1
|
Lee PW, Maerkl SJ. Regulatory Components for Bacterial Cell-Free Systems Engineering. ACS Synth Biol 2024; 13:3827-3841. [PMID: 39509282 DOI: 10.1021/acssynbio.4c00574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Cell-free systems are advancing synthetic biology through fast prototyping and modularity. Complex regulatory networks can now be implemented in cell-free systems enabling various applications, such as diagnostic tool development, gene circuit prototyping, and metabolic engineering. As functional complexity increases, the need for regulatory components also grows. This review provides a comprehensive overview of native as well as engineered regulatory components and their use in bacterial cell-free systems.
Collapse
Affiliation(s)
- Pao-Wan Lee
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Sebastian J Maerkl
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
2
|
Hunt AC, Rasor BJ, Seki K, Ekas HM, Warfel KF, Karim AS, Jewett MC. Cell-Free Gene Expression: Methods and Applications. Chem Rev 2024. [PMID: 39700225 DOI: 10.1021/acs.chemrev.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Cell-free gene expression (CFE) systems empower synthetic biologists to build biological molecules and processes outside of living intact cells. The foundational principle is that precise, complex biomolecular transformations can be conducted in purified enzyme or crude cell lysate systems. This concept circumvents mechanisms that have evolved to facilitate species survival, bypasses limitations on molecular transport across the cell wall, and provides a significant departure from traditional, cell-based processes that rely on microscopic cellular "reactors." In addition, cell-free systems are inherently distributable through freeze-drying, which allows simple distribution before rehydration at the point-of-use. Furthermore, as cell-free systems are nonliving, they provide built-in safeguards for biocontainment without the constraints attendant on genetically modified organisms. These features have led to a significant increase in the development and use of CFE systems over the past two decades. Here, we discuss recent advances in CFE systems and highlight how they are transforming efforts to build cells, control genetic networks, and manufacture biobased products.
Collapse
Affiliation(s)
- Andrew C Hunt
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Blake J Rasor
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Kosuke Seki
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Holly M Ekas
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Katherine F Warfel
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, United States
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
3
|
Marpaung DSS, Yap Sinaga AO, Damayanti D. Norovirus detection technologies: From conventional methods to innovative biosensors. Anal Biochem 2024; 698:115750. [PMID: 39674390 DOI: 10.1016/j.ab.2024.115750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
The norovirus (NoV), known for its high contagion rate, is the leading cause of acute gastroenteritis. The development of a NoV vaccine is hindered by significant antigenic variation, lack of suitable models, unknown vaccine protection duration, limited human challenge studies, complex performance patterns, and the absence of a reliable in vitro cultivation system, making prevention, early detection, and control the only effective measures to mitigate outbreaks. This review aims to discuss about several norovirus biosensor for point-of-care analysis. Several innovative biosensors have been developed, including techniques such as electrochemical NoV biosensors, colorimetric NoV biosensors, fluorescence NoV biosensors, CRISPR-based NoV biosensors, and other NoV biosensors. These approaches have detected norovirus in biological samples with high sensitivity and specificity. This biosensing technique holds significant promise, not only in improving the speed and accuracy of diagnostic processes but also in strengthening the global response to norovirus infections, thereby underscoring its pivotal role in public health and disease prevention.
Collapse
Affiliation(s)
- David Septian Sumanto Marpaung
- Department of Biosystems Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung, 35365, Indonesia.
| | - Ayu Oshin Yap Sinaga
- Department of Biology, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung, 35365, Indonesia
| | - Damayanti Damayanti
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung, 35365, Indonesia
| |
Collapse
|
4
|
Kim D, Kim J, Han J, Shin J, Park KS. Split T7 switch-mediated cell-free protein synthesis system for detecting target nucleic acids. Biosens Bioelectron 2024; 261:116517. [PMID: 38924814 DOI: 10.1016/j.bios.2024.116517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Cell-free protein synthesis (CFPS) reactions can be used to detect nucleic acids. However, most CFPS systems rely on a toehold switch and exhibit the following critical limitations: (i) off-target signals due to leaky translation in the absence of target nucleic acids, (ii) a suboptimal detection limit of approximately 30 nM without pre-amplification, and (iii) labor-intensive screening processes due to sequence constraints for the target nucleic acids. To overcome these shortcomings, we developed a new split T7 switch-mediated CFPS system in which the split T7 promoter was applied to a three-way junction structure to selectively initiate transcription-translation only in the presence of target nucleic acids. Both fluorescence and colorimetric detection systems were constructed by employing different reporter proteins. Notably, we introduced the self-complementation of split fluorescent proteins to streamline preparation of the proposed system, enabling versatile applications. Operation of this one-pot approach under isothermal conditions enabled the detection of target nucleic acids at concentrations as low as 10 pM, representing more than a thousand times improvement over previous toehold switch-based approaches. Furthermore, the proposed system demonstrated high specificity in detecting target nucleic acids and compatibility with various reporter proteins encoded in the expression region. By eliminating issues associated with the previous toehold switch system, our split T7 switch-mediated CFPS system could become a core platform for detecting various target nucleic acids.
Collapse
Affiliation(s)
- Doyeon Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Junhyeong Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Jinjoo Han
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Jiye Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Yan Z, Eshed A, Tang AA, Arevalos NR, Ticktin ZM, Chaudhary S, Ma D, McCutcheon G, Li Y, Wu K, Saha S, Alcantar-Fernandez J, Moreno-Camacho JL, Campos-Romero A, Collins JJ, Yin P, Green AA. Rapid, Multiplexed, and Enzyme-Free Nucleic Acid Detection Using Programmable Aptamer-Based RNA Switches. Chem 2024; 10:2220-2244. [PMID: 39036067 PMCID: PMC11259118 DOI: 10.1016/j.chempr.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Rapid, simple, and low-cost diagnostic technologies are crucial tools for combatting infectious disease. We describe a class of aptamer-based RNA switches or aptaswitches that recognize target nucleic acid molecules and initiate folding of a reporter aptamer. Aptaswitches can detect virtually any sequence and provide an intense fluorescent readout without intervening enzymes, generating signals in as little as 5 minutes and enabling detection by eye with minimal equipment. Aptaswitches can be used to regulate folding of seven fluorogenic aptamers, providing a general means of controlling aptamers and an array of multiplexable reporter colors. Coupling isothermal amplification reactions with aptaswitches, we reach sensitivities down to 1 RNA copy/μL in one-pot reactions. Application of multiplexed all-in-one reactions against RNA from clinical saliva samples yields an overall accuracy of 96.67% for detection of SARS-CoV-2 in 30 minutes. Aptaswitches are thus versatile tools for nucleic acid detection that are readily integrated into rapid diagnostic assays.
Collapse
Affiliation(s)
- Zhaoqing Yan
- Department of Biomedical Engineering, Boston University,
Boston, MA, USA
- Molecular Biology, Cell Biology & Biochemistry Program,
Graduate School of Arts and Sciences, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA
02215, USA
| | - Amit Eshed
- Department of Biomedical Engineering, Boston University,
Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA
02215, USA
| | - Anli A. Tang
- Biodesign Center for Molecular Design and Biomimetics at
the Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Molecular Sciences, Arizona State University,
Tempe, AZ, USA
| | - Nery R. Arevalos
- Department of Biomedical Engineering, Boston University,
Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA
02215, USA
| | - Zachary M. Ticktin
- Biodesign Center for Molecular Design and Biomimetics at
the Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Soma Chaudhary
- Biodesign Center for Molecular Design and Biomimetics at
the Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Molecular Sciences, Arizona State University,
Tempe, AZ, USA
| | - Duo Ma
- Biodesign Center for Molecular Design and Biomimetics at
the Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Molecular Sciences, Arizona State University,
Tempe, AZ, USA
| | - Griffin McCutcheon
- Department of Biomedical Engineering, Boston University,
Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA
02215, USA
- Biodesign Center for Molecular Design and Biomimetics at
the Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Yudan Li
- Molecular Biology, Cell Biology & Biochemistry Program,
Graduate School of Arts and Sciences, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA
02215, USA
| | - Kaiyue Wu
- Molecular Biology, Cell Biology & Biochemistry Program,
Graduate School of Arts and Sciences, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA
02215, USA
| | - Sanchari Saha
- Biodesign Center for Molecular Design and Biomimetics at
the Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Molecular Sciences, Arizona State University,
Tempe, AZ, USA
| | | | | | | | - James J. Collins
- Department of Biological Engineering, Massachusetts
Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, MIT,
Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering,
Harvard University, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA,
USA
| | - Peng Yin
- Wyss Institute for Biologically Inspired Engineering,
Harvard University, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School,
Boston, MA, USA
| | - Alexander A. Green
- Department of Biomedical Engineering, Boston University,
Boston, MA, USA
- Molecular Biology, Cell Biology & Biochemistry Program,
Graduate School of Arts and Sciences, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA
02215, USA
- School of Molecular Sciences, Arizona State University,
Tempe, AZ, USA
- Lead contact
| |
Collapse
|
6
|
Wang W, Wang B, Li Q, Tian R, Lu X, Peng Y, Sun J, Bai J, Gao Z, Sun X. Ultrasensitive Detection Strategy of Norovirus Based on a Dual Enhancement Strategy: CRISPR-Responsive Self-Assembled SNA and Isothermal Amplification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4415-4425. [PMID: 38355417 DOI: 10.1021/acs.jafc.4c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Spherical nucleic acids (SNAs) have been used to construct various nanobiosensors with gold nanoparticles (AuNPs) as nuclei. The SNAs play a critical role in biosensing due to their various physical and chemical properties, programmability, and specificity recognition ability. In this study, CRISPR-responsive self-assembled spherical nucleic acid (CRISPR-rsSNA) detection probes were constructed by conjugating fluorescein-labeled probes to the surface of AuNPs to improve the sensing performance. Also, the mechanism of ssDNA and the role of different fluorescent groups in the self-assembly process of CRISPR-rsSNA were explored. Then, CRISPR-rsSNA and reverse transcription-recombinase polymerase amplification (RT-RPA) were combined to develop an ultrasensitive fluorescence-detection strategy for norovirus. In the presence of the virus, the target RNA sequence of the virus was transformed and amplified by RT-RPA. The resulting dsDNA activated the trans-cleavage activity of CRISPR cas12a, resulting in disintegrating the outer nucleic acid structure of the CRISPR-rsSNA at a diffusible rate, which released reporter molecules. Norovirus was quantitated by fluorescence detection. This strategy facilitated the detection of the norovirus at the attomolar level. An RT-RPA kit for norovirus detected would be developed based on this method. The proposed method would be used for the detection of different viruses just by changing the target RNA and crRNA of the CRISPR cas12a system which provided a foundation for high-throughput detection of various substances.
