1
|
Morato M, Alcaraz M, Bosco G, Pérez-Martín N, Miranda E, O'Connor-Reina C, Cascón JA, Plaza G. DISE with CPAP: a useful procedure to evaluate upper airway collapsibility. Eur Arch Otorhinolaryngol 2024; 281:3797-3804. [PMID: 38578504 DOI: 10.1007/s00405-024-08618-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024]
Abstract
PURPOSE Drug-induced sleep endoscopy (DISE) is commonly performed in patients suffering obstructive sleep apnea (OSA) with continuous positive airway pressure (CPAP) intolerance. We aimed to evaluate the effects of adding CPAP to DISE to provide understanding of the reason of its failure and better guidance in future therapeutic decisions. METHODS A retrospective observational descriptive study was conducted on CPAP-intolerant patients with moderate-severe OSA. DISE was used to evaluate upper airway collapsibility, and CPAP was tested to better describe anatomical sites of obstruction and to measure the opening pharyngeal pressure. RESULTS Sample size consisted of 38 patients with a mean age of 49 ± 9 years. Mean BMI was 28.4 ± 2.4 kg/m2, mean apnea-hypopnea index (AHI) was 35.4 events per hour ± 20.1, and mean saturation under 90% (TSat90) was 14.5%. In DISE we found a collapse at Velum in 92% of patients, at Oropharyngeal level in 89%, at tongue in 42%, and at epiglottis in 36%. In the subgroup of patients with clinical failure with CPAP, we observed 100% of epiglottic collapse and 50% of tongue obstruction. In this specific population, we recommended personalized surgery and myofunctional therapy. CONCLUSION DISE-CPAP is a useful tool to select the treatment that better fits to each patient taking care all information available. It improves our ability to prescribe a multilevel treatment with an exhaustive topographic evaluation of upper airway collapsibility that complements CPAP classic titration, and it can be helpful to distinguish better candidates for surgery, myofunctional therapy or CPAP.
Collapse
Affiliation(s)
- Marta Morato
- Department of Otolaryngology, Hospital QuirónSalud San Jose, Calle Cartagena 111, 28002, Madrid, Spain.
| | - Marta Alcaraz
- Department of Otolaryngology, Hospital Sanitas La Moraleja, Madrid, Spain
| | - Gabriela Bosco
- Department of Otolaryngology, Hospital Universitario de Fuenlabrada, Madrid, Spain
| | - Nuria Pérez-Martín
- Department of Otolaryngology, Hospital Universitario de Fuenlabrada, Madrid, Spain
| | - Estefanía Miranda
- Department of Otolaryngology, Hospital Universitario de Fuenlabrada, Madrid, Spain
| | | | | | - Guillermo Plaza
- Department of Otolaryngology, Hospital Universitario de Fuenlabrada and Hospital Sanitas La Zarzuela, Universidad Rey Juan Carlos, Madrid, Spain
| |
Collapse
|
2
|
Abu K, Khraiche ML, Amatoury J. Obstructive sleep apnea diagnosis and beyond using portable monitors. Sleep Med 2024; 113:260-274. [PMID: 38070375 DOI: 10.1016/j.sleep.2023.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/03/2023] [Accepted: 11/21/2023] [Indexed: 01/07/2024]
Abstract
Obstructive sleep apnea (OSA) is a chronic sleep and breathing disorder with significant health complications, including cardiovascular disease and neurocognitive impairments. To ensure timely treatment, there is a need for a portable, accurate and rapid method of diagnosing OSA. This review examines the use of various physiological signals used in the detection of respiratory events and evaluates their effectiveness in portable monitors (PM) relative to gold standard polysomnography. The primary objective is to explore the relationship between these physiological parameters and OSA, their application in calculating the apnea hypopnea index (AHI), the standard metric for OSA diagnosis, and the derivation of non-AHI metrics that offer additional diagnostic value. It is found that increasing the number of parameters in PMs does not necessarily improve OSA detection. Several factors can cause performance variations among different PMs, even if they extract similar signals. The review also highlights the potential of PMs to be used beyond OSA diagnosis. These devices possess parameters that can be utilized to obtain endotypic and other non-AHI metrics, enabling improved characterization of the disorder and personalized treatment strategies. Advancements in PM technology, coupled with thorough evaluation and validation of these devices, have the potential to revolutionize OSA diagnosis, personalized treatment, and ultimately improve health outcomes for patients with OSA. By identifying the key factors influencing performance and exploring the application of PMs beyond OSA diagnosis, this review aims to contribute to the ongoing development and utilization of portable, efficient, and effective diagnostic tools for OSA.
