1
|
Zhao X, Chen PH, Chen J, Sun H. Manipulated overlapping reactivation of multiple memories promotes explicit gist abstraction. Neurobiol Learn Mem 2024; 213:107953. [PMID: 38950676 DOI: 10.1016/j.nlm.2024.107953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 05/19/2024] [Accepted: 06/14/2024] [Indexed: 07/03/2024]
Abstract
Sleep is considered to promote gist abstraction on the basis of spontaneous memory reactivation. As speculated in the theory of 'information overlap to abstract (iOtA)', 'overlap' between reactivated memories, beyond reactivation, is crucial to gist abstraction. Yet so far, empirical research has not tested this theory by manipulating the factor of 'overlap'. In the current study, 'overlap' itself was manipulated by targeted memory reactivation (TMR), through simultaneously reactivating multiple memories that either contain or do not contain spatially overlapped gist information, to investigate the effect of overlapping reactivation on gist abstraction. This study had a factorial design of 2 factors with 2 levels respectively (spatial overlap/no spatial overlap, TMR/no-TMR). Accordingly, 82 healthy college students (aged 19 ∼ 25, 57 females) were randomized into four groups. After learning 16 pictures, paired with 4 auditory cues (4 pictures - 1 cue) according to the grouping, participants were given a 90-minute nap opportunity. Then TMR cueing was conducted during N2 and slow wave sleep of the nap. Performance in memory task was used to measure gist abstraction. The results showed a significant main effect of TMR on both implicit and explicit gist abstraction, and a marginally significant interaction effect on explicit gist abstraction. Further analyses showed that explicit gist abstraction in the spatial overlap & TMR group was significantly better than in the control group. Moreover, explicit gist abstraction was positively correlated with spindle density. The current study thus indicates that TMR facilitates gist abstraction, and explicit gist abstraction may benefit more from overlapping reactivation.
Collapse
Affiliation(s)
- Xiaoxia Zhao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 51 HuayuanBei Road, Beijing 100191, China
| | - Po-Han Chen
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 51 HuayuanBei Road, Beijing 100191, China
| | - Jie Chen
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 51 HuayuanBei Road, Beijing 100191, China
| | - Hongqiang Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 51 HuayuanBei Road, Beijing 100191, China.
| |
Collapse
|
2
|
Bloxham A, Horton CL. Enhancing and advancing the understanding and study of dreaming and memory consolidation: Reflections, challenges, theoretical clarity, and methodological considerations. Conscious Cogn 2024; 123:103719. [PMID: 38941924 DOI: 10.1016/j.concog.2024.103719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 04/24/2024] [Accepted: 06/12/2024] [Indexed: 06/30/2024]
Abstract
Empirical investigations that search for a link between dreaming and sleep-dependent memory consolidation have focused on testing for an association between dreaming of what was learned, and improved memory performance for learned material. Empirical support for this is mixed, perhaps owing to the inherent challenges presented by the nature of dreams, and methodological inconsistencies. The purpose of this paper is to address critically prevalent assumptions and practices, with the aim of clarifying and enhancing research on this topic, chiefly by providing a theoretical synthesis of existing models and evidence. Also, it recommends the method of Targeted Memory Reactivation (TMR) as a means for investigating if dream content can be linked to specific cued activations. Other recommendations to enhance research practice and enquiry on this subject are also provided, focusing on the HOW and WHY we search for memory sources in dreams, and what purpose (if any) they might serve.
Collapse
Affiliation(s)
- Anthony Bloxham
- Nottingham Trent University, Nottingham, NG1 4FQ, United Kingdom.
| | | |
Collapse
|
3
|
Siefert E, Uppuluri S, Mu. J, Tandoc M, Antony J, Schapiro A. Memory reactivation during sleep does not act holistically on object memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.14.571683. [PMID: 38168451 PMCID: PMC10760132 DOI: 10.1101/2023.12.14.571683] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Memory reactivation during sleep is thought to facilitate memory consolidation. Most sleep reactivation research has examined how reactivation of specific facts, objects, and associations benefits their overall retention. However, our memories are not unitary, and not all features of a memory persist in tandem over time. Instead, our memories are transformed, with some features strengthened and others weakened. Does sleep reactivation drive memory transformation? We leveraged the Targeted Memory Reactivation technique in an object category learning paradigm to examine this question. Participants (20 female, 14 male) learned three categories of novel objects, where each object had unique, distinguishing features as well as features shared with other members of its category. We used a real-time EEG protocol to cue the reactivation of these objects during sleep at moments optimized to generate reactivation events. We found that reactivation improved memory for distinguishing features while worsening memory for shared features, suggesting a differentiation process. The results indicate that sleep reactivation does not act holistically on object memories, instead supporting a transformation process where some features are enhanced over others.
