness.
Collapse
Affiliation(s)
- Antoine Adamantidis
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine Palo Alto, CA, USA
| | | | | |
Collapse
|
31
|
Watson SL, Watson CJ, Baghdoyan HA, Lydic R. Thermal nociception is decreased by hypocretin-1 and an adenosine A1 receptor agonist microinjected into the pontine reticular formation of Sprague Dawley rat. THE JOURNAL OF PAIN 2009; 11:535-44. [PMID: 20015707 DOI: 10.1016/j.jpain.2009.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 08/31/2009] [Accepted: 09/18/2009] [Indexed: 10/20/2022]
Abstract
UNLABELLED Clinical and preclinical data concur that sleep disruption causes hyperalgesia, but the brain mechanisms through which sleep and pain interact remain poorly understood. Evidence that pontine components of the ascending reticular activating system modulate sleep and nociception encouraged the present study testing the hypothesis that hypocretin-1 (orexin-A) and an adenosine receptor agonist administered into the pontine reticular nucleus, oral part (PnO) each alter thermal nociception. Adult male rats (n = 23) were implanted with microinjection guide tubes aimed for the PnO. The PnO was microinjected with saline (control), hypocretin-1, the adenosine A(1) receptor agonist N(6)-p-sulfophenyladenosine (SPA), the hypocretin receptor-1 antagonist N-(2-Methyl-6-benzoxazolyl)-N''-1,5-naphthyridin-4-yl-urea (SB-334867), and hypocretin-1 plus SB-334867. As an index of antinociceptive behavior, the latency (in seconds) to paw withdrawal away from a thermal stimulus was measured following each microinjection. Compared to control, antinociception was significantly increased by hypocretin-1 and by SPA. SB-334867 increased nociceptive responsiveness, and administration of hypocretin-1 plus SB-334867 blocked the antinociception caused by hypocretin-1. These results suggest for the first time that hypocretin receptors in rat PnO modulate nociception. PERSPECTIVE Widely distributed and overlapping neural networks regulate states of sleep and pain. Specifying the brain regions and neurotransmitters through which pain and sleep interact is an essential step for developing adjunctive therapies that diminish pain without disrupting states of sleep and wakefulness.
Collapse
Affiliation(s)
- Sarah L Watson
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan 48109-5615, USA
| | | | | | | |
Collapse
|
32
|
Liang CL, Marks GA. A novel GABAergic afferent input to the pontine reticular formation: the mesopontine GABAergic column. Brain Res 2009; 1297:32-40. [PMID: 19699725 DOI: 10.1016/j.brainres.2009.08.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 08/12/2009] [Accepted: 08/13/2009] [Indexed: 11/18/2022]
Abstract
Pharmacological manipulations of gamma-aminobutyric acid (GABA) neurotransmission in the nucleus pontis oralis (PnO) of the rat brainstem produce alterations in sleep/wake behavior. Local applications of GABA(A) receptor antagonists and agonists increase REM sleep and wake, respectively. These findings support a role for GABAergic mechanisms of the PnO in the control of arousal state. We have been investigating sources of GABA innervation of the PnO that may interact with local GABA(A) receptors in the control of state. Utilizing a retrograde tracer, cholera toxin-B subunit (CTb), injected into the PnO and dual-label immunohistochemistry with an antibody against glutamic acid decarboxalase-67 (GAD67), we report on a previously unidentified GABAergic neuronal population projecting to the contralateral PnO appearing as a column of cells, with long-axis in the sagittal plane, extending through the midbrain and pons. We refer to these neurons as the mesopontine GABAergic column (MPGC). The contiguous, columnar, anatomical distribution suggests operation as a functional neural system, which may influence expression of REM sleep, wake and other behaviors subserved by the PnO.
Collapse
Affiliation(s)
- Chang-Lin Liang
- Department of Veterans Affairs North Texas Health Care System, University of Texas Southwestern Medical Center, Dallas, TX 75216, USA
| | | |
Collapse
|
33
|
Abstract
Brain stem structures are implicated in the generation of migraine and other types of headache. The patient described herein had chronic left hemicranial headaches associated with a left pontine infarction.
Collapse
Affiliation(s)
- D Friedman
- Departments of Ophthalmology and Neurology, University of Rochester, New York, USA.
| |
Collapse
|
34
|
Edgar CJ, Pace-Schott EF, Wesnes KA. Approaches to measuring the effects of wake-promoting drugs: a focus on cognitive function. Hum Psychopharmacol 2009; 24:371-89. [PMID: 19565524 PMCID: PMC2747813 DOI: 10.1002/hup.1034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVES In clinical drug development, wakefulness and wake-promotion may be assessed by a large number of scales and questionnaires. Objective assessment of wakefulness is most commonly made using sleep latency/maintenance of wakefulness tests, polysomnography and/or behavioral measures. The purpose of the present review is to highlight the degree of overlap in the assessment of wakefulness and cognition, with consideration of assessment techniques and the underlying neurobiology of both concepts. DESIGN Reviews of four key areas were conducted: commonly used techniques in the assessment of wakefulness; neurobiology of sleep/wake and cognition; targets of wake promoting and/or cognition enhancing drugs; and ongoing clinical trials investigating wake promoting effects. RESULTS There is clear overlap between the assessment of wakefulness and cognition. There are common techniques which may be used to assess both concepts; aspects of the neurobiology of both concepts may be closely related; and wake-promoting drugs may have nootropic properties (and vice versa). Clinical trials of wake-promoting drugs often, though not routinely, assess aspects of cognition. CONCLUSIONS Routine and broad assessment of cognition in the development of wake-promoting drugs may reveal important nootropic effects, which are not secondary to alertness/wakefulness, whilst existing cognitive enhancers may have underexplored or unknown wake promoting properties.