Collapse
Affiliation(s)
- Kareem Abu
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture (MSFEA), American University of Beirut, Beirut, Lebanon; Neural Engineering and Nanobiosensors Group, American University of Beirut, Beirut, Lebanon; Sleep and Upper Airway Research Group (SUARG), American University of Beirut, Beirut, Lebanon
| | - Massoud L Khraiche
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture (MSFEA), American University of Beirut, Beirut, Lebanon; Neural Engineering and Nanobiosensors Group, American University of Beirut, Beirut, Lebanon
| | - Jason Amatoury
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture (MSFEA), American University of Beirut, Beirut, Lebanon; Sleep and Upper Airway Research Group (SUARG), American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
3
|
Knapman FL, Cohen EM, Kulaga T, Lovell N, Lisowski L, McMullan S, Burke PGR, Bilston LE. Direct optogenetic activation of upper airway muscles in an acute model of upper airway hypotonia mimicking sleep onset. Sleep 2023; 46:zsad226. [PMID: 37651221 DOI: 10.1093/sleep/zsad226] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/25/2023] [Indexed: 09/02/2023] Open
Abstract
STUDY OBJECTIVES Obstructive sleep apnea (OSA), where the upper airway collapses repeatedly during sleep due to inadequate dilator muscle tone, is challenging to treat as current therapies are poorly tolerated or have variable and unpredictable efficacy. We propose a novel, optogenetics-based therapy, that stimulates upper airway dilator muscle contractions in response to light. To determine the feasibility of a novel optogenetics-based OSA therapy, we developed a rodent model of human sleep-related upper airway muscle atonia. Using this model, we evaluated intralingual delivery of candidate optogenetic constructs, notably a muscle-targeted approach that will likely have a favorable safety profile. METHODS rAAV serotype 9 viral vectors expressing a channelrhodopsin-2 variant, driven by a muscle-specific or nonspecific promoter were injected into rat tongues to compare strength and specificity of opsin expression. Light-evoked electromyographic responses were recorded in an acute, rodent model of OSA. Airway dilation was captured with ultrasound. RESULTS The muscle-specific promoter produced sufficient opsin expression for light stimulation to restore and/or enhance electromyographic signals (linear mixed model, F = 140.0, p < 0.001) and induce visible tongue contraction and airway dilation. The muscle-specific promoter induced stronger (RM-ANOVA, F(1,8) = 10.0, p = 0.013) and more specific opsin expression than the nonspecific promoter in an otherwise equivalent construct. Viral DNA and RNA were robust in the tongue, but low or absent in all other tissues. CONCLUSIONS Significant functional responses to direct optogenetic muscle activation were achieved following muscle-specific promoter-driven rAAV-mediated transduction, providing proof-of-concept for an optogenetic therapy for patients with inadequate dilator muscle activity during sleep.
Collapse
Affiliation(s)
- Fiona L Knapman
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | | | - Tom Kulaga
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Nigel Lovell
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children's Medical Research Institute, Sydney, NSW, Australia
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Simon McMullan
- Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Peter G R Burke
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
- Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Lynne E Bilston
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
4
|
Turnbull CD, Stradling JR. Endotyping, phenotyping and personalised therapy in obstructive sleep apnoea: are we there yet? Thorax 2023; 78:726-732. [PMID: 37217289 DOI: 10.1136/thorax-2023-220037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/02/2023] [Indexed: 05/24/2023]
Abstract
Obstructive sleep apnoea (OSA) was traditionally thought to be mainly caused by obesity and upper airway crowding, and hence OSA management was not personalised according to particular characteristics, with most symptomatic patients receiving continuous positive airway pressure therapy. Recent advances in our understanding have identified additional potential and distinct causes of OSA (endotypes), and subgroups of patients (phenotypes) with increased risk of cardiovascular complications. In this review, we discuss the evidence to date as to whether there are distinct clinically useful endotypes and phenotypes of OSA, and the challenges to the field in moving towards delivering personalised therapy in OSA.
Collapse
Affiliation(s)
- Chris D Turnbull
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Respiratory Medicine, NIHR Oxford Biomedical Research Centre, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - John R Stradling
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Carberry JC, Burke PGR, Osman AM, Jugé L, Toson B, Gandevia SC, Butler JE, Bilston LE, Eckert DJ. Regional genioglossus reflex responses to negative pressure pulses in people with obstructive sleep apnea. J Appl Physiol (1985) 2022; 133:755-765. [PMID: 35771222 DOI: 10.1152/japplphysiol.00083.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tongue and upper airway dilator muscle movement patterns during quiet breathing vary in people with obstructive sleep apnea (OSA). Many patients have inadequate or counterproductive responses to inspiratory negative airway pressure that likely contributes to their OSA. This may be due, at least in part, to inadequate or non-homogeneous reflex drive to different regions of the largest upper airway dilator, genioglossus. To investigate potential regional heterogeneity of genioglossus reflex responses in OSA, brief suction pulses were applied via nasal breathing mask and electromyogram (EMG) was recorded in 4 regions (anterior oblique, anterior horizontal, posterior oblique, posterior horizontal) using intramuscular fine wire electrodes in 15 people with OSA. Genioglossus short-latency reflex excitation amplitude had regional heterogeneity (horizontal vs. oblique regions) when expressed in absolute units but homogeneity when normalized as a percentage of the immediate (100ms) pre-stimulus EMG. Regional variability in reflex morphology (excitation and inhibition) was present in one third of participants. Minimum cross-sectional area (CSA) of the pharyngeal airway quantified using MRI and may be related to the amplitude of the short-latency reflex response to negative pressure such that we found that people with a smaller CSA tended to have greater reflex amplitude (e.g. horizontal region r2=0.41, p=0.01). These findings highlight the complexity of genioglossus reflex control, the potential for regional heterogeneity and the functional importance of upper airway anatomy in mediating genioglossus reflex responses to rapid changes in negative pressure in OSA.