Collapse
Affiliation(s)
- E.M. Siefert
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - S. Uppuluri
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - J. Mu.
- Department of Psychology and Child Development, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - M.C. Tandoc
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - A.C. Schapiro
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
4
|
Pereira SIR, Santamaria L, Andrews R, Schmidt E, Van Rossum MCW, Lewis P. Rule Abstraction Is Facilitated by Auditory Cuing in REM Sleep. J Neurosci 2023; 43:3838-3848. [PMID: 36977584 PMCID: PMC10218979 DOI: 10.1523/jneurosci.1966-21.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 03/30/2023] Open
Abstract
Sleep facilitates abstraction, but the exact mechanisms underpinning this are unknown. Here, we aimed to determine whether triggering reactivation in sleep could facilitate this process. We paired abstraction problems with sounds, then replayed these during either slow-wave sleep (SWS) or rapid eye movement (REM) sleep to trigger memory reactivation in 27 human participants (19 female). This revealed performance improvements on abstraction problems that were cued in REM, but not problems cued in SWS. Interestingly, the cue-related improvement was not significant until a follow-up retest 1 week after the manipulation, suggesting that REM may initiate a sequence of plasticity events that requires more time to be implemented. Furthermore, memory-linked trigger sounds evoked distinct neural responses in REM, but not SWS. Overall, our findings suggest that targeted memory reactivation in REM can facilitate visual rule abstraction, although this effect takes time to unfold.SIGNIFICANCE STATEMENT The ability to abstract rules from a corpus of experiences is a building block of human reasoning. Sleep is known to facilitate rule abstraction, but it remains unclear whether we can manipulate this process actively and which stage of sleep is most important. Targeted memory reactivation (TMR) is a technique that uses re-exposure to learning-related sensory cues during sleep to enhance memory consolidation. Here, we show that TMR, when applied during REM sleep, can facilitate the complex recombining of information needed for rule abstraction. Furthermore, we show that this qualitative REM-related benefit emerges over the course of a week after learning, suggesting that memory integration may require a slower form of plasticity.
Collapse
Affiliation(s)
| | - Lorena Santamaria
- School of Psychology, Cardiff University Brain Research Imaging Centre, Cardiff, Wales CF24 4HQ, United Kingdom
| | - Ralph Andrews
- School of Psychology, Cardiff University Brain Research Imaging Centre, Cardiff, Wales CF24 4HQ, United Kingdom
| | - Elena Schmidt
- School of Psychology, Cardiff University Brain Research Imaging Centre, Cardiff, Wales CF24 4HQ, United Kingdom
| | - Mark C W Van Rossum
- School of Psychology and School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Penelope Lewis
- School of Psychology, Cardiff University Brain Research Imaging Centre, Cardiff, Wales CF24 4HQ, United Kingdom
| |
Collapse
|
5
|
Witkowski S, Noh S, Lee V, Grimaldi D, Preston AR, Paller KA. Does memory reactivation during sleep support generalization at the cost of memory specifics? Neurobiol Learn Mem 2021; 182:107442. [PMID: 33892076 PMCID: PMC8187329 DOI: 10.1016/j.nlm.2021.107442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/11/2021] [Accepted: 04/18/2021] [Indexed: 10/21/2022]
Abstract
Sleep is important for memory, but does it favor consolidation of specific details or extraction of generalized information? Both may occur together when memories are reactivated during sleep, or a loss of certain memory details may facilitate generalization. To examine these issues, we tested memory in participants who viewed landscape paintings by six artists. Paintings were cropped to show only a section of the scene. During a learning phase, each painting section was presented with the artist's name and with a nonverbal sound that had been uniquely associated with that artist. In a test of memory for specifics, participants were shown arrays of six painting sections, all by the same artist. Participants attempted to select the one that was seen in the learning phase. Generalization was tested by asking participants to view new paintings and, for each one, decide which of the six artists created it. After this testing, participants had a 90-minute sleep opportunity with polysomnographic monitoring. When slow-wave sleep was detected, three of the sound cues associated with the artists were repeatedly presented without waking the participants. After sleep, participants were again tested for memory specifics and generalization. Memory reactivation during sleep due to the sound cues led to a relative decline in accuracy on the specifics test, which could indicate the transition to a loss of detail that facilitates generalization, particularly details such as the borders. Generalization performance showed very little change after sleep and was unaffected by the sound cues. Although results tentatively implicate sleep in memory transformation, further research is needed to examine memory change across longer time periods.
