1
|
Maggioni D, Schuchert P, Ostrovsky AN, Schiavo A, Hoeksema BW, Pica D, Piraino S, Arrigoni R, Seveso D, Montalbetti E, Galli P, Montano S. Systematics and character evolution of capitate hydrozoans. Cladistics 2024; 40:107-134. [PMID: 38112464 DOI: 10.1111/cla.12567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/06/2023] [Accepted: 11/19/2023] [Indexed: 12/21/2023] Open
Abstract
Capitate hydrozoans are a morphologically and ecologically diverse hydrozoan suborder, currently including about 200 species. Being grouped in two clades, Corynida and Zancleida, these hydrozoans still show a number of taxonomic uncertainties at the species, genus and family levels. Many Capitata species established symbiotic relationships with other benthic organisms, including bryozoans, other cnidarians, molluscs and poriferans, as well as with planktonic dinoflagellates for mixotrophic relationships and with bacteria for thiotrophic ectosymbioses. Our study aimed at providing an updated and comprehensive phylogeny reconstruction of the suborder, at modelling the evolution of selected morphological and ecological characters, and at testing evolutionary relationships between the symbiotic lifestyle and the other characters, by integrating taxonomic, ecological and evolutionary data. The phylogenetic hypotheses here presented shed light on the evolutionary relationships within Capitata, with most families and genera being recovered as monophyletic. The genus Zanclea and family Zancleidae, however, were divided into four divergent clades, requiring the establishment of the new genus Apatizanclea and the new combinations for species in Zanclea and Halocoryne genera. The ancestral state reconstructions revealed that symbiosis arose multiple times in the evolutionary history of the Capitata, and that homoplasy is a common phenomenon in the group. Correlations were found between the evolution of symbiosis and morphological characters, such as the perisarc. Overall, our results highlighted that the use of genetic data and a complete knowledge of the life cycles are strongly needed to disentangle taxonomic and systematic issues in capitate hydrozoans. Finally, the colonization of tropical habitat appears to have influenced the evolution of a symbiotic lifestyle, playing important roles in the evolution of the group.
Collapse
Affiliation(s)
- Davide Maggioni
- Department of Biotechnology and Biosciences (BtBs), University of Milano-Bicocca, Milan, 20126, Italy
- Department of Earth and Environmental Science (DISAT), University of Milano-Bicocca, Milan, 20126, Italy
- Marine Research and Higher Education (MaRHE) Center, University of Milano-Bicocca, Faafu Magoodhoo Island, 12030, Maldives
| | | | - Andrew N Ostrovsky
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
- Department of Palaeontology, Faculty of Earth Sciences, Geography and Astronomy, University of Vienna, Vienna, 1090, Austria
| | - Andrea Schiavo
- Department of Electronics, Information and Bioengineering, Polytechnic University of Milan, Milan, 20133, Italy
| | - Bert W Hoeksema
- Marine Evolution and Ecology Group, Naturalis Biodiversity Center, Leiden, 2333 CR, The Netherlands
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, 9747 AG, The Netherlands
| | - Daniela Pica
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, Amendolara, 87071, Italy
| | - Stefano Piraino
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, 73100, Italy
- National Interuniversity Consortium for Marine Science (CoNISMa), Rome, 00196, Italy
- National Biodiversity Future Center (NBFC), Palermo, 90133, Italy
| | - Roberto Arrigoni
- Department of Biology and Evolution of Marine Organisms (BEOM), Genoa Marine Centre (GMC), Stazione Zoologica Anton Dohrn - National Institute of Marine Biology, Ecology and Biotechnology, Genoa, 16126, Italy
| | - Davide Seveso
- Department of Earth and Environmental Science (DISAT), University of Milano-Bicocca, Milan, 20126, Italy
- Marine Research and Higher Education (MaRHE) Center, University of Milano-Bicocca, Faafu Magoodhoo Island, 12030, Maldives
- National Biodiversity Future Center (NBFC), Palermo, 90133, Italy
| | - Enrico Montalbetti
- Department of Earth and Environmental Science (DISAT), University of Milano-Bicocca, Milan, 20126, Italy
- Marine Research and Higher Education (MaRHE) Center, University of Milano-Bicocca, Faafu Magoodhoo Island, 12030, Maldives
| | - Paolo Galli
- Department of Earth and Environmental Science (DISAT), University of Milano-Bicocca, Milan, 20126, Italy
- Marine Research and Higher Education (MaRHE) Center, University of Milano-Bicocca, Faafu Magoodhoo Island, 12030, Maldives