Collapse
Affiliation(s)
- Jayne C Carberry
- Adelaide Institute for Sleep Health, Flinders University, Adelaide, SA, Australia.,Neuroscience Research Australia, Sydney, New South Wales, Australia.,University College Dublin, School of Medicine, Ireland
| | - Peter George Redmayne Burke
- Neuroscience Research Australia, Sydney, New South Wales, Australia.,UNSW Sydney, Randwick, Australia.,Department of Biomedical Sciences, Macquarie University, Australia
| | - Amal M Osman
- Adelaide Institute for Sleep Health, Flinders University, Adelaide, SA, Australia.,Neuroscience Research Australia, Sydney, New South Wales, Australia.,UNSW Sydney, Randwick, Australia
| | - Lauriane Jugé
- Neuroscience Research Australia, Sydney, New South Wales, Australia.,UNSW Sydney, Randwick, Australia
| | - Barbara Toson
- Adelaide Institute for Sleep Health, Flinders University, Adelaide, SA, Australia
| | - Simon C Gandevia
- Neuroscience Research Australia, Sydney, New South Wales, Australia.,UNSW Sydney, Randwick, Australia
| | - Jane E Butler
- Neuroscience Research Australia, Sydney, New South Wales, Australia.,UNSW Sydney, Randwick, Australia
| | - Lynne E Bilston
- Neuroscience Research Australia, Sydney, New South Wales, Australia.,UNSW Sydney, Randwick, Australia
| | - Danny J Eckert
- Adelaide Institute for Sleep Health, Flinders University, Adelaide, SA, Australia.,Neuroscience Research Australia, Sydney, New South Wales, Australia.,UNSW Sydney, Randwick, Australia
| |
Collapse
|
6
|
Altree TJ, Eckert DJ. Obstructive sleep apnea endotypes and their postoperative relevance. Int Anesthesiol Clin 2022; 60:1-7. [PMID: 35125480 DOI: 10.1097/aia.0000000000000357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Thomas J Altree
- Adelaide Institute for Sleep Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
- Respiratory and Sleep Services, Flinders Medical Centre, Southern Adelaide Local Health Network, Bedford Park, South Australia, Australia
| | - Danny J Eckert
- Adelaide Institute for Sleep Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
7
|
Kazemeini E, Van de Perck E, Dieltjens M, Willemen M, Verbraecken J, Op de Beeck S, Vanderveken OM. Critical to Know Pcrit: A Review on Pharyngeal Critical Closing Pressure in Obstructive Sleep Apnea. Front Neurol 2022; 13:775709. [PMID: 35273554 PMCID: PMC8901991 DOI: 10.3389/fneur.2022.775709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
It is crucial to understand the underlying pathophysiology of obstructive sleep apnea (OSA). Upper airway collapsibility is an important pathophysiological factor that affects the upper airway in OSA. The aim of the current study was to review the existing body of knowledge on the pharyngeal collapsibility in OSA. After a thorough search through Medline, PubMed, Scopus, and Web of science, the relevant articles were found and used in this study. Critical closing pressure (Pcrit) is the gold standard measure for the degree of collapsibility of the pharyngeal airway. Various physiological factors and treatments affect upper airway collapsibility. Recently, it has been shown that the baseline value of Pcrit is helpful in the upfront selection of therapy options. The standard techniques to measure Pcrit are labor-intensive and time-consuming. Therefore, despite the importance of Pcrit, it is not routinely measured in clinical practice. New emerging surrogates, such as finite element (FE) modeling or the use of peak inspiratory flow measurements during a routine overnight polysomnography, may enable clinicians to have an estimate of the pharyngeal collapsibility. However, validation of these techniques is needed.
Collapse
Affiliation(s)
- Elahe Kazemeini
- Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.,Ear, Nose, Throat, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Eli Van de Perck
- Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.,Ear, Nose, Throat, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Marijke Dieltjens
- Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.,Ear, Nose, Throat, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Marc Willemen
- Multidisciplinary Sleep Disorders Centre, Antwerp University Hospital, Edegem, Belgium
| | - Johan Verbraecken
- Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.,Multidisciplinary Sleep Disorders Centre, Antwerp University Hospital, Edegem, Belgium.,Department of Pulmonology, Antwerp University Hospital, Edegem, Belgium
| | - Sara Op de Beeck
- Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.,Ear, Nose, Throat, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium.,Multidisciplinary Sleep Disorders Centre, Antwerp University Hospital, Edegem, Belgium
| | - Olivier M Vanderveken
- Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.,Ear, Nose, Throat, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium.,Multidisciplinary Sleep Disorders Centre, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
8
|