Collapse
Affiliation(s)
- Weiya Wang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, P.R. of China
| | - Botao Wang
- School of Instrument Science and Optoelectronics Engineering, Beihang University, Beijing 100191, China
| | - Qiaofeng Li
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Run Tian
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Xin Lu
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Yuan Peng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, P.R. of China
| | - Jiadi Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Jialei Bai
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, P.R. of China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, P.R. of China
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| |
Collapse
|
7
|
Wu Y, Zhu L, Zhang Y, Xu W. Multidimensional Applications and Challenges of Riboswitches in Biosensing and Biotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304852. [PMID: 37658499 DOI: 10.1002/smll.202304852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/15/2023] [Indexed: 09/03/2023]
Abstract
Riboswitches have received significant attention over the last two decades for their multiple functionalities and great potential for applications in various fields. This article highlights and reviews the recent advances in biosensing and biotherapy. These fields involve a wide range of applications, such as food safety detection, environmental monitoring, metabolic engineering, live cell imaging, wearable biosensors, antibacterial drug targets, and gene therapy. The discovery, origin, and optimization of riboswitches are summarized to help readers better understand their multidimensional applications. Finally, this review discusses the multidimensional challenges and development of riboswitches in order to further expand their potential for novel applications.
Collapse
Affiliation(s)
- Yifan Wu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Yangzi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| |
Collapse
|
8
|
Kim TY, Zhu X, Kim SM, Lim JA, Woo MA, Lim MC, Luo K. A review of nucleic acid-based detection methods for foodborne viruses: Sample pretreatment and detection techniques. Food Res Int 2023; 174:113502. [PMID: 37986417 DOI: 10.1016/j.foodres.2023.113502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 11/22/2023]
Abstract
Viruses are major pathogens that cause food poisoning when ingested via contaminated food and water. Therefore, the development of foodborne virus detection technologies that can be applied throughout the food distribution chain is essential for food safety. A common nucleic acid-based detection method is polymerase chain reaction (PCR), which has become the gold standard for monitoring food contamination by viruses due to its high sensitivity, and availability of commercial kits. However, PCR-based methods are labor intensive and time consuming, and are vulnerable to inhibitors that may be present in food samples. In addition, the methods are restricted with regard to site of analysis due to the requirement of expensive and large equipment for sophisticated temperature regulation and signal analysis procedures. To overcome these limitations, optical and electrical readout biosensors based on nucleic acid isothermal amplification technology and nanomaterials have emerged as alternatives for nucleic acid-based detection of foodborne viruses. Biosensors are promising portable detection tools owing to their easy integration into compact platforms and ability to be operated on-site. However, the complexity of food components necessitates the inclusion of tedious preprocessing steps, and the lack of stability studies on residual food components further restricts the practical application of biosensors as a universal detection method. Here, we summarize the latest advances in nucleic acid-based strategies for the detection of foodborne viruses, including PCR-based and isothermal amplification-based methods, gene amplification-free methods, as well as food pretreatment methods. The principles, strengths/disadvantages, and performance of each method, problems to be solved, and future prospects for the development of a universal detection method are discussed.
Collapse
Affiliation(s)
- Tai-Yong Kim
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Xiaoning Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Se-Min Kim
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Science and Technology, Jeonbuk National University, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Jeong-A Lim
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Min-Ah Woo
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Min-Cheol Lim
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, Korea University of Science and Technology, Daejeon-si 34113, Republic of Korea.
| | - Ke Luo
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China.
| |
Collapse
|
9
|
Morey K, Thomas-Fenderson T, Watson A, Sebesta J, Peebles C, Gentry-Weeks C. Toehold switch plus signal amplification enables rapid detection. Biotechnol J 2023; 18:e2200607. [PMID: 37641181 PMCID: PMC10840733 DOI: 10.1002/biot.202200607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
Recent world events have led to an increased interest in developing rapid and inexpensive clinical diagnostic platforms for viral detection. Here, the development of a cell-free toehold switch-based biosensor, which does not require upstream amplification of target RNA, is described for the detection of RNA viruses. Toehold switches were designed to avoid interfering secondary structure in the viral RNA binding region, mutational hotspots, and cross-reacting sequences of other coronaviruses. Using these design criteria, toehold switches were targeted to a low mutation region of the SARS-CoV-2 genome nonstructural protein 2 (nsp2). The designs were tested in a cell-free system using trigger RNA based on the viral genome and a highly sensitive fluorescent reporter gene, mNeonGreen. The detection sensitivity of our best toehold design, CSU 08, was in the low picomolar range of target (trigger) RNA. To increase the sensitivity of our cell-free biosensor to a clinically relevant level, we developed a modular downstream amplification system that utilizes toehold switch activation of tobacco etch virus (TEV) protease expression. The TEV protease cleaves a quenched fluorescent reporter, both increasing the signal fold change between control and sample and increasing the sensitivity to a clinically relevant low femtomolar range for target RNA detection.
Collapse
Affiliation(s)
- Kevin Morey
- Chemical and Biological Engineering Department, Colorado State University, Fort Collins, CO
| | - Tyler Thomas-Fenderson
- Microbiology, Immunology, and Pathology Department, Colorado State University, Fort Collins, CO
| | - Al Watson
- Chemical and Biological Engineering Department, Colorado State University, Fort Collins, CO
| | - Jacob Sebesta
- Chemical and Biological Engineering Department, Colorado State University, Fort Collins, CO
| | - Christie Peebles
- Chemical and Biological Engineering Department, Colorado State University, Fort Collins, CO
| | - Claudia Gentry-Weeks
- Microbiology, Immunology, and Pathology Department, Colorado State University, Fort Collins, CO
| |
Collapse
|
10
|
Phillips EA, Silverman AD, Joneja A, Liu M, Brown C, Carlson P, Coticchia C, Shytle K, Larsen A, Goyal N, Cai V, Huang J, Hickey JE, Ryan E, Acheampong J, Ramesh P, Collins JJ, Blake WJ. Detection of viral RNAs at ambient temperature via reporter proteins produced through the target-splinted ligation of DNA probes. Nat Biomed Eng 2023; 7:1571-1582. [PMID: 37142844 PMCID: PMC10727988 DOI: 10.1038/s41551-023-01028-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 03/25/2023] [Indexed: 05/06/2023]
Abstract
Nucleic acid assays are not typically deployable in point-of-care settings because they require costly and sophisticated equipment for the control of the reaction temperature and for the detection of the signal. Here we report an instrument-free assay for the accurate and multiplexed detection of nucleic acids at ambient temperature. The assay, which we named INSPECTR (for internal splint-pairing expression-cassette translation reaction), leverages the target-specific splinted ligation of DNA probes to generate expression cassettes that can be flexibly designed for the cell-free synthesis of reporter proteins, with enzymatic reporters allowing for a linear detection range spanning four orders of magnitude and peptide reporters (which can be mapped to unique targets) enabling highly multiplexed visual detection. We used INSPECTR to detect a panel of five respiratory viral targets in a single reaction via a lateral-flow readout and ~4,000 copies of viral RNA via additional ambient-temperature rolling circle amplification of the expression cassette. Leveraging synthetic biology to simplify workflows for nucleic acid diagnostics may facilitate their broader applicability at the point of care.
Collapse
Affiliation(s)
| | | | | | | | - Carl Brown
- Sherlock Biosciences, Watertown, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | | | | | | | | | | | | | | | | | - Emily Ryan
- Sherlock Biosciences, Watertown, MA, USA
| | | | | | - James J Collins
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Institute for Medical Engineering and Science, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Abdul Latif Jameel Clinic for Machine Learning in Health, Massachusetts Institute of Technology, Cambridge, MA, USA
- College of Arts and Sciences, Harvard University, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - William J Blake
- Sherlock Biosciences, Watertown, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
11
|
Abstract
Norovirus (NoV) is known to be the second nonbacterial enteric pathogen after rotavirus that causes acute gastroenteritis. They can be spread from person to person through fecal-oral routes. Infection can lead to severe diarrhea, causing stomach pain, vomiting, and nausea. Rapid detection of NoV can control huge economic and productive losses. Genotyping various emerging NoV strains is important to compare the severity among different strains. Conventional immunological and molecular methods have evolved and contributed to developing detection techniques. Immunological (enzyme-linked immunosorbent assay) and molecular detection (reverse transcriptase polymerase chain reaction [RT-PCR], RT-quantitative PCR, loop-mediated isothermal amplification, nucleic acid sequence-based alignment, recombinase polymerase amplification) methods have been mainly used. The development of biosensors using aptasensor, affinity peptides, nanoparticles, microfluidics, and so on, are currently the most researched topics. The availability of next-generation sequencing technologies has greatly influenced the diagnosis of NoV. The complementation of advanced technologies is helpful in identification of new variants. In this study, techniques that are useful in detecting NoV are discussed. This review has investigated the availability of recent methods used in the detection, present status, and futuristic plan of action in case of outbreak and pandemic.