- National Biodiversity Future Center (NBFC), Palermo, 90133, Italy
| | - Simone Montano
- Department of Earth and Environmental Science (DISAT), University of Milano-Bicocca, Milan, 20126, Italy
- Marine Research and Higher Education (MaRHE) Center, University of Milano-Bicocca, Faafu Magoodhoo Island, 12030, Maldives
- National Biodiversity Future Center (NBFC), Palermo, 90133, Italy
| |
Collapse
|
2
|
El Rahmany WS, Blackstone NW. Morphological, Genetic, and Physiological Effects of Nutrient Manipulation on a Colonial Marine Hydroid. ECOLOGICAL AND EVOLUTIONARY PHYSIOLOGY 2024; 97:1-10. [PMID: 38717367 DOI: 10.1086/729053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
AbstractThe availability of environmental nutrients is an existential constraint for heterotrophic organisms and is thus expected to impact numerous biochemical and physiological features. The continuously proliferative polyp stage of colonial hydroids provides a useful model to study these features, allowing genetically identical replicates to be compared. Two groups of colonies of Eirene sp., defined by different feeding treatments, were grown by explanting the same founder colony onto cover glass. Colonies of both treatments were allowed to grow continuously by explanting them onto new cover glass as they reached the edge of the existing surface. The nutrient-abundant polyps grew faster and produced more clumped or "sheet-like" colonies. Compared to the founder colony, the nutrient-abundant colonies exhibited more mutations (i.e., single-nucleotide polymorphisms) than the nutrient-scarce colonies. Nevertheless, these differences were not commensurate with the differences in growth. Using a polarographic electrode, we found that the nutrient-abundant colonies exhibited lower rates of oxygen uptake relative to total protein. The probe 2',7'-dichlorodihydrofluorescein diacetate and fluorescent microscopy allowed visualization of the mitochondrion-rich cells at the base of the polyps and showed that the nutrient-abundant colonies exhibited greater amounts of reactive oxygen species than the nutrient-scarce colonies. Parallels to the Warburg effect-aerobic glycolysis, diminished oxygen uptake, and lactate secretion-found in human cancers and other proliferative cells may be suggested. However, little is known about anaerobic metabolism in cnidarians. Examination of oxygen uptake suggests an anaerobic threshold at a roughly 1-mg/L oxygen concentration. Nutrient-abundant colonies may respond more dramatically to this threshold than nutrient-scarce colonies.
Collapse
|
3
|
Carral-Murrieta CO, Marques AC, Serviere-Zaragoza E, Estrada-González MC, Cunha AF, Fernandez MO, Mazariegos-Villarreal A, León-Cisneros K, López-Vivas J, Agüero J, Mendoza-Becerril MA. A survey of epibiont hydrozoans on Sargassum. PeerJ 2023; 11:e15423. [PMID: 37273545 PMCID: PMC10237180 DOI: 10.7717/peerj.15423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 04/25/2023] [Indexed: 06/06/2023] Open
Abstract
The brown alga Sargassum provides a natural substrate occupied by hydrozoans in shallow marine waters. A global count in 2007 listed 39 epibiotic species of Hydrozoa growing on Sargassum, but more studies have been published since, therefore, an update is timely, particularly due to the increased abundance of Sargassum in the Caribbean. This review, based on a recent literature survey and new records from Mexico, includes 133 publications of epibiotic hydrozoans on Sargassum spanning 220 years, from 1802 to 2022. A total of 131 hydrozoan species were recorded on 26 species of Sargassum, most belonging to the subclass Hydroidolina (130), with only one record of a trachyline medusa (Gonionemus vertens, subclass Trachylinae). Most publications centered on the Tropical Atlantic, where the greatest number of hydrozoan species (67 species) were recorded. All hydrozoan species possess a hydrorhiza, except one hydromedusae species that attach to Sargassum via adhesive tentacles. Most of the hydrozoan species associated with Sargassum exhibited a benthic life cycle (93 species) and are comprised of erect, branched colonies (67 species) and large hydrothecae (69 species). Although the number of studies of epibiotic hydrozoans on Sargassum has increased since the mid-20th century, nevertheless hydrozoan richness has not reached an asymptote. Therefore, more sampling of Sargassum species would likely identify more hydrozoan species associated with Sargassum, especially among benthic Sargassum, and might help reveal potential biogeographical and ecological patterns between Sargassum and hydrozoan epibionts.