Kazemeini E, Van de Perck E, Dieltjens M, Willemen M, Verbraecken JA, Sands SA, Vanderveken OM, Op de Beeck S. Critical closing pressure (Pcrit) of the pharyngeal airway during routine drug-induced sleep endoscopy: feasibility and protocol. J Appl Physiol (1985) 2022; 132:925-937. [PMID: 35112928 PMCID: PMC8993534 DOI: 10.1152/japplphysiol.00624.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In obstructive sleep apnea (OSA), there are various pathophysiological factors affecting the upper airway during sleep. Two prominent factors contributing to OSA are site and pattern of upper airway collapse and degree of pharyngeal collapsibility. In a clinical setting, drug-induced sleep endoscopy (DISE) is used to visualize the structures of the upper airway. Critical closing pressure (Pcrit) is the gold standard measure of pharyngeal collapsibility. This prospective clinical study aimed to investigate the feasibility and protocol of Pcrit measurements during DISE. Thirteen patients with OSA were included. Pcrit was calculated using peak inspiratory airflow and inspiratory ventilation. The proposed protocol was successful in Pcrit measurement during DISE in all subjects [median[Q1;Q3] Pcrit for “peak inspiratory method” (n = 12): −0.84[−2.07;0.69] cmH2O, “ventilation method” (n = 13): −1.32[2.32;0.47] cmH2O], highlighting the feasibility of the approach. There was no significant difference (P = 0.67) between calculated Pcrit with either of the calculation methods, indicating high reliability. Correlation analysis showed Pcrit as an independent parameter of any of the anthropometric or polysomnographic parameters. The ventilation method proved to be more successful in assessment of Pcrit in subjects with epiglottic collapse (e.g., with high negative effort dependence). Subjects with palatal complete concentric collapse during DISE had a wide Pcrit range ([−2.86;2.51]cmH2O), suggesting no close correlation between Pcrit and this DISE pattern (P = 0.38). Incorporation of Pcrit measurements into DISE assessments is feasible and may yield valuable additional information for OSA management. Combining Pcrit and DISE provides information on both the site and degree of upper airway collapse and the degree of pharyngeal collapsibility. NEW & NOTEWORTHY The protocol of this study was successful in concomitant measurement of Pcrit during routine clinical endoscopy. Comparison of two calculation methods for Pcrit showed that the inspiratory ventilation method was more successful in assessment of Pcrit in subjects with epiglottic collapse who have high negative effort dependence. Subjects with palatal complete concentric collapse during DISE had a wide Pcrit range and did not have a greater Pcrit than patients in other site of collapse categories.
Collapse
Affiliation(s)
- Elahe Kazemeini
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.,ENT, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Eli Van de Perck
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.,ENT, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Marijke Dieltjens
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.,ENT, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Marc Willemen
- Multidisciplinary Sleep Disorders Centre, Antwerp University Hospital, Edegem, Belgium
| | - Johan A Verbraecken
- Laboratory of Experimental Medicine and Pediatrics (LEMP), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.,Department of Pulmonology, Antwerp University Hospital, Edegem, Antwerp, Belgium
| | - Scott A Sands
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Olivier M Vanderveken
- ENT, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium.,Multidisciplinary Sleep Disorders Centre, Antwerp University Hospital, Edegem, Belgium
| | - Sara Op de Beeck
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.,ENT, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium.,Multidisciplinary Sleep Disorders Centre, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
9
|
Lechat B, Scott H, Naik G, Hansen K, Nguyen DP, Vakulin A, Catcheside P, Eckert DJ. New and Emerging Approaches to Better Define Sleep Disruption and Its Consequences. Front Neurosci 2021; 15:751730. [PMID: 34690688 PMCID: PMC8530106 DOI: 10.3389/fnins.2021.751730] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/16/2021] [Indexed: 01/07/2023] Open
Abstract
Current approaches to quantify and diagnose sleep disorders and circadian rhythm disruption are imprecise, laborious, and often do not relate well to key clinical and health outcomes. Newer emerging approaches that aim to overcome the practical and technical constraints of current sleep metrics have considerable potential to better explain sleep disorder pathophysiology and thus to more precisely align diagnostic, treatment and management approaches to underlying pathology. These include more fine-grained and continuous EEG signal feature detection and novel oxygenation metrics to better encapsulate hypoxia duration, frequency, and magnitude readily possible via more advanced data acquisition and scoring algorithm approaches. Recent technological advances may also soon facilitate simple assessment of circadian rhythm physiology at home to enable sleep disorder diagnostics even for “non-circadian rhythm” sleep disorders, such as chronic insomnia and sleep apnea, which in many cases also include a circadian disruption component. Bringing these novel approaches into the clinic and the home settings should be a priority for the field. Modern sleep tracking technology can also further facilitate the transition of sleep diagnostics from the laboratory to the home, where environmental factors such as noise and light could usefully inform clinical decision-making. The “endpoint” of these new and emerging assessments will be better targeted therapies that directly address underlying sleep disorder pathophysiology via an individualized, precision medicine approach. This review outlines the current state-of-the-art in sleep and circadian monitoring and diagnostics and covers several new and emerging approaches to better define sleep disruption and its consequences.