Collapse
Affiliation(s)
- Pulkit Srivastava
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Dinesh Prasad
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, India
| |
Collapse
|
12
|
Kang X, Zhao C, Chen S, Zhang X, Xue B, Li C, Wang S, Yang X, Xia Z, Xu Y, Huang Y, Qiu Z, Li C, Wang J, Pang J, Shen Z. Development of a cell-free toehold switch for hepatitis A virus type I on-site detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5813-5822. [PMID: 37870419 DOI: 10.1039/d3ay01408h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Picornavirus hepatitis A virus (HAV) is a common cause of hepatitis worldwide. It is spread primarily through contaminated food and water or person-to-person contact. HAV I has been identified as the most common type of human HAV infection. Here, we have developed a cell-free toehold switch sensor for HAV I detection. We screened 10 suitable toehold switch sequences using NUPACK software, and the VP1 gene was used as the target gene. The optimal toehold switch sequence was selected by in vivo expression. The best toehold switch concentration was further found to be 20 nM in a cell-free system. 5 nM trigger RNA activated the toehold switch to generate visible green fluorescence. The minimum detection concentration decreased to 1 pM once combined with NASBA. HAV I trigger RNA could be detected accurately with excellent specificity. In addition, the cell-free toehold switch sensor was verified in HAV I entities. The successful construction of the cell-free toehold switch sensor provided a convenient, rapid, and accurate method for HAV I on-site detection, especially in developing countries, without the involvement of expensive facilities and additional professional operators.
Collapse
Affiliation(s)
- Xiaodan Kang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Chen Zhao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Shuting Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Xi Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Bin Xue
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Chenyu Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Shang Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Xiaobo Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zhiqiang Xia
- The 908th Hospital of Chinese People's Liberation Army Joint Logistic Support Force, Nanchang, 330000, China
| | - Yongchun Xu
- The 908th Hospital of Chinese People's Liberation Army Joint Logistic Support Force, Nanchang, 330000, China
| | - Yongliang Huang
- The 908th Hospital of Chinese People's Liberation Army Joint Logistic Support Force, Nanchang, 330000, China
| | - Zhigang Qiu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Chao Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Jingfeng Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Jian Pang
- The Air Force Hospital of Northern Theater People's Liberation Army, Shenyang 110042, China.
| | - Zhiqiang Shen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| |
Collapse
|
13
|
Jung JK, Rasor BJ, Rybnicky GA, Silverman AD, Standeven J, Kuhn R, Granito T, Ekas HM, Wang BM, Karim AS, Lucks JB, Jewett MC. At-Home, Cell-Free Synthetic Biology Education Modules for Transcriptional Regulation and Environmental Water Quality Monitoring. ACS Synth Biol 2023; 12:2909-2921. [PMID: 37699423 PMCID: PMC11577157 DOI: 10.1021/acssynbio.3c00223] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
As the field of synthetic biology expands, the need to grow and train science, technology, engineering, and math (STEM) practitioners is essential. However, the lack of access to hands-on demonstrations has led to inequalities of opportunity and practice. In addition, there is a gap in providing content that enables students to make their own bioengineered systems. To address these challenges, we develop four shelf-stable cell-free biosensing educational modules that work by simply adding water and DNA to freeze-dried crude extracts of non-pathogenic Escherichia coli. We introduce activities and supporting curricula to teach the structure and function of the lac operon, dose-responsive behavior, considerations for biosensor outputs, and a "build-your-own" activity for monitoring environmental contaminants in water. We piloted these modules with K-12 teachers and 130 high-school students in their classrooms─and at home─without professional laboratory equipment. This work promises to catalyze access to interactive synthetic biology education opportunities.
Collapse
Affiliation(s)
- Jaeyoung K Jung
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Center for Water Research, Northwestern University, Evanston, Illinois 60208, United States
| | - Blake J Rasor
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Grant A Rybnicky
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, United States
| | - Adam D Silverman
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Center for Water Research, Northwestern University, Evanston, Illinois 60208, United States
| | | | - Robert Kuhn
- Centennial High School, Roswell, Georgia 30076, United States
- Innovation Academy STEM High School, Alpharetta, Georgia 30009, United States
| | - Teresa Granito
- Evanston Township High School, Evanston, Illinois 60201, United States
| | - Holly M Ekas
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Brenda M Wang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Julius B Lucks
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Center for Water Research, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, United States
- Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
14
|
Piorino F, Patterson AT, Han Y, Styczynski MP. Plasmid Crosstalk in Cell-Free Expression Systems. ACS Synth Biol 2023; 12:2843-2856. [PMID: 37756020 PMCID: PMC10594874 DOI: 10.1021/acssynbio.3c00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Indexed: 09/28/2023]
Abstract
Although cell-free protein expression has been widely used for the synthesis of single proteins, cell-free synthetic biology has rapidly expanded to new, more complex applications. One such application is the prototyping or implementation of complex genetic networks involving the expression of multiple proteins at precise ratios, often from different plasmids. However, expression of multiple proteins from multiple plasmids may inadvertently result in unexpected, off-target changes to the levels of the proteins being expressed, a phenomenon termed plasmid crosstalk. Here, we show that the effects of plasmid crosstalk─even at the qualitative level of increases vs decreases in protein expression─depend on the concentration of plasmids in the reaction and the type of transcriptional machinery involved in the expression. This crosstalk can have a significant impact on genetic circuitry function and even interpretation of simple experimental results and thus should be taken into consideration during the development of cell-free applications.
Collapse
Affiliation(s)
- Fernanda Piorino
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Alexandra T. Patterson
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Yue Han
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Mark P. Styczynski
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| |
Collapse
|
15
|
Hunt JP, Free TJ, Galiardi J, Watt KM, Wood DW, Bundy BC. Streamlining the Detection of Human Thyroid Receptor Ligand Interactions with XL1-Blue Cell-Free Protein Synthesis and Beta-Galactosidase Fusion Protein Biosensors. Life (Basel) 2023; 13:1972. [PMID: 37895354 PMCID: PMC10608756 DOI: 10.3390/life13101972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Thyroid receptor signaling controls major physiological processes and disrupted signaling can cause severe disorders that negatively impact human life. Consequently, methods to detect thyroid receptor ligands are of great toxicologic and pharmacologic importance. Previously, we reported thyroid receptor ligand detection with cell-free protein synthesis of a chimeric fusion protein composed of the human thyroid receptor beta (hTRβ) receptor activator and a β-lactamase reporter. Here, we report a 60% reduction in sensing cost by reengineering the chimeric fusion protein biosensor to include a reporter system composed of either the full-length beta galactosidase (β-gal), the alpha fragment of β-gal (β-gal-α), or a split alpha fragment of the β-gal (split β-gal-α). These biosensor constructs are deployed using E. coli XL1-Blue cell extract to (1) avoid the β-gal background activity abundant in BL21 cell extract and (2) facilitate β-gal complementation reporter activity to detect human thyroid receptor ligands. These results constitute a promising platform for high throughput screening and potentially the portable detection of human thyroid receptor ligands.
Collapse
Affiliation(s)
- J. Porter Hunt
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Tyler J. Free
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Jackelyn Galiardi
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Kevin M. Watt
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84108, USA
| | - David W. Wood
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Bradley C. Bundy
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
16
|
Zhang XE, Liu C, Dai J, Yuan Y, Gao C, Feng Y, Wu B, Wei P, You C, Wang X, Si T. Enabling technology and core theory of synthetic biology. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1742-1785. [PMID: 36753021 PMCID: PMC9907219 DOI: 10.1007/s11427-022-2214-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/04/2022] [Indexed: 02/09/2023]
Abstract
Synthetic biology provides a new paradigm for life science research ("build to learn") and opens the future journey of biotechnology ("build to use"). Here, we discuss advances of various principles and technologies in the mainstream of the enabling technology of synthetic biology, including synthesis and assembly of a genome, DNA storage, gene editing, molecular evolution and de novo design of function proteins, cell and gene circuit engineering, cell-free synthetic biology, artificial intelligence (AI)-aided synthetic biology, as well as biofoundries. We also introduce the concept of quantitative synthetic biology, which is guiding synthetic biology towards increased accuracy and predictability or the real rational design. We conclude that synthetic biology will establish its disciplinary system with the iterative development of enabling technologies and the maturity of the core theory.
Collapse
Affiliation(s)
- Xian-En Zhang
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Chenli Liu
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Junbiao Dai
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Yingjin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Bian Wu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ping Wei
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Xiaowo Wang
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Bioinformatics Division, Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing, 100084, China.
| | - Tong Si
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
17
|
Yan Z, Tang AA, Eshed A, Ticktin ZM, Chaudhary S, Ma D, McCutcheon G, Li Y, Wu K, Saha S, Alcantar-Fernandez J, Moreno-Camacho JL, Campos-Romero A, Collins JJ, Yin P, Green AA. Rapid and Multiplexed Nucleic Acid Detection using Programmable Aptamer-Based RNA Switches. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.02.23290873. [PMID: 37333364 PMCID: PMC10275000 DOI: 10.1101/2023.06.02.23290873] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Rapid, simple, and low-cost diagnostic technologies are crucial tools for combatting infectious disease. Here, we describe a class of aptamer-based RNA switches called aptaswitches that recognize specific target nucleic acid molecules and respond by initiating folding of a reporter aptamer. Aptaswitches can detect virtually any sequence and provide a fast and intense fluorescent readout, generating signals in as little as 5 minutes and enabling detection by eye with minimal equipment. We demonstrate that aptaswitches can be used to regulate folding of six different fluorescent aptamer/fluorogen pairs, providing a general means of controlling aptamer activity and an array of different reporter colors for multiplexing. By coupling isothermal amplification reactions with aptaswitches, we reach sensitivities down to 1 RNA copy/μL in one-pot reactions. Application of multiplexed one-pot reactions against RNA extracted from clinical saliva samples yields an overall accuracy of 96.67% for detection of SARS-CoV-2 in 30 minutes. Aptaswitches are thus versatile tools for nucleic acid detection that can be readily integrated into rapid diagnostic assays.