Collapse
Affiliation(s)
| | - Antonio C. Marques
- Departamento de Zoologia, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Elisa Serviere-Zaragoza
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, Baja California Sur, Mexico
| | | | - Amanda F. Cunha
- Departamento de Biologia Animal, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Marina O. Fernandez
- Departamento de Zoologia, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | | | - Karla León-Cisneros
- Departamento Académico de Ciencias Marinas y Costeras, Universidad Autónoma de Baja California Sur, La Paz, Baja California Sur, Mexico
| | - Juan López-Vivas
- Departamento Académico de Ciencias Marinas y Costeras, Universidad Autónoma de Baja California Sur, La Paz, Baja California Sur, Mexico
| | - José Agüero
- Medusozoa México, La Paz, Baja California Sur, Mexico
| | | |
Collapse
|
4
|
Beckmann LM, Soto-Angel JJ, Hosia A, Martell L. Odd family reunion: DNA barcoding reveals unexpected relationship between three hydrozoan species. PeerJ 2023; 11:e15118. [PMID: 37065693 PMCID: PMC10100810 DOI: 10.7717/peerj.15118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/02/2023] [Indexed: 04/18/2023] Open
Abstract
Knowledge of life histories is crucial for understanding ecological and evolutionary processes, but for many hydrozoan species only incomplete life cycles have been described due to challenges in linking hydromedusae with their polyp stages. Using a combination of DNA barcoding, morphology, and ecological information, we describe for the first time the polyp stage of Halopsis ocellata Agassiz, 1865 and re-describe that of Mitrocomella polydiademata (Romanes, 1876). Campanulinid hydroids referable to Lafoeina tenuis Sars, 1874 and collected in the same biogeographic region as the type locality of this species are shown to be the polyp stage of these two mitrocomid hydromedusae. The nominal species L. tenuis thus is a species complex that includes the polyp stage of medusae belonging to at least two genera currently placed in a different family. Consistent morphological and ecological differences were found between the polyps linked to each of these two hydromedusae, but molecular results suggest that yet other species may have morphologically similar hydroids. Polyps morphologically identified to L. tenuis are therefore better referred to as Lafoeina tenuis-type until further associations are resolved, particularly when occurring outside of the area of distribution of H. ocellata and M. polydiademata. Molecular identification integrated with traditional taxonomy is confirmed as an effective approach to link inconspicuous stages of marine invertebrates with hitherto unknown life cycles, especially in often-overlooked taxa. Disentangling the relationships between L. tenuis, H. ocellata, and M. polydiademata lays the ground for future research aimed at resolving the taxonomy and systematics of the enigmatic families Mitrocomidae and Campanulinidae.
Collapse
|
5
|
Calder DR, Carlton JT, Keith I, Ashton GV, Larson K, Ruiz GM, Herrera E, Golfin G. Biofouling hydroids (Cnidaria: Hydrozoa) from a Tropical Eastern Pacific island, with remarks on their biogeography. J NAT HIST 2022. [DOI: 10.1080/00222933.2022.2068387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Dale R. Calder
- Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada
- Department of Invertebrate Zoology, Royal British Columbia Museum, Victoria, British Columbia, Canada
| | - James T. Carlton
- Williams College-Mystic Seaport Ocean & Coastal Studies Program, Mystic, CT, USA
| | - Inti Keith
- Charles Darwin Research Station, Charles Darwin Foundation, Santa Cruz, Ecuador
| | - Gail V. Ashton
- Smithsonian Environmental Research Center, Edgewater, MD and Tiburon, CA, USA
| | - Kristen Larson
- Smithsonian Environmental Research Center, Edgewater, MD and Tiburon, CA, USA
| | - Gregory M. Ruiz
- Smithsonian Environmental Research Center, Edgewater, MD and Tiburon, CA, USA
| | - Esteban Herrera
- Sistema Nacional de Áreas de Conservación/Área de Conservación Marina, Cocos, Costa Rica
| | - Geiner Golfin
- Sistema Nacional de Áreas de Conservación/Área de Conservación Marina, Cocos, Costa Rica
| |
Collapse
|
6
|
OUP accepted manuscript. Zool J Linn Soc 2022. [DOI: 10.1093/zoolinnean/zlac036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
CALDER DALER, FAUCCI ANUSCHKA. Shallow water hydroids (Cnidaria, Hydrozoa) from the 2002 NOWRAMP cruise to the Northwestern Hawaiian Islands. Zootaxa 2021; 5085:1-73. [DOI: 10.11646/zootaxa.5085.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Indexed: 11/04/2022]
Abstract