Collapse
Affiliation(s)
- Bastien Lechat
- Adelaide Institute for Sleep Health, Flinders University, Bedford Park, SA, Australia
| | - Hannah Scott
- Adelaide Institute for Sleep Health, Flinders University, Bedford Park, SA, Australia
| | - Ganesh Naik
- Adelaide Institute for Sleep Health, Flinders University, Bedford Park, SA, Australia
| | - Kristy Hansen
- Adelaide Institute for Sleep Health, Flinders University, Bedford Park, SA, Australia
| | - Duc Phuc Nguyen
- Adelaide Institute for Sleep Health, Flinders University, Bedford Park, SA, Australia
| | - Andrew Vakulin
- Adelaide Institute for Sleep Health, Flinders University, Bedford Park, SA, Australia
| | - Peter Catcheside
- Adelaide Institute for Sleep Health, Flinders University, Bedford Park, SA, Australia
| | - Danny J Eckert
- Adelaide Institute for Sleep Health, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
10
|
A Novel Model to Estimate Key Obstructive Sleep Apnea Endotypes from Standard Polysomnography and Clinical Data and Their Contribution to Obstructive Sleep Apnea Severity. Ann Am Thorac Soc 2021; 18:656-667. [PMID: 33064953 DOI: 10.1513/annalsats.202001-064oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Rationale: There are at least four key pathophysiological endotypes that contribute to obstructive sleep apnea (OSA) pathophysiology. These include 1) upper-airway collapsibility (Pcrit); 2) arousal threshold; 3) loop gain; and 4) pharyngeal muscle responsiveness. However, an easily interpretable model to examine the different ways and the extent to which these OSA endotypes contribute to conventional polysomnography-defined OSA severity (i.e., the apnea-hypopnea index) has not been investigated. In addition, clinically deployable approaches to estimate OSA endotypes to advance knowledge on OSA pathogenesis and targeted therapy at scale are not currently available.Objectives: Develop an interpretable data-driven model to 1) determine the different ways and the extent to which the four key OSA endotypes contribute to polysomnography-defined OSA severity and 2) gain insight into how standard polysomnographic and clinical variables contribute to OSA endotypes and whether they can be used to predict OSA endotypes.Methods: Age, body mass index, and eight polysomnography parameters from a standard diagnostic study were collected. OSA endotypes were also quantified in 52 participants (43 participants with OSA and nine control subjects) using gold-standard physiologic methodology on a separate night. Unsupervised multivariate principal component analyses and data-driven supervised machine learning (decision tree learner) were used to develop a predictive algorithm to address the study objectives.Results: Maximum predictive performance accuracy of the trained model to identify standard polysomnography-defined OSA severity levels (no OSA, mild to moderate, or severe) using the using the four OSA endotypes was approximately twice that of chance. Similarly, performance accuracy to predict OSA endotype categories ("good," "moderate," or "bad") from standard polysomnographic and clinical variables was approximately twice that of chance for Pcrit and slightly lower for arousal threshold.Conclusions: This novel approach provides new insights into the different ways in which OSA endotypes can contribute to polysomnography-defined OSA severity. Although further validation work is required, these findings also highlight the potential for routine sleep study and clinical data to estimate at least two of the key OSA endotypes using data-driven predictive analysis methodology as part of a clinical decision support system to inform scalable research studies to advance OSA pathophysiology and targeted therapy for OSA.
Collapse
|
11
|
Affiliation(s)
- Winfried Randerath
- Krankenhaus Berthanien, Institute for Pneumology at the University of Cologne, Solingen, Germany
| |
Collapse
|
12
|
Aishah A, Lim R, Sands SA, Taranto-Montemurro L, Wellman A, Carberry JC, Eckert DJ. Different antimuscarinics when combined with atomoxetine have differential effects on obstructive sleep apnea severity. J Appl Physiol (1985) 2021; 130:1373-1382. [PMID: 33734828 PMCID: PMC8424567 DOI: 10.1152/japplphysiol.01074.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 01/11/2023] Open
Abstract
The combination of the noradrenergic agent atomoxetine plus the antimuscarinic oxybutynin has recently been shown to improve upper airway physiology and reduce obstructive sleep apnea (OSA) severity. However, the effects of different antimuscarinics when combined with atomoxetine is limited. This study aimed to determine the effects of atomoxetine combined with two different antimuscarinics with varying M-subtype receptor selectivity on OSA severity and upper airway physiology. Ten people with predominantly severe OSA completed a double-blind, randomized, placebo-controlled, cross-over trial. Participants completed three overnight in-laboratory sleep studies after either 80 mg atomoxetine + 5 mg solifenacin succinate (ato-sol) or 80 mg atomoxetine + 2 mg biperiden hydrochloride (ato-bip) or placebo. OSA severity, ventilatory stability (loop gain), respiratory-arousal threshold (via epiglottic manometry), next-day subjective sleepiness [Karolinska Sleepiness Scale (KSS)], and alertness were compared between conditions. Neither drug combination altered the apnea/hypopnea index versus placebo (P = 0.63). Ato-sol caused a shift toward milder respiratory events with reduced frequency of obstructive apneas (13 ± 14 vs. 22 ± 17 events/h; means ± SD, P = 0.04) and increased hypopneas during nonrapid eye movement (NREM) (38 ± 21 vs. 24 ± 18 events/h, P = 0.006) with improved nadir oxygenation versus placebo (83 ± 4 vs. 80 ± 8%, P = 0.03). Both combinations reduced loop gain by ∼10% versus placebo; sleep efficiency and arousal threshold were unaltered. Ato-bip reduced next-day sleepiness versus placebo (KSS = 4.3 ± 2.2 vs. 5.6 ± 1.6, P = 0.03). Atomoxetine + biperiden hydrochloride reduces perceived sleepiness, and atomoxetine + solifenacin modestly improves upper airway function in people with OSA but to a lesser extent versus recently published atomoxetine + oxybutynin (broad M-subtype receptor selectivity) findings. These results provide novel mechanistic insight into the role of noradrenergic and antimuscarinic agents on sleep and breathing and are important for pharmacotherapy development for OSA.NEW & NOTEWORTHY In contrast to recent findings of major reductions in OSA severity when atomoxetine is combined with a nonspecific antimuscarinic, oxybutynin (broad M-subtype receptor selectivity), addition of solifenacin succinate (M2 and M3 muscarinic receptor selectivity) or biperiden (M1 muscarinic receptor selectivity) with atomoxetine had modest effects on upper airway function during sleep, which provide mechanistic insight into the role of noradrenergic and antimuscarinic agents on sleep and breathing and are important for pharmacotherapy development for OSA.