Collapse
Affiliation(s)
- Zhaoqing Yan
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Molecular Biology, Cell Biology & Biochemistry Program, Graduate School of Arts and Sciences, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
- These authors contributed equally: Zhaoqing Yan, Anli A. Tang
| | - Anli A. Tang
- Biodesign Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
- These authors contributed equally: Zhaoqing Yan, Anli A. Tang
| | - Amit Eshed
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Zackary M. Ticktin
- Biodesign Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Soma Chaudhary
- Biodesign Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Duo Ma
- Biodesign Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Griffin McCutcheon
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
- Biodesign Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Yudan Li
- Molecular Biology, Cell Biology & Biochemistry Program, Graduate School of Arts and Sciences, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Kaiyue Wu
- Molecular Biology, Cell Biology & Biochemistry Program, Graduate School of Arts and Sciences, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Sanchari Saha
- Biodesign Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | | | | | | | - James J. Collins
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Peng Yin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Alexander A. Green
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Molecular Biology, Cell Biology & Biochemistry Program, Graduate School of Arts and Sciences, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
18
|
Jena S, Gaur D, Dubey NC, Tripathi BP. Advances in paper based isothermal nucleic acid amplification tests for water-related infectious diseases. Int J Biol Macromol 2023:125089. [PMID: 37245760 DOI: 10.1016/j.ijbiomac.2023.125089] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/14/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Water-associated or water-related infectious disease outbreaks are caused by pathogens such as bacteria, viruses, and protozoa, which can be transmitted through contaminated water sources, poor sanitation practices, or insect vectors. Low- and middle-income countries bear the major burden of these infections due to inadequate hygiene and subpar laboratory facilities, making it challenging to monitor and detect infections in a timely manner. However, even developed countries are not immune to these diseases, as inadequate wastewater management and contaminated drinking water supplies can also contribute to disease outbreaks. Nucleic acid amplification tests have proven to be effective for early disease intervention and surveillance of both new and existing diseases. In recent years, paper-based diagnostic devices have made significant progress and become an essential tool in detecting and managing water-associated diseases. In this review, we highlight the importance of paper and its variants as a diagnostic tool and discuss the properties, design modifications, and various paper-based device formats developed and used for detecting water-associated pathogens.
Collapse
Affiliation(s)
- Saikrushna Jena
- Department of Materials Science & Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Divya Gaur
- Department of Materials Science & Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Nidhi C Dubey
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Bijay P Tripathi
- Department of Materials Science & Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
19
|
Hartmann D, Chowdhry R, Smith JM, Booth MJ. Orthogonal Light-Activated DNA for Patterned Biocomputing within Synthetic Cells. J Am Chem Soc 2023; 145:9471-9480. [PMID: 37125650 PMCID: PMC10161232 DOI: 10.1021/jacs.3c02350] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Indexed: 05/02/2023]
Abstract
Cell-free gene expression is a vital research tool to study biological systems in defined minimal environments and has promising applications in biotechnology. Developing methods to control DNA templates for cell-free expression will be important for precise regulation of complex biological pathways and use with synthetic cells, particularly using remote, nondamaging stimuli such as visible light. Here, we have synthesized blue light-activatable DNA parts that tightly regulate cell-free RNA and protein synthesis. We found that this blue light-activated DNA could initiate expression orthogonally to our previously generated ultraviolet (UV) light-activated DNA, which we used to generate a dual-wavelength light-controlled cell-free AND-gate. By encapsulating these orthogonal light-activated DNAs into synthetic cells, we used two overlapping patterns of blue and UV light to provide precise spatiotemporal control over the logic gate. Our blue and UV orthogonal light-activated DNAs will open the door for precise control of cell-free systems in biology and medicine.
Collapse
Affiliation(s)
- Denis Hartmann
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Razia Chowdhry
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Jefferson M. Smith
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Michael J. Booth
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| |
Collapse
|
20
|
Yarra SS, Ashok G, Mohan U. "Toehold Switches; a foothold for Synthetic Biology". Biotechnol Bioeng 2023; 120:932-952. [PMID: 36527224 DOI: 10.1002/bit.28309] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/24/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Toehold switches are de novo designed riboregulators that contain two RNA components interacting through linear-linear RNA interactions, regulating the gene expression. These are highly versatile, exhibit excellent orthogonality, wide dynamic range, and are highly programmable, so can be used for various applications in synthetic biology. In this review, we summarized and discussed the design characteristics and benefits of toehold switch riboregulators over conventional riboregulators. We also discussed applications and recent advancements of toehold switch riboregulators in various fields like gene editing, DNA nanotechnology, translational repression, and diagnostics (detection of microRNAs and some pathogens). Toehold switches, therefore, furnished advancement in synthetic biology applications in various fields with their prominent features.
Collapse
Affiliation(s)
- Sai Sumanjali Yarra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education & Research (NIPER) Kolkata, Kolkata, West Bengal, India
| | - Ganapathy Ashok
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education & Research (NIPER) Kolkata, Kolkata, West Bengal, India
| | - Utpal Mohan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education & Research (NIPER) Kolkata, Kolkata, West Bengal, India
| |
Collapse
|
21
|
Mao C, Mao Y, Zhu X, Chen G, Feng C. Synthetic biology-based bioreactor and its application in biochemical analysis. Crit Rev Anal Chem 2023; 54:2467-2484. [PMID: 36803337 DOI: 10.1080/10408347.2023.2180319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
In the past few years, synthetic biologists have established some biological elements and bioreactors composed of nucleotides under the guidance of engineering methods. Following the concept of engineering, the common bioreactor components in recent years are introduced and compared. At present, biosensors based on synthetic biology have been applied to water pollution monitoring, disease diagnosis, epidemiological monitoring, biochemical analysis and other detection fields. In this paper, the biosensor components based on synthetic bioreactors and reporters are reviewed. In addition, the applications of biosensors based on cell system and cell-free system in the detection of heavy metal ions, nucleic acid, antibiotics and other substances are presented. Finally, the bottlenecks faced by biosensors and the direction of optimization are also discussed.
Collapse
Affiliation(s)
- Changqing Mao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
| | - Yichun Mao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
| | - Xiaoli Zhu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, P. R. China
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
- Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, P. R. China
| | - Chang Feng
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
| |
Collapse
|
22
|
Giakountis A, Stylianidou Z, Zaka A, Pappa S, Papa A, Hadjichristodoulou C, Mathiopoulos KD. Development of Toehold Switches as a Novel Ribodiagnostic Method for West Nile Virus. Genes (Basel) 2023; 14:237. [PMID: 36672977 PMCID: PMC9859090 DOI: 10.3390/genes14010237] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
West Nile virus (WNV) is an emerging neurotropic RNA virus and a member of the genus Flavivirus. Naturally, the virus is maintained in an enzootic cycle involving mosquitoes as vectors and birds that are the principal amplifying virus hosts. In humans, the incubation period for WNV disease ranges from 3 to 14 days, with an estimated 80% of infected persons being asymptomatic, around 19% developing a mild febrile infection and less than 1% developing neuroinvasive disease. Laboratory diagnosis of WNV infection is generally accomplished by cross-reacting serological methods or highly sensitive yet expensive molecular approaches. Therefore, current diagnostic tools hinder widespread surveillance of WNV in birds and mosquitoes that serve as viral reservoirs for infecting secondary hosts, such as humans and equines. We have developed a synthetic biology-based method for sensitive and low-cost detection of WNV. This method relies on toehold riboswitches designed to detect WNV genomic RNA as transcriptional input and process it to GFP fluorescence as translational output. Our methodology offers a non-invasive tool with reduced operating cost and high diagnostic value that can be used for field surveillance of WNV in humans as well as in bird and mosquito populations.
Collapse
Affiliation(s)
- Antonis Giakountis
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis-Mezourlo, 41500 Larissa, Greece
| | - Zoe Stylianidou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis-Mezourlo, 41500 Larissa, Greece
| | - Anxhela Zaka
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis-Mezourlo, 41500 Larissa, Greece
| | - Styliani Pappa
- Department of Microbiology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anna Papa
- Department of Microbiology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | - Kostas D. Mathiopoulos
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis-Mezourlo, 41500 Larissa, Greece
| |
Collapse
|
23
|
Jung KJ, Rasor BJ, Rybnicky GA, Silverman AD, Standeven J, Kuhn R, Granito T, Ekas HM, Wang BM, Karim AS, Lucks JB, Jewett MC. At-home, cell-free synthetic biology education modules for transcriptional regulation and environmental water quality monitoring. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523248. [PMID: 36711593 PMCID: PMC9881948 DOI: 10.1101/2023.01.09.523248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
As the field of synthetic biology expands, the need to grow and train science, technology, engineering, and math (STEM) practitioners is essential. However, the lack of access to hands-on demonstrations has led to inequalities of opportunity and practice. In addition, there is a gap in providing content that enables students to make their own bioengineered systems. To address these challenges, we develop four shelf-stable cell-free biosensing educational modules that work by just-adding-water and DNA to freeze-dried crude extracts of Escherichia coli . We introduce activities and supporting curricula to teach the structure and function of the lac operon, dose-responsive behavior, considerations for biosensor outputs, and a 'build-your-own' activity for monitoring environmental contaminants in water. We piloted these modules with K-12 teachers and 130 high school students in their classrooms - and at home - without professional laboratory equipment or researcher oversight. This work promises to catalyze access to interactive synthetic biology education opportunities.