Forty-two species of hydroids, excluding stylasterids, are reported in the present collection from the Northwestern Hawaiian Islands. Of these, four are anthoathecates and 38 are leptothecates. Among the latter, Sertularella affinicostata and Monotheca gibbosa are described as new species. The binomen Halopteris longibrachia is proposed as a new replacement name for Plumularia polymorpha var. sibogae Billard, 1913, an invalid junior primary homonym of P. sibogae Billard, 1911. Based largely on evidence from earlier molecular phylogenies, the genus Disertasia Neppi, 1917 is resurrected to accommodate species including Dynamena crisioides Lamouroux, 1824, Sertularia disticha Bosc, 1802, and Sia. moluccana Pictet, 1893. Sertularella robusta Coughtrey, 1876 is an invalid junior primary homonym of Sla. gayi var. robusta Allman, 1874a, and has been replaced here by the binomen Sla. quasiplana Trebilcock, 1928, originally described as Sla. robusta var. quasiplana Trebilcock, 1928. Clytia hummelincki (Leloup, 1935) is referred to the synonymy of its senior subjective synonym, C. brevithecata (Thornely, 1900). Following Reversal of Precedence provisions in the International Code of Zoological Nomenclature to preserve prevailing usage of binomena, the familiar names Sia. disticha Bosc, 1802 (also known as Dynamena disticha) and Lytocarpia phyteuma (Stechow, 1919b) are designated nomena protecta and assigned precedence over their virtually unknown senior synonyms Hydra quinternana Bosc, 1797 and Aglaophenia clavicula Whitelegge, 1899, respectively, names now reduced to the status of nomena oblita. Twenty species are reported for the first time from Hawaii [Eudendrium merulum Watson, 1985, Phialellidae (undetermined), Hebella sp., Hebellopsis scandens (Bale, 1888), H. sibogae Billard, 1942, Clytia brevithecata, C. linearis (Thornely, 1900), C. cf. noliformis (McCrady, 1859), Halecium sp., Sla. affinicostata, Sla. angulosa Bale, 1894, Pasya heterodonta (Jarvis, 1922), Tridentata orthogonalis (Gibbons & Ryland, 1989), Pycnotheca producta (Bale, 1881), Monotheca gibbosa, H. longibrachia, A. postdentata Billard, 1913, A. suensonii Jäderholm, 1896, A. whiteleggei Bale, 1888, and L. flexuosa (Lamouroux, 1816)]. Sertularia orthogonalis, reported for only the third time worldwide, is assigned to the genus Tridentata Stechow, 1920. Hydroids of the NOWRAMP 2002 collection consisted largely of presumptive widespread species, with over 75% of them having been reported elsewhere in the tropical Indo-west Pacific region.
Collapse
|
8
|
Biodiversity and biogeography of hydroids across marine ecoregions and provinces of southern South America and Antarctica. Polar Biol 2021. [DOI: 10.1007/s00300-021-02909-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Galea HR, Maggioni D. An integrative study of some species of Gonaxia Vervoort, 1993 from off New Caledonia, with the establishment of Gonaxiidae as a new family of thecate hydroids (Cnidaria: Hydrozoa). Zootaxa 2021; 5004:401-429. [PMID: 34811300 DOI: 10.11646/zootaxa.5004.3.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Indexed: 11/04/2022]
Abstract
Ten species belonging to the genus Gonaxia Vervoort, 1993 occur in recent collections gathered by KANACONO (2016), KANADEEP (2017) and KANADEEP 2 (2019) expeditions of the French Tropical Deep-Sea Benthos Program in deep waters of the New Caledonian region. They were studied using the classical, morphological approach, supplemented by the first genetic characterization of the genus undertaken so far. Two species are previously undescribed, namely G. incisa Galea, sp. nov. and G. solenoscyphoides Galea, sp. nov. Additional notes on the remaining species are provided, notably the discovery of the female gonothecae of G. crassicaulis Vervoort, 1993 and G. perplexa Vervoort, 1993. Lofty colonies, with distinctive cladia-bearing branches spirally-arranged around the stem, assignable to the recently-described G. plumularioides Galea, 2016 actually represent fully-developed colonies of G. errans Vervoort, 1993, as demonstrated using molecular markers, the latter nominal species having priority. Its unusual, club-shaped, longitudinally-ridged gonothecae, fully free from the stem, are described for the first time. Supplementary notes on the hydrotheca of G. crassicaulis Vervoort, 1993 are provided, together with the description of a distinctive gutter of perisarc channeling the coenosarc of the colony along the lumen of both the stem and cladia. A multi-locus phylogenetic hypothesis of the Macrocolonia supports the establishment of the family Gonaxiidae Maggioni, fam. nov., to accommodate the species dealt with herein.