Collapse
Affiliation(s)
- Atqiya Aishah
- Neuroscience Research Australia, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Richard Lim
- Neuroscience Research Australia, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Scott A Sands
- Division of Sleep Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Luigi Taranto-Montemurro
- Division of Sleep Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andrew Wellman
- Division of Sleep Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jayne C Carberry
- Neuroscience Research Australia, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Adelaide Institute for Sleep Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Danny J Eckert
- Neuroscience Research Australia, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Adelaide Institute for Sleep Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
13
|
Chen YT, Sun CK, Wu KY, Chang YJ, Chiang MH, Chen IW, Liao SW, Hung KC. The Use of Propofol versus Dexmedetomidine for Patients Receiving Drug-Induced Sleep Endoscopy: A Meta-Analysis of Randomized Controlled Trials. J Clin Med 2021; 10:1585. [PMID: 33918644 PMCID: PMC8070183 DOI: 10.3390/jcm10081585] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 11/16/2022] Open
Abstract
The sedation outcomes associated with dexmedetomidine compared with those of propofol during drug-induced sleep endoscopy (DISE) remains unclear. Electronic databases (i.e., the Cochrane controlled trials register, Embase, Medline, and Scopus) were searched from inception to 25 December 2020 for randomized controlled trials (RCTs) that evaluated the sedation outcomes with dexmedetomidine or propofol in adult patients diagnosed with obstructive sleep apnea (OSA) receiving DISE. The primary outcome was the difference in minimum oxygen saturation (mSaO2). Five RCTs (270 participants) published between 2015 and 2020 were included for analysis. Compared with dexmedetomidine, propofol was associated with lower levels of mSaO2 (mean difference (MD) = -7.24, 95% confidence interval (CI) -12.04 to -2.44; 230 participants) and satisfaction among endoscopic performers (standardized MD = -2.43, 95% CI -3.61 to -1.26; 128 participants) as well as a higher risk of hypoxemia (relative ratios = 1.82, 95% CI 1.2 to 2.76; 82 participants). However, propofol provided a shorter time to fall asleep and a lower risk of failed sedation compared with dexmedetomidine. No significant difference was found in other outcomes. Compared with propofol, dexmedetomidine exhibited fewer adverse effects on respiratory function and provided a higher level of satisfaction among endoscopic performers but was associated with an elevated risk of failed sedation.
Collapse
Affiliation(s)
- Yi-Ting Chen
- Department of Anesthesiology, Chia-Yi Chang Gung Memorial Hospital, Chia-Yi 61363, Taiwan;
| | - Cheuk-Kwan Sun
- Department of Emergency Medicine, E-Da Hospital, Kaohsiung 83301, Taiwan;
- College of Medicine, I-Shou University, Kaohsiung 84001, Taiwan
| | - Kuan-Yu Wu
- Department of Urology, National Cheng Kung University Hospital, Tainan 70101, Taiwan;
- College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ying-Jen Chang
- Department of Anesthesiology, Chi Mei Medical Center, No.901, ChungHwa Road, YungKung Dist, Tainan 71004, Taiwan; (Y.-J.C.); (I.-W.C.); (S.-W.L.)
- College of Health Sciences, Chang Jung Christian University, Tainan 71101, Taiwan
| | - Min-Hsien Chiang
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - I-Wen Chen
- Department of Anesthesiology, Chi Mei Medical Center, No.901, ChungHwa Road, YungKung Dist, Tainan 71004, Taiwan; (Y.-J.C.); (I.-W.C.); (S.-W.L.)
| | - Shu-Wei Liao
- Department of Anesthesiology, Chi Mei Medical Center, No.901, ChungHwa Road, YungKung Dist, Tainan 71004, Taiwan; (Y.-J.C.); (I.-W.C.); (S.-W.L.)
| | - Kuo-Chuan Hung
- Department of Anesthesiology, Chi Mei Medical Center, No.901, ChungHwa Road, YungKung Dist, Tainan 71004, Taiwan; (Y.-J.C.); (I.-W.C.); (S.-W.L.)
- Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| |
Collapse
|
14
|
Messineo L, Eckert DJ, Lim R, Chiang A, Azarbarzin A, Carter SG, Carberry JC. Zolpidem increases sleep efficiency and the respiratory arousal threshold without changing sleep apnoea severity and pharyngeal muscle activity. J Physiol 2020; 598:4681-4692. [PMID: 32864734 DOI: 10.1113/jp280173] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/20/2020] [Indexed: 12/23/2022] Open
Abstract
KEY POINTS A decreased respiratory arousal threshold is one of the main contributors to obstructive sleep apnoea (OSA) pathogenesis. Several recent studies have sought to find a drug capable of increasing the respiratory arousal threshold without impairing pharyngeal muscle activity to reduce OSA severity, with variable success. Here we show that zolpidem increases the respiratory arousal threshold by ∼15%, an effect size which was insufficient to systematically decrease OSA severity as measured by the apnoea-hypopnoea index. Unlike recent physiological findings that showed paradoxical increases in pharyngeal muscle responsiveness during transient manipulations of airway pressure, zolpidem did not alter pharyngeal muscle responsiveness during natural sleep. It did, however, increase sleep efficiency without changing apnoea length, oxygen desaturation, next-day perceived sleepiness and alertness. These novel findings indicate that zolpidem was well tolerated and effective in promoting sleep in people with OSA, which may be therapeutically useful for people with OSA and comorbid insomnia. ABSTRACT A recent physiology study performed using continuous positive airway pressure (CPAP) manipulations indicated that the hypnotic zolpidem increases the arousal threshold and genioglossus responsiveness in people with and without obstructive sleep apnoea (OSA). Thus, zolpidem may stabilise breathing and reduce OSA severity without CPAP. Accordingly, we sought to determine the effects of zolpidem on OSA severity, upper airway physiology and next-day sleepiness and alertness. Nineteen people with OSA with low-to-moderate arousal threshold received 10 mg zolpidem or placebo according to a double-blind, randomised, cross-over design. Participants completed two overnight in-laboratory polysomnographies (1-week washout), with an epiglottic catheter, intramuscular genioglossus electromyography, nasal mask and pneumotachograph to measure OSA severity, arousal threshold and upper airway muscle responsiveness. Next-morning sleepiness and alertness were also assessed. Zolpidem did not change the apnoea-hypopnoea index versus placebo (40.6 ± 12.3 vs. 40.3 ± 16.4 events/h (means ± SD), p = 0.938) or nadir oxyhaemoglobin saturation (79.6 ± 6.6 vs. 79.7 ± 7.4%, p = 0.932), but was well tolerated. Zolpidem increased sleep efficiency by 9 ± 14% (83 ± 11 vs. 73 ± 17%, p = 0.010). Arousal threshold increased by 15 ± 5% with zolpidem throughout all sleep stages (p = 0.010), whereas genioglossus muscle responsiveness did not change. Next-morning sleepiness and alertness were not different between nights. In summary, a single night of 10 mg zolpidem is well tolerated and does not cause next-day impairment in alertness or sleepiness, or overnight hypoxaemia in OSA. However, despite increases in arousal threshold without any change in pharyngeal muscle responsiveness, zolpidem does not alter OSA severity. It does, however, increase sleep efficiency by ∼10%, which may be beneficial in people with OSA and insomnia.
Collapse
Affiliation(s)
- Ludovico Messineo
- Neuroscience Research Australia (NeuRA) and the University of New South Wales, Randwick, Sydney, New South Wales, Australia.,Adelaide Institute for Sleep Health (AISH), Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Danny J Eckert
- Neuroscience Research Australia (NeuRA) and the University of New South Wales, Randwick, Sydney, New South Wales, Australia.,Adelaide Institute for Sleep Health (AISH), Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Richard Lim
- Neuroscience Research Australia (NeuRA) and the University of New South Wales, Randwick, Sydney, New South Wales, Australia.,Adelaide Institute for Sleep Health (AISH), Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Alan Chiang
- Neuroscience Research Australia (NeuRA) and the University of New South Wales, Randwick, Sydney, New South Wales, Australia
| | - Ali Azarbarzin
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham & Women's Hospital & Harvard Medical School, Boston, MA, USA
| | - Sophie G Carter
- Neuroscience Research Australia (NeuRA) and the University of New South Wales, Randwick, Sydney, New South Wales, Australia
| | - Jayne C Carberry
- Adelaide Institute for Sleep Health (AISH), Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, Adelaide, South Australia, Australia
| |
Collapse
|
15
|
Osman AM, Tong BK, Landry SA, Edwards BA, Joosten SA, Hamilton GS, Cori JM, Jordan AS, Stevens D, Grunstein RR, McEvoy RD, Catcheside PG, Eckert DJ. An assessment of a simple clinical technique to estimate pharyngeal collapsibility in people with obstructive sleep apnea. Sleep 2020; 43:5817777. [DOI: 10.1093/sleep/zsaa067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/31/2020] [Indexed: 01/27/2023] Open
Abstract
Abstract
Study Objectives
Quantification of upper airway collapsibility in obstructive sleep apnea (OSA) could help inform targeted therapy decisions. However, current techniques are clinically impractical. The primary aim of this study was to assess if a simple, novel technique could be implemented as part of a continuous positive airway pressure (CPAP) titration study to assess pharyngeal collapsibility.
Methods
A total of 35 participants (15 female) with OSA (mean ± SD apnea–hypopnea index = 35 ± 19 events/h) were studied. Participants first completed a simple clinical intervention during a routine CPAP titration, where CPAP was transiently turned off from the therapeutic pressure for ≤5 breaths/efforts on ≥5 occasions during stable non-rapid eye movement (non-REM) sleep for quantitative assessment of airflow responses (%peak inspiratory flow [PIF] from preceding 5 breaths). Participants then underwent an overnight physiology study to determine the pharyngeal critical closing pressure (Pcrit) and repeat transient drops to zero CPAP to assess airflow response reproducibility.