Collapse
Affiliation(s)
- Kirsten J. Jung
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
- Center for Water Research, Northwestern University, Evanston, IL 60208, USA
| | - Blake J. Rasor
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Grant A. Rybnicky
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, 60208, USA
| | - Adam D. Silverman
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
- Center for Water Research, Northwestern University, Evanston, IL 60208, USA
| | | | - Robert Kuhn
- Centennial High School, Roswell, GA 30076, USA
- Fulton County Schools Innovation Academy, Alpharetta, GA 30009, USA
| | | | - Holly M. Ekas
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Brenda M. Wang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Ashty S. Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Julius B. Lucks
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
- Center for Water Research, Northwestern University, Evanston, IL 60208, USA
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| |
Collapse
|
24
|
Boyd MA, Thavarajah W, Lucks JB, Kamat NP. Robust and tunable performance of a cell-free biosensor encapsulated in lipid vesicles. SCIENCE ADVANCES 2023; 9:eadd6605. [PMID: 36598992 PMCID: PMC9812392 DOI: 10.1126/sciadv.add6605] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/23/2022] [Indexed: 05/21/2023]
Abstract
Cell-free systems have enabled the development of genetically encoded biosensors to detect a range of environmental and biological targets. Encapsulation of these systems in synthetic membranes to form artificial cells can reintroduce features of the cellular membrane, including molecular containment and selective permeability, to modulate cell-free sensing capabilities. Here, we demonstrate robust and tunable performance of a transcriptionally regulated, cell-free riboswitch encapsulated in lipid membranes, allowing the detection of fluoride, an environmentally important molecule. Sensor response can be tuned by varying membrane composition, and encapsulation protects from sensor degradation, facilitating detection in real-world samples. These sensors can detect fluoride using two types of genetically encoded outputs, enabling detection of fluoride at the Environmental Protection Agency maximum contaminant level of 0.2 millimolars. This work demonstrates the capacity of bilayer membranes to confer tunable permeability to encapsulated, genetically encoded sensors and establishes the feasibility of artificial cell platforms to detect environmentally relevant small molecules.
Collapse
Affiliation(s)
- Margrethe A. Boyd
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Walter Thavarajah
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Department of Chemical and Biological Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, USA
- Center for Water Research, Northwestern University, Evanston, IL, USA
| | - Julius B. Lucks
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Department of Chemical and Biological Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, USA
- Center for Water Research, Northwestern University, Evanston, IL, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
- Corresponding author. (N.P.K.); (J.B.L.)
| | - Neha P. Kamat
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
- Corresponding author. (N.P.K.); (J.B.L.)
| |
Collapse
|
25
|
Dong X, Qi S, Khan IM, Sun Y, Zhang Y, Wang Z. Advances in riboswitch-based biosensor as food samples detection tool. Compr Rev Food Sci Food Saf 2023; 22:451-472. [PMID: 36511082 DOI: 10.1111/1541-4337.13077] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/09/2022] [Accepted: 10/25/2022] [Indexed: 12/14/2022]
Abstract
Food safety has always been a hot issue of social concern, and biosensing has been widely used in the field of food safety detection. Compared with traditional aptamer-based biosensors, aptamer-based riboswitch biosensing represents higher precision and programmability. A riboswitch is an elegant example of controlling gene expression, where the target is coupled to the aptamer domain, resulting in a conformational change in the downstream expression domain and determining the signal output. Riboswitch-based biosensing can be extensively applied to the portable real-time detection of food samples. The numerous key features of riboswitch-based biosensing emphasize their sustainability, renewable, and testing, which promises to transform engineering applications in the field of food safety. This review covers recent developments in riboswitch-based biosensors. The brief history, definition, and modular design (regulatory mode, reporter, and expression platform) of riboswitch-based biosensors are explained for better insight into the design and construction. We summarize recent advances in various riboswitch-based biosensors involving theophylline, malachite green, tetracycline, neomycin, fluoride, thrombin, naringenin, ciprofloxacin, and paromomycin, aiming to provide general guidance for the design of riboswitch-based biosensors. Finally, the challenges and prospects are also summarized as a way forward stratagem and signs of progress.
Collapse
Affiliation(s)
- Xiaoze Dong
- State Key Laboratory of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Shuo Qi
- State Key Laboratory of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Yuhan Sun
- State Key Laboratory of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Collaborative innovation center of food safety and quality control in Jiangsu Province, Food, Jiangnan University, Wuxi, China
| |
Collapse
|
26
|
Sánchez-Costa M, López-Gallego F. Solid-Phase Cell-Free Protein Synthesis and Its Applications in Biotechnology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 185:21-46. [PMID: 37306703 DOI: 10.1007/10_2023_226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cell-free systems for the in vitro production of proteins have revolutionized the synthetic biology field. In the last decade, this technology is gaining momentum in molecular biology, biotechnology, biomedicine and even education. Materials science has burst into the field of in vitro protein synthesis to empower the value of existing tools and expand its applications. In this sense, the combination of solid materials (normally functionalized with different biomacromolecules) together with cell-free components has made this technology more versatile and robust. In this chapter, we discuss the combination of solid materials with DNA and transcription-translation machinery to synthesize proteins within compartments, to immobilize and purify in situ the nascent protein, to transcribe and transduce DNAs immobilized on solid surfaces, and the combination of all or some of these strategies.
Collapse
Affiliation(s)
- Mercedes Sánchez-Costa
- Heterogeneous Biocatalysis Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
| | - Fernando López-Gallego
- Heterogeneous Biocatalysis Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain.
| |
Collapse
|
27
|
Patterson AT, Styczynski MP. Rapid and Finely-Tuned Expression for Deployable Sensing Applications. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 186:141-161. [PMID: 37316621 DOI: 10.1007/10_2023_223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Organisms from across the tree of life have evolved highly efficient mechanisms for sensing molecules of interest using biomolecular machinery that can in turn be quite valuable for the development of biosensors. However, purification of such machinery for use in in vitro biosensors is costly, while the use of whole cells as in vivo biosensors often leads to long sensor response times and unacceptable sensitivity to the chemical makeup of the sample. Cell-free expression systems overcome these weaknesses by removing the requirements associated with maintaining living sensor cells, allowing for increased function in toxic environments and rapid sensor readout at a production cost that is often more reasonable than purification. Here, we focus on the challenge of implementing cell-free protein expression systems that meet the stringent criteria required for them to serve as the basis for field-deployable biosensors. Fine-tuning expression to meet these requirements can be achieved through careful selection of the sensing and output elements, as well as through optimization of reaction conditions via tuning of DNA/RNA concentrations, lysate preparation methods, and buffer conditions. Through careful sensor engineering, cell-free systems can continue to be successfully used for the production of tightly regulated, rapidly expressing genetic circuits for biosensors.
Collapse
Affiliation(s)
- Alexandra T Patterson
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mark P Styczynski
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
28
|
Gonzales DT, Suraritdechachai S, Tang TYD. Compartmentalized Cell-Free Expression Systems for Building Synthetic Cells. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 186:77-101. [PMID: 37306700 DOI: 10.1007/10_2023_221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
One of the grand challenges in bottom-up synthetic biology is the design and construction of synthetic cellular systems. One strategy toward this goal is the systematic reconstitution of biological processes using purified or non-living molecular components to recreate specific cellular functions such as metabolism, intercellular communication, signal transduction, and growth and division. Cell-free expression systems (CFES) are in vitro reconstitutions of the transcription and translation machinery found in cells and are a key technology for bottom-up synthetic biology. The open and simplified reaction environment of CFES has helped researchers discover fundamental concepts in the molecular biology of the cell. In recent decades, there has been a drive to encapsulate CFES reactions into cell-like compartments with the aim of building synthetic cells and multicellular systems. In this chapter, we discuss recent progress in compartmentalizing CFES to build simple and minimal models of biological processes that can help provide a better understanding of the process of self-assembly in molecularly complex systems.
Collapse
Affiliation(s)
- David T Gonzales
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | | | - T -Y Dora Tang
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Center for Systems Biology Dresden, Dresden, Germany.
- Physics of Life, Cluster of Excellence, TU Dresden, Dresden, Germany.
| |
Collapse
|
29
|
da Silva SJR, do Nascimento JCF, Germano Mendes RP, Guarines KM, Targino Alves da Silva C, da Silva PG, de Magalhães JJF, Vigar JRJ, Silva-Júnior A, Kohl A, Pardee K, Pena L. Two Years into the COVID-19 Pandemic: Lessons Learned. ACS Infect Dis 2022; 8:1758-1814. [PMID: 35940589 PMCID: PMC9380879 DOI: 10.1021/acsinfecdis.2c00204] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible and virulent human-infecting coronavirus that emerged in late December 2019 in Wuhan, China, causing a respiratory disease called coronavirus disease 2019 (COVID-19), which has massively impacted global public health and caused widespread disruption to daily life. The crisis caused by COVID-19 has mobilized scientists and public health authorities across the world to rapidly improve our knowledge about this devastating disease, shedding light on its management and control, and spawned the development of new countermeasures. Here we provide an overview of the state of the art of knowledge gained in the last 2 years about the virus and COVID-19, including its origin and natural reservoir hosts, viral etiology, epidemiology, modes of transmission, clinical manifestations, pathophysiology, diagnosis, treatment, prevention, emerging variants, and vaccines, highlighting important differences from previously known highly pathogenic coronaviruses. We also discuss selected key discoveries from each topic and underline the gaps of knowledge for future investigations.