Collapse
Affiliation(s)
- Horia R Galea
- Hydrozoan Research Laboratory, 405 Chemin Les Gatiers, 83170 Tourves, France..
| | - Davide Maggioni
- Universit degli Studi di Milano-Bicocca, Dipartimento di Scienze dellAmbiente e della Terra, Piazza della Scienza 1, 20126 Milano, Italy. Universit degli Studi di Milano-Bicocca, Marine and High Education (MaRHE) Center, 12030 Faafu Magoodhoo, Republic of the Maldives..
| |
Collapse
|
10
|
Seo JS, Eom HJ, Cho JK, Kang HS, Rhee JS. The linear mitochondrial genome of commensal hydroid Eutima japonica ( Cnidaria, Hydrozoa, Eirenidae). MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:1082-1084. [PMID: 33796747 PMCID: PMC7995878 DOI: 10.1080/23802359.2021.1899869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Here, we present the whole mitochondrial genome of commensal hydroid Eutima japonica McCrady 1859 (family Eirinidae); this is the first specimen of the family to have its mitogenome sequenced. The linear mitogenome is 15,315 bp in length and consists of 13 protein-coding genes (PCGs), large and small ribosomal subunits (rRNA), methionine and tryptophan transfer RNA (tRNA) genes (trnM and trnW), and a partial copy of cytochrome oxidase subunit I (cox1) pseudogene, as is typical for the class Hydrozoa. Nucleotide sequences of two cox1 genes at two ends of the linear mitogenome form a part of inverted terminal repeat. The overall genomic structure and gene arrangement of 13 PCGs were identical to the reported mitochondrial genomes of hydrozoans, except for the positions of two tRNA genes. Phylogenetic analysis of E. japonica 13 PCGs and other cnidarians recovers a closest relationship with the derived cluster of two hydrozoans, Laomedea flexuosa and Obelia longissimi within Leptothecata.
Collapse
Affiliation(s)
- Jung Soo Seo
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong, South Korea
| | - Hey-Jin Eom
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon, South Korea
| | - Jae-Kwon Cho
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong, South Korea
| | - Hyun-Sil Kang
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong, South Korea
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon, South Korea.,Research Institute of Basic Sciences, Incheon National University, Incheon, South Korea
| |
Collapse
|
11
|
Song X, Ruthensteiner B, Lyu M, Liu X, Wang J, Han J. Advanced Cambrian hydroid fossils (Cnidaria: Hydrozoa) extend the medusozoan evolutionary history. Proc Biol Sci 2021; 288:20202939. [PMID: 33529559 DOI: 10.1098/rspb.2020.2939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Primitive cnidarians are crucial for elucidating the early evolution of metazoan body plans and life histories in the late Neoproterozoic and Palaeozoic. The highest complexity of both evolutionary aspects within cnidarians is found in extant hydrozoans. Many colonial hydrozoans coated with chitinous exoskeletons have the potential to form fossils; however, only a few fossils possibly representing hydroids have been reported, which still require scrutiny. Here, we present an exceptionally well-preserved hydroid found in the Upper Cambrian Fengshan Formation in northern China. It was originally interpreted as a problematic graptolite with an uncertain systematic position. Based on three characteristic morphological traits shared with extant hydroids (with paired hydrothecae, regular hydrocaulus internodes and special intrathecal origin pattern of hydrocladium), we propose this fossil hydroid as a new genus, Palaeodiphasia gen. nov., affiliated with the advanced monophyletic hydrozoan clade Macrocolonia typically showing loss of the medusa stage. More Macrocolonia fossils reviewed here indicate that this life strategy of medusa loss has been achieved already as early as the Middle Devonian. The early stratigraphical appearance of such advanced hydroid contrasts with previous molecular hypotheses regarding the timing of medusozoan evolution, and may be indicative for understanding the Ediacaran cnidarian radiation.
Collapse
Affiliation(s)
- Xikun Song
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, People's Republic of China
| | | | - Mingxin Lyu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Xi Liu
- Northwest University Museum, Northwest University, Xi'an 710069, People's Republic of China
| | - Jian Wang
- Xi'an Center of Geological Survey, China Geological Survey, Xi'an 710054, People's Republic of China
| | - Jian Han
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, Xi'an 710069, People's Republic of China
| |
Collapse
|
12
|
Penney MS, Rawlings TA. An Examination of Shallow-Water Hydroids (Cnidaria, Hydrozoa, Hydroidolina) in Cape Breton, Nova Scotia, Using Morphology and DNA Barcoding. Northeast Nat (Steuben) 2021. [DOI: 10.1656/045.028.m1801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Matthew S.A. Penney
- Department of Biology, Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2, Canada
| | - Timothy A. Rawlings
- Department of Biology, Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2, Canada
| |
Collapse
|
13
|
Cunha AF, Collins AG, Marques AC. When morphometry meets taxonomy: morphological variation and species boundaries in Proboscoida (Cnidaria: Hydrozoa). Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlz166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Abstract
Species delimitation in marine taxa is often problematic given large intraspecific variation. Based on extensive, recently published genetic sampling from specimens of the hydrozoan families Campanulariidae, Clytiidae and Obeliidae, we evaluate morphological variation in this group, correlating morphometric and phylogenetic patterns for species delimitation. Several species of Campanulariidae are confidently delimited based on differences in size (e.g. Bonneviella species, Tulpa tulipifera and Rhizocaulus verticillatus), while others are re-identified and corroborated based on differences in perisarc thickness (e.g. Silicularia rosea, Orthopyxis and Campanularia species). In Clytiidae, the length and diameter of hydrothecae, height of hydrothecal cusps and perisarc thickness delimit the species Clytia linearis, C. elsaeoswaldae and C. noliformis from others. However, few characters reliably differentiate the clades associated with the nominal species C. gracilis and C. hemisphaerica. In Obeliidae, Obelia geniculata is distinctive in its higher perisarc thickness, and corroborated as a widely distributed species. Obelia longissima and clades refered to O. dichotoma are subtly distinguished, showing a few differences in size and branching of colonies. The taxonomic implications of these results are discussed. With a few exceptions, species can be delimited based on morphometric patterns, once morphological variation is compared.