Collapse
Affiliation(s)
- Sarah Witkowski
- Department of Psychology, Northwestern University, Evanston, IL, United States.
| | - Sharon Noh
- Department of Psychology, University of Texas at Austin, Austin, TX, United States; Center for Learning and Memory, University of Texas at Austin, Austin, TX, United States
| | - Victoria Lee
- Department of Psychology, Northwestern University, Evanston, IL, United States
| | - Daniela Grimaldi
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Alison R Preston
- Department of Psychology, University of Texas at Austin, Austin, TX, United States; Center for Learning and Memory, University of Texas at Austin, Austin, TX, United States; Department of Neuroscience, University of Texas at Austin, Austin, TX, United States
| | - Ken A Paller
- Department of Psychology, Northwestern University, Evanston, IL, United States
| |
Collapse
|
6
|
Durrant SJ, Johnson JM. Sleep’s Role in Schema Learning and Creative Insights. CURRENT SLEEP MEDICINE REPORTS 2021. [DOI: 10.1007/s40675-021-00202-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
Purpose of Review
A recent resurgence of interest in schema theory has influenced research on sleep-dependent memory consolidation and led to a new understanding of how schemata might be activated during sleep and play a role in the reorganisation of memories. This review is aimed at synthesising recent findings into a coherent narrative and draw overall conclusions.
Recent Findings
Rapid consolidation of schematic memories has been shown to benefit from an interval containing sleep. These memories have shown reduced reliance on the hippocampus following consolidation in both humans and rodents. Using a variety of methodologies, notably including the DRM paradigm, it has been shown that activation of a schema can increase the rate of false memory as a result of activation of semantic associates during slow wave sleep (SWS). Memories making use of a schema have shown increased activity in the medial prefrontal cortex, which may reflect both the schematic activation itself and a cognitive control component selecting an appropriate schema to use. SWS seems to be involved in assimilation of new memories within existing semantic frameworks and in making memories more explicit, while REM sleep may be more associated with creating entirely novel associations while keeping memories implicit.
Summary
Sleep plays an important role in schematic memory consolidation, with more rapid consolidation, reduced hippocampal involvement, and increased prefrontal involvement as the key characteristics. Both SWS and REM sleep may have a role to play.
Collapse
|
7
|
Hu X, Cheng LY, Chiu MH, Paller KA. Promoting memory consolidation during sleep: A meta-analysis of targeted memory reactivation. Psychol Bull 2020; 146:218-244. [PMID: 32027149 PMCID: PMC7144680 DOI: 10.1037/bul0000223] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Targeted memory reactivation (TMR) is a methodology employed to manipulate memory processing during sleep. TMR studies have great potential to advance understanding of sleep-based memory consolidation and corresponding neural mechanisms. Research making use of TMR has developed rapidly, with over 70 articles published in the last decade, yet no quantitative analysis exists to evaluate the overall effects. Here we present the first meta-analysis of sleep TMR, compiled from 91 experiments with 212 effect sizes (N = 2,004). Based on multilevel modeling, overall sleep TMR was highly effective (Hedges' g = 0.29, 95% CI [0.21, 0.38]), with a significant effect for two stages of non-rapid-eye-movement (NREM) sleep (Stage NREM 2: Hedges' g = 0.32, 95% CI [0.04, 0.60]; and slow-wave sleep: Hedges' g = 0.27, 95% CI [0.20, 0.35]). In contrast, TMR was not effective during REM sleep nor during wakefulness in the present analyses. Several analysis strategies were used to address the potential relevance of publication bias. Additional analyses showed that TMR improved memory across multiple domains, including declarative memory and skill acquisition. Given that TMR can reinforce many types of memory, it could be useful for various educational and clinical applications. Overall, the present meta-analysis provides substantial support for the notion that TMR can influence memory storage during NREM sleep, and that this method can be useful for understanding neurocognitive mechanisms of memory consolidation. (PsycINFO Database Record (c) 2020 APA, all rights reserved).