Collapse
Affiliation(s)
- Severino Jefferson Ribeiro da Silva
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil.,Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Jessica Catarine Frutuoso do Nascimento
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Renata Pessôa Germano Mendes
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Klarissa Miranda Guarines
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Caroline Targino Alves da Silva
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Poliana Gomes da Silva
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Jurandy Júnior Ferraz de Magalhães
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil.,Department of Virology, Pernambuco State Central Laboratory (LACEN/PE), 52171-011 Recife, Pernambuco, Brazil.,University of Pernambuco (UPE), Serra Talhada Campus, 56909-335 Serra Talhada, Pernambuco, Brazil.,Public Health Laboratory of the XI Regional Health, 56912-160 Serra Talhada, Pernambuco, Brazil
| | - Justin R J Vigar
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Abelardo Silva-Júnior
- Institute of Biological and Health Sciences, Federal University of Alagoas (UFAL), 57072-900 Maceió, Alagoas, Brazil
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, United Kingdom
| | - Keith Pardee
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada.,Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Lindomar Pena
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| |
Collapse
|
30
|
Pan Y, Mao K, Hui Q, Wang B, Cooper J, Yang Z. Paper-based devices for rapid diagnosis and wastewater surveillance. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Copeland CE, Kim J, Copeland PL, Heitmeier CJ, Kwon YC. Characterizing a New Fluorescent Protein for a Low Limit of Detection Sensing in the Cell-Free System. ACS Synth Biol 2022; 11:2800-2810. [PMID: 35850511 PMCID: PMC9396652 DOI: 10.1021/acssynbio.2c00180] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cell-free protein synthesis-based biosensors have been developed as highly accurate, low-cost biosensors. However, since most biomarkers exist at low concentrations in various types of biopsies, the biosensor's dynamic range must be increased in the system to achieve low limits of detection necessary while deciphering from higher background signals. Many attempts to increase the dynamic range have relied on amplifying the input signal from the analyte, which can lead to complications of false positives. In this study, we aimed to increase the protein synthesis capability of the cell-free protein synthesis system and the output signal of the reporter protein to achieve a lower limit of detection. We utilized a new fluorescent protein, mNeonGreen, which produces a higher output than those commonly used in cell-free biosensors. Optimizations of DNA sequence and the subsequent cell-free protein synthesis reaction conditions allowed characterizing protein expression variability by given DNA template types, reaction environment, and storage additives that cause the greatest time constraint on designing the cell-free biosensor. Finally, we characterized the fluorescence kinetics of mNeonGreen compared to the commonly used reporter protein, superfolder green fluorescent protein. We expect that this finely tuned cell-free protein synthesis platform with the new reporter protein can be used with sophisticated synthetic gene circuitry networks to increase the dynamic range of a cell-free biosensor to reach lower detection limits and reduce the false-positive proportion.
Collapse
Affiliation(s)
- Caroline E Copeland
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Jeehye Kim
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Pearce L Copeland
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Chloe J Heitmeier
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Yong-Chan Kwon
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States.,Louisiana State University Agricultural Center, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
32
|
Harbaugh SV, Silverman AD, Chushak YG, Zimlich K, Wolfe M, Thavarajah W, Jewett MC, Lucks JB, Chávez JL. Engineering a Synthetic Dopamine-Responsive Riboswitch for In Vitro Biosensing. ACS Synth Biol 2022; 11:2275-2283. [PMID: 35775197 DOI: 10.1021/acssynbio.1c00560] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The detection of chemicals using natural allosteric transcription factors is a powerful strategy for point-of-use molecular sensing, particularly using fieldable cell-free gene expression (CFE) systems. However, the reliance of detection schemes on characterized protein-based sensors limits the number of measurable analytes. One alternative solution to this issue is to develop new sensors by generating RNA aptamers against the target analyte and then incorporating them directly into a riboswitch scaffold for ligand-inducible genetic control of a reporter protein. However, this strategy has not generated more than a handful of successful portable cell-free molecular sensors. To address this gap, here we convert dopamine-binding aptamers into functional dopamine-sensing riboswitches that regulate gene expression in a freeze-dried CFE reaction. We then develop an assay for direct detection and semi-quantification of dopamine in human urine. We anticipate that this work will be broadly applicable for converting many in vitro-generated RNA aptamers into fieldable molecular diagnostics.
Collapse
Affiliation(s)
- Svetlana V Harbaugh
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Adam D Silverman
- Sherlock Biosciences, Boston, Massachusetts 02135, United States
| | - Yaroslav G Chushak
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States.,Henry M. Jackson Foundation, Dayton, Ohio 45433, United States
| | - Kathryn Zimlich
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States.,Henry M. Jackson Foundation, Dayton, Ohio 45433, United States
| | - Monica Wolfe
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States.,UES, Inc., Dayton, Ohio 45432, United States
| | - Walter Thavarajah
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States.,Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States.,International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Julius B Lucks
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States.,Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States.,International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Jorge L Chávez
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| |
Collapse
|
33
|
Baabu PRS, Srinivasan S, Nagarajan S, Muthamilselvan S, Selvi T, Suresh RR, Palaniappan A. End-to-end computational approach to the design of RNA biosensors for detecting miRNA biomarkers of cervical cancer. Synth Syst Biotechnol 2022; 7:802-814. [PMID: 35475253 PMCID: PMC9014444 DOI: 10.1016/j.synbio.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 02/25/2022] [Accepted: 03/23/2022] [Indexed: 12/18/2022] Open
Abstract
Cervical cancer is a global public health subject as it affects women in the reproductive ages, and accounts for the second largest burden among cancer patients worldwide with an unforgiving 50% mortality rate. Relatively scant awareness and limited access to effective diagnosis have led to this enormous disease burden, calling for point-of-care, minimally invasive diagnosis methods. Here, an end-to-end quantitative unified pipeline for diagnosis has been developed, beginning with identification of optimal biomarkers, concurrent design of toehold switch sensors, and finally simulation of the designed diagnostic circuits to assess performance. Using miRNA expression data in the public domain, we identified miR-21–5p and miR-20a-5p as blood-based miRNA biomarkers specific to early-stage cervical cancer employing a multi-tier algorithmic screening. Synthetic riboregulators called toehold switches specific to the biomarker panel were then designed. To predict the dynamic range of toehold switches for use in genetic circuits as biosensors, we used a generic grammar of these switches, and built a neural network model of dynamic range using thermodynamic features derived from mRNA secondary structure and interaction. Second-generation toehold switches were used to overcome the design challenges associated with miRNA biomarkers. The resultant model yielded an adj. R2 ∼0.71, outperforming earlier models of toehold-switch dynamic range. Reaction kinetics modelling was performed to predict the sensitivity of the second-generation toehold switches to the miRNA biomarkers. Simulations showed a linear response between 10 nM and 100 nM before saturation. Our study demonstrates an end-to-end computational workflow for the efficient design of genetic circuits geared towards the effective detection of unique genomic/nucleic-acid signatures. The approach has the potential to replace iterative experimental trial and error, and focus time, money, and efforts. All software including the toehold grammar parser, neural network model and reaction kinetics simulation are available as open-source software (https://github.com/SASTRA-iGEM2019) under GNU GPLv3 licence.
Collapse
|
34
|
Carr AR, Dopp JL, Wu K, Sadat Mousavi P, Jo YR, McNeley CE, Lynch ZT, Pardee K, Green AA, Reuel NF. Toward Mail-in-Sensors for SARS-CoV-2 Detection: Interfacing Gel Switch Resonators with Cell-Free Toehold Switches. ACS Sens 2022; 7:806-815. [PMID: 35254055 DOI: 10.1021/acssensors.1c02450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The COVID-19 pandemic has emphasized the importance of widespread testing to control the spread of infectious diseases. The rapid development, scale-up, and deployment of viral and antibody detection methods since the beginning of the pandemic have greatly increased testing capacity. Desirable attributes of detection methods are low product costs, self-administered protocols, and the ability to be mailed in sealed envelopes for the safe analysis and subsequent logging to public health databases. Herein, such a platform is demonstrated with a screen-printed, inductor-capacitor (LC) resonator as a transducer and a toehold switch coupled with cell-free expression as the biological selective recognition element. In the presence of the N-gene from SARS-CoV-2, the toehold switch relaxes, protease enzyme is expressed, and it degrades a gelatin switch that ultimately shifts the resonant frequency of the planar resonant sensor. The gelatin switch resonator (GSR) can be analyzed through a sealed envelope allowing for assessment without the need for careful sample handling with personal protective equipment or the need for workup with other reagents. The toehold switch used in this sensor demonstrated selectivity to SARS-CoV-2 virus over three seasonal coronaviruses and SARS-CoV-1, with a limit of detection of 100 copies/μL. The functionality of the platform and assessment in a sealed envelope with an automated scanner is shown with overnight shipment, and further improvements are discussed to increase signal stability and further simplify user protocols toward a mail-in platform.
Collapse
Affiliation(s)
- Adam R. Carr
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Jared L. Dopp
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Kaiyue Wu
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | | | - Yeong Ran Jo
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Ciara E. McNeley
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Zachary T. Lynch
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Keith Pardee
- University of Toronto, Leslie Dan Faculty of Pharmacy, Toronto, ON M5S 1A1, Canada
| | - Alexander A. Green
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Nigel F. Reuel
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
35
|
Multi-arm RNA junctions encoding molecular logic unconstrained by input sequence for versatile cell-free diagnostics. Nat Biomed Eng 2022; 6:298-309. [PMID: 35288660 PMCID: PMC8940621 DOI: 10.1038/s41551-022-00857-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022]
Abstract
Applications of RNA-based molecular logic have been hampered by sequence constraints imposed on the input and output of the circuits. Here we show that the sequence constraints can be substantially reduced by appropriately encoded multi-arm junctions of single-stranded RNA structures. To conditionally activate RNA translation, we integrated multi-arm junctions, self-assembled upstream of a regulated gene and designed to unfold sequentially in response to different RNA inputs, with motifs of loop-initiated RNA activators that function independently of the sequence of the input RNAs and that reduce interference with the output gene. We used the integrated RNA system and sequence-independent input RNAs to execute two-input and three-input OR and AND logic in Escherichia coli, and designed paper-based cell-free colourimetric assays that accurately identified two human immunodeficiency virus (HIV) subtypes (by executing OR logic) in amplified synthetic HIV RNA as well as severe acute respiratory syndrome coronavirus-2 (via two-input AND logic) in amplified RNA from saliva samples. The sequence-independent molecular logic enabled by the integration of multi-arm junction RNAs with motifs for loop-initiated RNA activators may be broadly applicable in biotechnology.