Collapse
Affiliation(s)
- Amanda F Cunha
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Allen G Collins
- National Systematics Laboratory, National Marine Fisheries Service (NMFS), National Museum of Natural History, Smithsonian Institution, Washington, D.C., USA
| | - Antonio C Marques
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Cartwright P, Travert MK, Sanders SM. The evolution and development of coloniality in hydrozoans. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 336:293-299. [PMID: 32798274 DOI: 10.1002/jez.b.22996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 12/21/2022]
Abstract
Hydrozoan colonies display a variety of shapes and sizes including encrusting, upright, and pelagic forms. Phylogenetic patterns reveal a complex evolutionary history of these distinct colony forms, as well as colony loss. Within a species, phenotypic variation in colonies as a response to changing environmental cues and resources has been documented. The patterns of branching of colony specific tissue, called stolons in encrusting colonies and stalks in upright colonies, are likely under the control of signaling mechanisms whose changing expression in evolution and development are responsible for the diversity of hydrozoan colony forms. Although mechanisms of polyp development have been well studied, little research has focused on colony development and patterning. In the few studies that investigated mechanisms governing colony patterning, the Wnt signaling pathway has been implicated. The diversity of colony form, evolutionary patterns, and mechanisms of colony variation in Hydrozoa are reviewed here.
Collapse
Affiliation(s)
- Paulyn Cartwright
- Department of Evolution and Ecology, University of Kansas, Lawrence, Kansas, USA
| | - Matthew K Travert
- Department of Evolution and Ecology, University of Kansas, Lawrence, Kansas, USA
| | - Steven M Sanders
- Department of Evolution and Ecology, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
15
|
Calder DR, Drew DJ. The Hydrozoan Taxa (Cnidaria) of Addison Emery Verrill (1839–1926), with a Checklist of His Records of Hydroids and Hydromedusae. BULLETIN OF THE PEABODY MUSEUM OF NATURAL HISTORY 2020. [DOI: 10.3374/014.061.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Daniel J. Drew
- Peabody Museum of Natural History, Yale University, New Haven, CT 06520-8118 USA —
| |
Collapse
|
16
|
Prudkovsky AA, Ekimova IA, Neretina TV. A case of nascent speciation: unique polymorphism of gonophores within hydrozoan Sarsia lovenii. Sci Rep 2019; 9:15567. [PMID: 31664107 PMCID: PMC6820802 DOI: 10.1038/s41598-019-52026-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/11/2019] [Indexed: 11/10/2022] Open
Abstract
Revealing the mechanisms of life cycle changes is critical for understanding the processes driving hydrozoan evolution. Our analysis of mitochondrial (COI, 16S) and nuclear (ITS1 and ITS2) gene fragments resulted in the discovery of unique polymorphism in the life cycle of Sarsia lovenii from the White Sea. This polymorphic species exhibits two types of gonophores: hydroids produce both free-swimming medusae and attached medusoids (phenotypic polymorphism). Our phylogenetic analysis revealed the intrinsic genetic structure of S. lovenii (genetic polymorphism). Two haplogroups inhabiting the White Sea differ in their reproductive modes. Haplogroup 1 produces attached medusoids, and haplogroup 2 produces free-swimming medusae. Our experiments indicated the possibility of free interbreeding between haplogroups that likely is a rare event in the sea. We propose that inter-haplogroup crossing of S. lovenii in the White Sea may be limited by discordance in periods of spawning or by spatial differences in habitat of spawning specimens. Our finding can be interpreted as a case of nascent speciation that illustrates the patterns of repeated medusa loss in hydrozoan evolution. Life cycle traits of S. lovenii may be useful for elucidating the molecular mechanisms of medusa reduction in hydrozoans.