Collapse
Affiliation(s)
- Xiaoqing Hu
- Department of Psychology, The University of Hong Kong, Hong Kong, China
- The State Key Lab of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- HKU-Shenzhen Institute of Research and Innovation, Shenzhen, China
| | - Larry Y. Cheng
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Man Hey Chiu
- Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Ken A. Paller
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Cognitive Neuroscience Program, Northwestern University, Evanston, IL, USA
| |
Collapse
|
8
|
Strachan JWA, Guttesen AÁV, Smith AK, Gaskell MG, Tipper SP, Cairney SA. Investigating the formation and consolidation of incidentally learned trust. J Exp Psychol Learn Mem Cogn 2019; 46:684-698. [PMID: 31355651 PMCID: PMC7115124 DOI: 10.1037/xlm0000752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
People make inferences about the trustworthiness of others based on their observed gaze behavior. Faces that consistently look toward a target location are rated as more trustworthy than those that look away from the target. Representations of trust are important for future interactions; yet little is known about how they are consolidated in long-term memory. Sleep facilitates memory consolidation for incidentally learned information and may therefore support the retention of trust representations. We investigated the consolidation of trust inferences across periods of sleep or wakefulness. In addition, we employed a memory cueing procedure (targeted memory reactivation [TMR]) in a bid to strengthen certain trust memories over others. We observed no difference in the retention of trust inferences following delays of sleep or wakefulness, and there was no effect of TMR in either condition. Interestingly, trust inferences remained stable 1 week after learning, irrespective of the initial postlearning delay. A second experiment showed that this implicit learning occurs despite participants’ being unable to explicitly recall the gaze behavior of specific faces immediately after encoding. Together, these results suggest that gist-like, social inferences are formed at the time of learning without retaining the original episodic memory and thus do not benefit from offline consolidation through replay. We discuss our findings in the context of a novel framework whereby trust judgments reflect an efficient, powerful, and adaptable storage device for social information.
Collapse
|
9
|
Lerner I, Gluck MA. Sleep and the extraction of hidden regularities: A systematic review and the importance of temporal rules. Sleep Med Rev 2019; 47:39-50. [PMID: 31252335 DOI: 10.1016/j.smrv.2019.05.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 05/01/2019] [Accepted: 05/27/2019] [Indexed: 10/26/2022]
Abstract
As part of its role in memory consolidation, sleep has been repeatedly identified as critical for the extraction of regularities from wake experiences. However, many null results have been published as well, with no clear consensus emerging regarding the conditions that yield this sleep effect. Here, we systematically review the role of sleep in the extraction of hidden regularities, specifically those involving associative relations embedded in newly learned information. We found that the specific behavioral task used in a study had far more impact on whether a sleep effect was discovered than either the category of the cognitive processes targeted, or the particular experimental design employed. One emerging pattern, however, was that the explicit detection of hidden rules is more likely to happen when the rules are of a temporal nature (i.e., event A at time t predicts a later event B) than when they are non-temporal. We discuss this temporal rule sensitivity in reference to the compressed memory replay occurring in the hippocampus during slow-wave-sleep, and compare this effect to what happens when the extraction of regularities depends on prior knowledge and relies on structures other than the hippocampus.
Collapse
Affiliation(s)
- Itamar Lerner
- Center for Molecular and Behavioral Neuroscience, Rutgers University, 197 University Avenue, Newark, NJ 07102, USA.
| | - Mark A Gluck
- Center for Molecular and Behavioral Neuroscience, Rutgers University, 197 University Avenue, Newark, NJ 07102, USA
| |
Collapse
|
10
|
Cellini N, Capuozzo A. Shaping memory consolidation via targeted memory reactivation during sleep. Ann N Y Acad Sci 2018; 1426:52-71. [PMID: 29762867 DOI: 10.1111/nyas.13855] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/17/2018] [Accepted: 04/23/2018] [Indexed: 12/24/2022]
Abstract
Recent studies have shown that the reactivation of specific memories during sleep can be modulated using external stimulation. Specifically, it has been reported that matching a sensory stimulus (e.g., odor or sound cue) with target information (e.g., pairs of words, pictures, and motor sequences) during wakefulness, and then presenting the cue alone during sleep, facilitates memory of the target information. Thus, presenting learned cues while asleep may reactivate related declarative, procedural, and emotional material, and facilitate the neurophysiological processes underpinning memory consolidation in humans. This paradigm, which has been named targeted memory reactivation, has been successfully used to improve visuospatial and verbal memories, strengthen motor skills, modify implicit social biases, and enhance fear extinction. However, these studies also show that results depend on the type of memory investigated, the task employed, the sensory cue used, and the specific sleep stage of stimulation. Here, we present a review of how memory consolidation may be shaped using noninvasive sensory stimulation during sleep.
Collapse
Affiliation(s)
- Nicola Cellini
- Department of General Psychology, University of Padova, Padova, Italy
| | - Alessandra Capuozzo
- International School for Advanced Studies - SISSA, Neuroscience Area, Trieste, Italy
| |
Collapse
|