Collapse
|
36
|
Cell-Free Paper-Based Analysis of Gut Microbiota and Host Biomarkers. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2433:351-374. [PMID: 34985756 DOI: 10.1007/978-1-0716-1998-8_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The gut microbiome and its interactions with the host have been shown to affect several aspects of human health and disease. Investigations to elucidate these mechanisms typically involve sequence analysis of fecal samples. To support these studies, we present methods to design RNA toehold switch sensors to detect microbial and host transcripts. The sensors are embedded in paper-based, cell-free reactions that enable affordable and rapid analysis of microbiome samples.
Collapse
|
37
|
Batista AC, Levrier A, Soudier P, Voyvodic PL, Achmedov T, Reif-Trauttmansdorff T, DeVisch A, Cohen-Gonsaud M, Faulon JL, Beisel CL, Bonnet J, Kushwaha M. Differentially Optimized Cell-Free Buffer Enables Robust Expression from Unprotected Linear DNA in Exonuclease-Deficient Extracts. ACS Synth Biol 2022; 11:732-746. [PMID: 35034449 DOI: 10.1021/acssynbio.1c00448] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The use of linear DNA templates in cell-free systems promises to accelerate the prototyping and engineering of synthetic gene circuits. A key challenge is that linear templates are rapidly degraded by exonucleases present in cell extracts. Current approaches tackle the problem by adding exonuclease inhibitors and DNA-binding proteins to protect the linear DNA, requiring additional time- and resource-intensive steps. Here, we delete the recBCD exonuclease gene cluster from the Escherichia coli BL21 genome. We show that the resulting cell-free systems, with buffers optimized specifically for linear DNA, enable near-plasmid levels of expression from σ70 promoters in linear DNA templates without employing additional protection strategies. When using linear or plasmid DNA templates at the buffer calibration step, the optimal potassium glutamate concentrations obtained when using linear DNA were consistently lower than those obtained when using plasmid DNA for the same extract. We demonstrate the robustness of the exonuclease deficient extracts across seven different batches and a wide range of experimental conditions across two different laboratories. Finally, we illustrate the use of the ΔrecBCD extracts for two applications: toehold switch characterization and enzyme screening. Our work provides a simple, efficient, and cost-effective solution for using linear DNA templates in cell-free systems and highlights the importance of specifically tailoring buffer composition for the final experimental setup. Our data also suggest that similar exonuclease deletion strategies can be applied to other species suitable for cell-free synthetic biology.
Collapse
Affiliation(s)
- Angelo Cardoso Batista
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis Institute, 78352 Jouy-en-Josas, France
| | - Antoine Levrier
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, University of Montpellier, 34090 Montpellier, France
| | - Paul Soudier
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis Institute, 78352 Jouy-en-Josas, France
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, University of Montpellier, 34090 Montpellier, France
| | - Peter L. Voyvodic
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, University of Montpellier, 34090 Montpellier, France
| | - Tatjana Achmedov
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | | | - Angelique DeVisch
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, University of Montpellier, 34090 Montpellier, France
| | - Martin Cohen-Gonsaud
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, University of Montpellier, 34090 Montpellier, France
| | - Jean-Loup Faulon
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis Institute, 78352 Jouy-en-Josas, France
| | - Chase L. Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), 97080 Würzburg, Germany
- Medical Faculty, University of Würzburg, 97080 Würzburg, Germany
| | - Jerome Bonnet
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, University of Montpellier, 34090 Montpellier, France
| | - Manish Kushwaha
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis Institute, 78352 Jouy-en-Josas, France
| |
Collapse
|
38
|
|
39
|
Wu K, Yan Z, Green AA. Computational Design of RNA Toehold-Mediated Translation Activators. Methods Mol Biol 2022; 2518:33-47. [PMID: 35666437 DOI: 10.1007/978-1-0716-2421-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Translation activators are an important class of riboregulators that respond to nucleic acid signals by activating gene expression. Toehold switches and single-nucleotide-specific programmable riboregulators (SNIPRs) are two types of translation activators that can detect nearly any nucleic acid sequence using interactions initiated by single-stranded domains known as toeholds. Toehold switches operate with high dynamic range, orthogonality, and programmability, making them capable of detecting a variety of pathogens in paper-based cell-free diagnostic assays. SNIPRs are designed to enable the accurate detection of single-nucleotide mutations, making them valuable tools for mutation and drug-resistance assays. Here we describe the computational design process for generating toehold switches and SNIPRs active against different pathogens and mutations of interest. Such riboregulators can be deployed in paper-based diagnostic assays to enable rapid and low-cost disease detection.
Collapse
Affiliation(s)
- Kaiyue Wu
- Molecular Biology, Cell Biology and Biochemistry Graduate Program, Graduate School of Arts and Sciences, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Zhaoqing Yan
- Molecular Biology, Cell Biology and Biochemistry Graduate Program, Graduate School of Arts and Sciences, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Alexander A Green
- Molecular Biology, Cell Biology and Biochemistry Graduate Program, Graduate School of Arts and Sciences, Boston University, Boston, MA, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
40
|
Zambrano RAI, Hernandez-Perez C, Takahashi MK. RNA Structure Prediction, Analysis, and Design: An Introduction to Web-Based Tools. Methods Mol Biol 2022; 2518:253-269. [PMID: 35666450 DOI: 10.1007/978-1-0716-2421-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Understanding RNA structure has become critical in the study of RNA in their roles as mediators of biological processes. To aid in these studies, computational algorithms that utilize thermodynamics have been developed to predict RNA secondary structure. Due to the importance of intermolecular interactions, the algorithms have been expanded to determine and predict RNA-RNA hybridization. This chapter discusses popular webservers with the tools for RNA secondary structure prediction, RNA-RNA hybridization, and design. We address key features that distinguish common-functioning programs and their purposes for the interests of the user. Ultimately, we hope this review elucidates web-based tools researchers may take advantage of in their investigations of RNA structure and function.
Collapse
Affiliation(s)
| | | | - Melissa K Takahashi
- Department of Biology, California State University Northridge, Northridge, CA, USA.
| |
Collapse
|
41
|
Wu K, Green AA. Detection of Norovirus Using Paper-Based Cell-Free Systems. Methods Mol Biol 2022; 2433:375-390. [PMID: 34985757 DOI: 10.1007/978-1-0716-1998-8_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Norovirus infections are the leading cause of foodborne illness and human gastroenteritis, afflicting hundreds of millions of people each year. Molecular assays with the capacity to detect norovirus without expensive equipment and with high sensitivity and specificity represent useful tools to track and contain future outbreaks. Here we describe how norovirus can be detected in low-cost paper-based cell-free reactions. These assays combine freeze-dried, thermostable cell-free transcription-translation reactions with toehold switch riboregulators designed to target the norovirus genome, enabling convenient colorimetric assay readouts. Coupling cell-free reactions with synbody-based viral enrichment and isothermal amplification enables detection of norovirus from clinical samples down to concentrations as low as 270 zM. These diagnostic tests are promising assays for confronting norovirus outbreaks and can be adapted to a variety of other human pathogens.
Collapse
Affiliation(s)
- Kaiyue Wu
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Molecular Biology, Cell Biology and Biochemistry Program, Graduate School of Arts and Sciences, Boston University, Boston, MA, USA
| | - Alexander A Green
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
42
|
Bialy RM, Mainguy A, Li Y, Brennan JD. Functional nucleic acid biosensors utilizing rolling circle amplification. Chem Soc Rev 2022; 51:9009-9067. [DOI: 10.1039/d2cs00613h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functional nucleic acids regulate rolling circle amplification to produce multiple detection outputs suitable for the development of point-of-care diagnostic devices.
Collapse
Affiliation(s)
- Roger M. Bialy
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
| | - Alexa Mainguy
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
| | - Yingfu Li
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - John D. Brennan
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
| |
Collapse
|
43
|
Cui WY, Yoo HJ, Li YG, Baek C, Min J. Facile and foldable point-of-care biochip for nucleic acid based-colorimetric detection of murine norovirus in fecal samples using G-quadruplex and graphene oxide coated microbeads. Biosens Bioelectron 2021; 199:113878. [PMID: 34915211 DOI: 10.1016/j.bios.2021.113878] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 11/02/2022]
Abstract
Norovirus is one of the most common causes of gastroenteritis, a disease characterized by diarrhea, vomiting, and stomach pain. A rapid on-site identification of the virus from fecal samples of patients is a prerequisite for accurate medical management. Here, we demonstrate a rapid nucleic acid-based detection platform as an on-site biosensing tool that can concentrate viruses from fecal samples. Moreover, it can perform RNA extraction and identification, and signal amplification using G-quadruplex and hemin containing DNA probes (G-DNA probes) and graphene oxide (GO)-coated microbeads. Briefly, murine noroviruses are lysed without chemicals on the surface of the GO microbeads. Subsequently, the target RNA is hybridized with G-DNA probes, and the resultant RNA/G-DNA probe complex is separated from unbound G-DNA probes using GO beads and is mixed with the detection buffer (ABTS/H2O2). Presence of murine noroviruses causes a colorimetric change of the buffer from colorless to green. Thus, we integrated all processes required to detect murine noroviruses in stool samples in a simple foldable microfluidic chip. Moreover, it can detect 101 pfu of the virus in 30 min in a fecal sample.