Collapse
Affiliation(s)
| | - Irina A Ekimova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana V Neretina
- Pertsov White Sea Biological Station, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
17
|
Govindarajan AF, Cooney L, Whittaker K, Bloch D, Burdorf RM, Canning S, Carter C, Cellan SM, Eriksson FAA, Freyer H, Huston G, Hutchinson S, McKeegan K, Malpani M, Merkle-Raymond A, Ouellette K, Petersen-Rockney R, Schultz M, Siuda ANS. The distribution and mitochondrial genotype of the hydroid Aglaophenia latecarinata is correlated with its pelagic Sargassum substrate type in the tropical and subtropical western Atlantic Ocean. PeerJ 2019; 7:e7814. [PMID: 31637119 PMCID: PMC6802585 DOI: 10.7717/peerj.7814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/02/2019] [Indexed: 11/20/2022] Open
Abstract
The pelagic brown macroalga Sargassum supports rich biological communities in the tropical and subtropical Atlantic region, including a variety of epiphytic invertebrates that grow on the Sargassum itself. The thecate hydroid Aglaophenia latecarinata is commonly found growing on some, but not all, Sargassum forms. In this study, we examined the relationship between A. latecarinata and its pelagic Sargassum substrate across a broad geographic area over the course of 4 years (2015–2018). The distribution of the most common Sargassum forms that we observed (Sargassum fluitans III and S. natans VIII) was consistent with the existence of distinct source regions for each. We found that A. latecarinata hydroids were abundant on both S. natans VIII and S. fluitans III, and also noted a rare observation of A. latecarinata on S. natans I. For the hydroids on S. natans VIII and S. fluitans III, hydroid mitochondrial genotype was strongly correlated with the Sargassum substrate form. We found significant population genetic structure in the hydroids, which was also consistent with the distributional patterns of the Sargassum forms. These results suggest that hydroid settlement on the Sargassum occurs in type-specific Sargassum source regions. Hydroid species identification is challenging and cryptic speciation is common in the Aglaopheniidae. Therefore, to confirm our identification of A. latecarinata, we conducted a phylogenetic analysis that showed that while the genus Aglaophenia was not monophyletic, all A. latecarinata haplotypes associated with pelagic Sargassum belonged to the same clade and were likely the same species as previously published sequences from Florida, Central America, and one location in Brazil (São Sebastião). A nominal A. latecarinata sequence from a second Brazilian location (Alagoas) likely belongs to a different species.
Collapse
Affiliation(s)
| | | | | | - Dana Bloch
- Sea Education Association, Woods Hole, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Amy N S Siuda
- Sea Education Association, Woods Hole, MA, USA.,Marine Science Discipline, Eckerd College, St. Petersburg, FL, USA
| |
Collapse
|
18
|
Song X, Lyu M, Bernhard R, Wang J, Gravili C. Unexpected systematic affinities and geographic expansion of a marine alien hydroid (Cnidaria: Hydrozoa). SYST BIODIVERS 2019. [DOI: 10.1080/14772000.2019.1583690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Xikun Song
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, South Xiang'an Road, Xiamen, 361102, China
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, 266071, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingxin Lyu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, South Xiang'an Road, Xiamen, 361102, China
| | - Ruthensteiner Bernhard
- Zoologische Staatssammlung München (ZSM-SNSB), Münchhausenstr. 21, München, 81247, Germany
| | - Jianjun Wang
- Ministry of Natural Resources, Third Institute of Oceanography, 178 Daxue Road, Xiamen, 361005, China
| | - Cinzia Gravili
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce, 73100, Italy
- CoNISMa, Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, 00196, Italy
| |
Collapse
|
19
|
Moura CJ, Lessios H, Cortés J, Nizinski MS, Reed J, Santos RS, Collins AG. Hundreds of genetic barcodes of the species-rich hydroid superfamily Plumularioidea (Cnidaria, Medusozoa) provide a guide toward more reliable taxonomy. Sci Rep 2018; 8:17986. [PMID: 30573739 PMCID: PMC6301992 DOI: 10.1038/s41598-018-35528-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 10/15/2018] [Indexed: 11/09/2022] Open
Abstract
Marine hydroids are important benthic components of shallow and deep waters worldwide, but their taxonomy is controversial because diagnostic morphological characters to categorize taxa are limited. Their genetic relationships are also little investigated. We tested taxonomic hypotheses within the highly speciose superfamily Plumularioidea by integrating a classical morphological approach with DNA barcoding of the 16S and COI mitochondrial markers for 659 and 196 specimens of Plumularioidea, respectively. Adding Genbank sequences, we inferred systematic relationships among 1,114 plumularioids, corresponding to 123 nominal species and 17 novel morphospecies in five families of Plumularioidea. We found considerable inconsistencies in the systematics of nominal families, genera and species. The families Kirchenpaueriidae and Plumulariidae were polyphyletic and the Halopterididae paraphyletic. Most genera of Plumularioidea are not monophyletic. Species diversity is considerably underestimated. Within our study, at least 10% of the morphologically-distinctive morphospecies are undescribed, and about 40% of the overall species richness is represented by cryptic species. Convergent evolution and morphological plasticity therefore blur systematic relationships. Additionally, cryptic taxa occur frequently in sympatry or parapatry, complicating correspondence with type material of described species. Sometimes conspecificity of different morphotypes was found. The taxonomy of hydroids requires continued comprehensive revision.