Collapse
Affiliation(s)
| | - Edward F. Pace-Schott
- Department of Psychiatry, Center for Sleep and Cognition, Harvard Medical School, Beth Israel-Deaconess Medical Center, Boston, Massachusetts, USA
| | | |
Collapse
|
35
|
Volgin DV, Malinowska M, Kubin L. Dorsomedial pontine neurons with descending projections to the medullary reticular formation express orexin-1 and adrenergic alpha2A receptor mRNA. Neurosci Lett 2009; 459:115-8. [PMID: 19427365 DOI: 10.1016/j.neulet.2009.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 05/02/2009] [Accepted: 05/05/2009] [Indexed: 01/13/2023]
Abstract
Neurons located in the dorsomedial pontine rapid eye movement (REM) sleep-triggering region send axons to the medial medullary reticular formation (mMRF). This pathway is believed to be important for the generation of REM sleep motor atonia, but other than that they are glutamatergic little is known about neurochemical signatures of these pontine neurons important for REM sleep. We used single-cell reverse transcription and polymerase chain reaction (RT-PCR) to determine whether dorsomedial pontine cells with projections to the mMRF express mRNA for selected membrane receptors that mediate modulatory influences on REM sleep. Fluorescein (FITC)-labeled latex microspheres were microinjected into the mMRF of 26-34-day-old rats under pentobarbital anesthesia. After 5-6 days, rats were sacrificed, pontine slices were obtained and neurons were dissociated from 400 to 600 microm micropunches extracted from dorsomedial pontine reticular formation. We found that 32 out of 51 FITC-labeled cells tested (63+/-7% (SE)) contained the orexin type 1 receptor (ORX1r) mRNA, 27 out of 73 (37+/-6%) contained the adrenergic alpha(2A) receptor (alpha(2A)r) RNA, and 6 out of 31 (19+/-7%) contained both mRNAs. The percentage of cells positive for the ORX1r mRNA was significantly lower (p<0.04) for the dorsomedial pontine cells that were not retrogradely labeled from the mMRF (32+/-11%), whereas alpha(2A)r mRNA was present in a similar percentage of FITC-labeled and unlabeled neurons. Our data suggest that ORX and adrenergic pathways converge on a subpopulation of cells of the pontine REM sleep-triggering region that have descending projections to the medullary region important for the motor control during REM sleep.
Collapse
Affiliation(s)
- Denys V Volgin
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
36
|
Vanini G, Watson CJ, Lydic R, Baghdoyan HA. Gamma-aminobutyric acid-mediated neurotransmission in the pontine reticular formation modulates hypnosis, immobility, and breathing during isoflurane anesthesia. Anesthesiology 2008; 109:978-88. [PMID: 19034094 DOI: 10.1097/aln.0b013e31818e3b1b] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Many general anesthetics are thought to produce a loss of wakefulness, in part, by enhancing gamma-aminobutyric acid (GABA) neurotransmission. However, GABAergic neurotransmission in the pontine reticular formation promotes wakefulness. This study tested the hypotheses that (1) relative to wakefulness, isoflurane decreases GABA levels in the pontine reticular formation; and (2) pontine reticular formation administration of drugs that increase or decrease GABA levels increases or decreases, respectively, isoflurane induction time. METHODS To test hypothesis 1, cats (n = 5) received a craniotomy and permanent electrodes for recording the electroencephalogram and electromyogram. Dialysis samples were collected from the pontine reticular formation during isoflurane anesthesia and wakefulness. GABA levels were quantified using high-performance liquid chromatography. For hypothesis 2, rats (n = 10) were implanted with a guide cannula aimed for the pontine reticular formation. Each rat received microinjections of Ringer's (vehicle control), the GABA uptake inhibitor nipecotic acid, and the GABA synthesis inhibitor 3-mercaptopropionic acid. Rats were then anesthetized with isoflurane, and induction time was quantified as loss of righting reflex. Breathing rate was also measured. RESULTS Relative to wakefulness, GABA levels were significantly decreased by isoflurane. Increased power in the electroencephalogram and decreased activity in the electromyogram caused by isoflurane covaried with pontine reticular formation GABA levels. Nipecotic acid and 3-mercaptopropionic acid significantly increased and decreased, respectively, isoflurane induction time. Nipecotic acid also increased breathing rate. CONCLUSION Decreasing pontine reticular formation GABA levels comprises one mechanism by which isoflurane causes loss of consciousness, altered cortical excitability, muscular hypotonia, and decreased respiratory rate.
Collapse
Affiliation(s)
- Giancarlo Vanini
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
37
|
|
38
|
Moreno-Balandrn E, Garzn M, Bdalo C, Reinoso-Surez F, de Andrs I. Sleep-wakefulness effects after microinjections of hypocretin 1 (orexin A) in cholinoceptive areas of the cat oral pontine tegmentum. Eur J Neurosci 2008; 28:331-41. [DOI: 10.1111/j.1460-9568.2008.06334.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|