Results
Mean PIF of breaths 3–5 during zero CPAP on the simple clinical intervention versus the physiology night were similar (34 ± 29% vs. 28 ± 30% on therapeutic CPAP, p = 0.2; range 0%–90% vs. 0%–95%). Pcrit was −1.0 ± 2.5 cmH2O (range −6 to 5 cmH2O). Mean PIF during zero CPAP on the simple clinical intervention and the physiology night correlated with Pcrit (r = −0.7 and −0.9, respectively, p < 0.0001). Receiver operating characteristic curve analysis indicated significant diagnostic utility for the simple intervention to predict Pcrit < −2 and < 0 cmH2O (AUC = 0.81 and 0.92), respectively.
Conclusions
A simple CPAP intervention can successfully discriminate between patients with and without mild to moderately collapsible pharyngeal airways. This scalable approach may help select individuals most likely to respond to non-CPAP therapies.
Collapse
Affiliation(s)
- Amal M Osman
- Neuroscience Research Australia (NeuRA), School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
- Adelaide Institute for Sleep Health, A Flinders Centre of Research Excellence, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
- CRC for Alertness, Safety and Productivity, Melbourne, Australia
| | - Benjamin K Tong
- Neuroscience Research Australia (NeuRA), School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Shane A Landry
- CRC for Alertness, Safety and Productivity, Melbourne, Australia
- Sleep and Circadian Medicine Laboratory, Department of Physiology and School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Bradley A Edwards
- CRC for Alertness, Safety and Productivity, Melbourne, Australia
- Sleep and Circadian Medicine Laboratory, Department of Physiology and School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Simon A Joosten
- Monash Lung and Sleep, Monash Health Clayton, Victoria, Australia
- School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Garun S Hamilton
- Monash Lung and Sleep, Monash Health Clayton, Victoria, Australia
- School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Jennifer M Cori
- CRC for Alertness, Safety and Productivity, Melbourne, Australia
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia
| | - Amy S Jordan
- CRC for Alertness, Safety and Productivity, Melbourne, Australia
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia
| | - David Stevens
- Adelaide Institute for Sleep Health, A Flinders Centre of Research Excellence, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
- CRC for Alertness, Safety and Productivity, Melbourne, Australia
| | - Ronald R Grunstein
- CRC for Alertness, Safety and Productivity, Melbourne, Australia
- Woolcock Institute of Medical Research and the University of Sydney, Glebe, NSW, Australia
| | - R Doug McEvoy
- Adelaide Institute for Sleep Health, A Flinders Centre of Research Excellence, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
- CRC for Alertness, Safety and Productivity, Melbourne, Australia
| | - Peter G Catcheside
- Adelaide Institute for Sleep Health, A Flinders Centre of Research Excellence, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
- CRC for Alertness, Safety and Productivity, Melbourne, Australia
| | - Danny J Eckert
- Neuroscience Research Australia (NeuRA), School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
- Adelaide Institute for Sleep Health, A Flinders Centre of Research Excellence, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
- CRC for Alertness, Safety and Productivity, Melbourne, Australia
| |
Collapse
|
16
|
Chen H, Eckert DJ, van der Stelt PF, Guo J, Ge S, Emami E, Almeida FR, Huynh NT. Phenotypes of responders to mandibular advancement device therapy in obstructive sleep apnea patients: A systematic review and meta-analysis. Sleep Med Rev 2020; 49:101229. [DOI: 10.1016/j.smrv.2019.101229] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022]
|
17
|
Osman AM, Carberry JC, Gandevia SC, Butler JE, Eckert DJ. Changes in pharyngeal collapsibility and genioglossus reflex responses to negative pressure during the respiratory cycle in obstructive sleep apnoea. J Physiol 2020; 598:567-580. [DOI: 10.1113/jp278433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/11/2019] [Indexed: 11/08/2022] Open
Affiliation(s)
- Amal M. Osman
- Neuroscience Research Australia (NeuRA) Sydney NSW Australia
- School of Medical Sciences University of New South Wales Sydney NSW Australia
- Flinders University Adelaide Institute for Sleep Health Bedford Park SA Australia
- CRC for Alertness Safety and Productivity Melbourne Australia
| | - Jayne C. Carberry
- Neuroscience Research Australia (NeuRA) Sydney NSW Australia
- School of Medical Sciences University of New South Wales Sydney NSW Australia
- Flinders University Adelaide Institute for Sleep Health Bedford Park SA Australia
| | - Simon C. Gandevia
- Neuroscience Research Australia (NeuRA) Sydney NSW Australia
- School of Medical Sciences University of New South Wales Sydney NSW Australia
| | - Jane E. Butler
- Neuroscience Research Australia (NeuRA) Sydney NSW Australia
- School of Medical Sciences University of New South Wales Sydney NSW Australia
| | - Danny J. Eckert
- Neuroscience Research Australia (NeuRA) Sydney NSW Australia
- School of Medical Sciences University of New South Wales Sydney NSW Australia
- Flinders University Adelaide Institute for Sleep Health Bedford Park SA Australia
- CRC for Alertness Safety and Productivity Melbourne Australia
| |
Collapse
|
18
|
Phenotypic approach to pharmacotherapy in the management of obstructive sleep apnoea. Curr Opin Pulm Med 2019; 25:594-601. [DOI: 10.1097/mcp.0000000000000628] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|