Collapse
Affiliation(s)
- Wen Ying Cui
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul, 06974, South Korea
| | - Hyun Jin Yoo
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul, 06974, South Korea
| | - Yun Guang Li
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul, 06974, South Korea
| | - Changyoon Baek
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul, 06974, South Korea
| | - Junhong Min
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul, 06974, South Korea.
| |
Collapse
|
44
|
Zhang G, Hu S, Jia X. Highly Sensitive Whole-Cell Biosensor for Cadmium Detection Based on a Negative Feedback Circuit. Front Bioeng Biotechnol 2021; 9:799781. [PMID: 34926437 PMCID: PMC8678453 DOI: 10.3389/fbioe.2021.799781] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/17/2021] [Indexed: 01/14/2023] Open
Abstract
Although many whole-cell biosensors (WCBs) for the detection of Cd2+ have been developed over the years, most lack sensitivity and specificity. In this paper, we developed a Cd2+ WCB with a negative feedback amplifier in P. putida KT2440. Based on the slope of the linear detection curve as a measure of sensitivity, WCB with negative feedback amplifier greatly increased the output signal of the reporter mCherry, resulting in 33% greater sensitivity than in an equivalent WCB without the negative feedback circuit. Moreover, WCB with negative feedback amplifier exhibited increased Cd2+ tolerance and a lower detection limit of 0.1 nM, a remarkable 400-fold improvement compared to the WCB without the negative feedback circuit, which is significantly below the World Health Organization standard of 27 nM (0.003 mg/L) for cadmium in drinking water. Due to the superior amplification of the output signal, WCB with negative feedback amplifier can provide a detectable signal in a much shorter time, and a fast response is highly preferable for real field applications. In addition, the WCB with negative feedback amplifier showed an unusually high specificity for Cd2+ compared to other metal ions, giving signals with other metals that were between 17.6 and 41.4 times weaker than with Cd2+. In summary, the negative feedback amplifier WCB designed in this work meets the requirements of Cd2+ detection with very high sensitivity and specificity, which also demonstrates that genetic negative feedback amplifiers are excellent tools for improving the performance of WCBs.
Collapse
Affiliation(s)
- Guangbao Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Shuting Hu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xiaoqiang Jia
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
| |
Collapse
|
45
|
Hunt JP, Galiardi J, Free TJ, Yang SO, Poole D, Zhao EL, Andersen JL, Wood DW, Bundy BC. Mechanistic discoveries and simulation-guided assay optimization of portable hormone biosensors with cell-free protein synthesis. Biotechnol J 2021; 17:e2100152. [PMID: 34761537 DOI: 10.1002/biot.202100152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 10/19/2021] [Accepted: 11/08/2021] [Indexed: 01/10/2023]
Abstract
Nuclear receptors (NRs) influence nearly every system of the body and our lives depend on correct NR signaling. Thus, a key environmental and pharmaceutical quest is to identify and detect chemicals which interact with nuclear hormone receptors, including endocrine disrupting chemicals (EDCs), therapeutic receptor modulators, and natural hormones. Previously reported biosensors of nuclear hormone receptor ligands facilitated rapid detection of NR ligands using cell-free protein synthesis (CFPS). In this work, the advantages of CFPS are further leveraged and combined with kinetic analysis, autoradiography, and western blot to elucidate the molecular mechanism of this biosensor. Additionally, mathematical simulations of enzyme kinetics are used to optimize the biosensor assay, ultimately lengthening its readable window by five-fold and improving sensor signal strength by two-fold. This approach enabled the creation of an on-demand thyroid hormone biosensor with an observable color-change readout. This mathematical and experimental approach provides insight for engineering rapid and field-deployable CFPS biosensors and promises to improve methods for detecting natural hormones, therapeutic receptor modulators, and EDCs.
Collapse
Affiliation(s)
- John Porter Hunt
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Jackelyn Galiardi
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Tyler J Free
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Seung Ook Yang
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Daniel Poole
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Emily Long Zhao
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Joshua L Andersen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - David W Wood
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Bradley C Bundy
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| |
Collapse
|
46
|
|
47
|
Tabuchi T, Yokobayashi Y. Cell-free riboswitches. RSC Chem Biol 2021; 2:1430-1440. [PMID: 34704047 PMCID: PMC8496063 DOI: 10.1039/d1cb00138h] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/26/2021] [Indexed: 12/16/2022] Open
Abstract
The emerging community of cell-free synthetic biology aspires to build complex biochemical and genetic systems with functions that mimic or even exceed those in living cells. To achieve such functions, cell-free systems must be able to sense and respond to the complex chemical signals within and outside the system. Cell-free riboswitches can detect chemical signals via RNA-ligand interaction and respond by regulating protein synthesis in cell-free protein synthesis systems. In this article, we review synthetic cell-free riboswitches that function in both prokaryotic and eukaryotic cell-free systems reported to date to provide a current perspective on the state of cell-free riboswitch technologies and their limitations.
Collapse
Affiliation(s)
- Takeshi Tabuchi
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University Onna Okinawa 904-0495 Japan
| | - Yohei Yokobayashi
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University Onna Okinawa 904-0495 Japan
| |
Collapse
|
48
|
Chakravarthy A, Nandakumar A, George G, Ranganathan S, Umashankar S, Shettigar N, Palakodeti D, Gulyani A, Ramesh A. Engineered RNA biosensors enable ultrasensitive SARS-CoV-2 detection in a simple color and luminescence assay. Life Sci Alliance 2021; 4:4/12/e202101213. [PMID: 34593555 PMCID: PMC8500229 DOI: 10.26508/lsa.202101213] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/11/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022] Open
Abstract
This work reports engineered toehold RNA–based biosensors for COVID-19 diagnostics, with a simple color or luminescence readout that makes it easily deployable in both well-equipped labs as well as low resource settings. The continued resurgence of the COVID-19 pandemic with multiple variants underlines the need for diagnostics that are adaptable to the virus. We have developed toehold RNA–based sensors across the SARS-CoV-2 genome for direct and ultrasensitive detection of the virus and its prominent variants. Here, isothermal amplification of a fragment of SARS-CoV-2 RNA coupled with activation of our biosensors leads to a conformational switch in the sensor. This leads to translation of a reporter protein, for example, LacZ or nano-lantern that is easily detected using color/luminescence. By optimizing RNA amplification and biosensor design, we have generated a highly sensitive diagnostic assay that is capable of detecting as low as 100 copies of viral RNA with development of bright color. This is easily visualized by the human eye and quantifiable using spectrophotometry. Finally, this PHAsed NASBA-Translation Optical Method (PHANTOM) using our engineered RNA biosensors efficiently detects viral RNA in patient samples. This work presents a powerful and universally accessible strategy for detecting COVID-19 and variants. This strategy is adaptable to further viral evolution and brings RNA bioengineering center-stage.
Collapse
Affiliation(s)
- Anirudh Chakravarthy
- InStem-Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India.,SASTRA University, Tirumalaisamudram, Thanjavur, India
| | - Anirudh Nandakumar
- National Centre for Biological Sciences, GKVK Campus, Bangalore, India.,Trans-Disciplinary Health Sciences and Technology, Bangalore, India
| | - Geen George
- InStem-Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | | | | | - Nishan Shettigar
- National Centre for Biological Sciences, GKVK Campus, Bangalore, India
| | - Dasaradhi Palakodeti
- InStem-Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Akash Gulyani
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Arati Ramesh
- National Centre for Biological Sciences, GKVK Campus, Bangalore, India
| |
Collapse
|
49
|
Arce A, Guzman Chavez F, Gandini C, Puig J, Matute T, Haseloff J, Dalchau N, Molloy J, Pardee K, Federici F. Decentralizing Cell-Free RNA Sensing With the Use of Low-Cost Cell Extracts. Front Bioeng Biotechnol 2021; 9:727584. [PMID: 34497801 PMCID: PMC8419261 DOI: 10.3389/fbioe.2021.727584] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Cell-free gene expression systems have emerged as a promising platform for field-deployed biosensing and diagnostics. When combined with programmable toehold switch-based RNA sensors, these systems can be used to detect arbitrary RNAs and freeze-dried for room temperature transport to the point-of-need. These sensors, however, have been mainly implemented using reconstituted PURE cell-free protein expression systems that are difficult to source in the Global South due to their high commercial cost and cold-chain shipping requirements. Based on preliminary demonstrations of toehold sensors working on lysates, we describe the fast prototyping of RNA toehold switch-based sensors that can be produced locally and reduce the cost of sensors by two orders of magnitude. We demonstrate that these in-house cell lysates provide sensor performance comparable to commercial PURE cell-free systems. We further optimize these lysates with a CRISPRi strategy to enhance the stability of linear DNAs by knocking-down genes responsible for linear DNA degradation. This enables the direct use of PCR products for fast screening of new designs. As a proof-of-concept, we develop novel toehold sensors for the plant pathogen Potato Virus Y (PVY), which dramatically reduces the yield of this important staple crop. The local implementation of low-cost cell-free toehold sensors could enable biosensing capacity at the regional level and lead to more decentralized models for global surveillance of infectious disease.
Collapse
Affiliation(s)
- Anibal Arce
- ANID – Millennium Science Initiative Program – Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Schools of Engineering, Institute for Biological and Medical Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Chiara Gandini
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Juan Puig
- ANID – Millennium Science Initiative Program – Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Schools of Engineering, Institute for Biological and Medical Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tamara Matute
- ANID – Millennium Science Initiative Program – Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Schools of Engineering, Institute for Biological and Medical Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jim Haseloff
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | | | - Jenny Molloy
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Keith Pardee
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Fernán Federici
- ANID – Millennium Science Initiative Program – Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Schools of Engineering, Institute for Biological and Medical Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
- FONDAP Center for Genome Regulation, Santiago, Chile
| |
Collapse
|
50
|
Zaczek-Moczydlowska MA, Beizaei A, Dillon M, Campbell K. Current state-of-the-art diagnostics for Norovirus detection: Model approaches for point-of-care analysis. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|