Collapse
Affiliation(s)
- Carlos J Moura
- MARE-IMAR-OKEANOS, Rua Prof. Dr Frederico Machado, 4, University of the Azores, Horta, 9901-862, Portugal. .,Smithsonian Tropical Research Institute, Balboa, 0843-03092, Panamá, USA. .,National Systematics Laboratory, NOAA's National Marine Fisheries Service, Smithsonian National Museum of Natural History, Washington, DC, 20560, USA. .,CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | - Harilaos Lessios
- Smithsonian Tropical Research Institute, Balboa, 0843-03092, Panamá, USA
| | - Jorge Cortés
- Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Universidad de Costa Rica, San Pedro, 11501-2060, San José, Costa Rica
| | - Martha S Nizinski
- National Systematics Laboratory, NOAA's National Marine Fisheries Service, Smithsonian National Museum of Natural History, Washington, DC, 20560, USA
| | - John Reed
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, 34946, USA
| | - Ricardo S Santos
- MARE-IMAR-OKEANOS, Rua Prof. Dr Frederico Machado, 4, University of the Azores, Horta, 9901-862, Portugal
| | - Allen G Collins
- National Systematics Laboratory, NOAA's National Marine Fisheries Service, Smithsonian National Museum of Natural History, Washington, DC, 20560, USA
| |
Collapse
|
20
|
Nakov T, Beaulieu JM, Alverson AJ. Accelerated diversification is related to life history and locomotion in a hyperdiverse lineage of microbial eukaryotes (Diatoms, Bacillariophyta). THE NEW PHYTOLOGIST 2018; 219:462-473. [PMID: 29624698 PMCID: PMC6099383 DOI: 10.1111/nph.15137] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 03/02/2018] [Indexed: 05/08/2023]
Abstract
Patterns of species richness are commonly linked to life history strategies. In diatoms, an exceptionally diverse lineage of photosynthetic heterokonts important for global photosynthesis and burial of atmospheric carbon, lineages with different locomotory and reproductive traits differ dramatically in species richness, but any potential association between life history strategy and diversification has not been tested in a phylogenetic framework. We constructed a time-calibrated, 11-gene, 1151-taxon phylogeny of diatoms - the most inclusive diatom species tree to date. We used this phylogeny, together with a comprehensive inventory of first-last occurrences of Cenozoic fossil diatoms, to estimate ranges of expected species richness, diversification and its variation through time and across lineages. Diversification rates varied with life history traits. Although anisogamous lineages diversified faster than oogamous ones, this increase was restricted to a nested clade with active motility in the vegetative cells. We propose that the evolution of motility in vegetative cells, following an earlier transition from oogamy to anisogamy, facilitated outcrossing and improved utilization of habitat complexity, ultimately leading to enhanced opportunity for adaptive divergence across a variety of novel habitats. Together, these contributed to a species radiation that gave rise to the majority of present-day diatom diversity.
Collapse
Affiliation(s)
- Teofil Nakov
- University of Arkansas1 University of Arkansas, SCEN 601FayettevilleAR72701‐1201USA
| | - Jeremy M. Beaulieu
- University of Arkansas1 University of Arkansas, SCEN 601FayettevilleAR72701‐1201USA
| | - Andrew J. Alverson
- University of Arkansas1 University of Arkansas, SCEN 601FayettevilleAR72701‐1201USA
| |
Collapse
|
21
|
Kayal E, Bentlage B, Sabrina Pankey M, Ohdera AH, Medina M, Plachetzki DC, Collins AG, Ryan JF. Phylogenomics provides a robust topology of the major cnidarian lineages and insights on the origins of key organismal traits. BMC Evol Biol 2018. [PMCID: PMC5932825 DOI: 10.1186/s12862-018-1142-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background The phylogeny of Cnidaria has been a source of debate for decades, during which nearly all-possible relationships among the major lineages have been proposed. The ecological success of Cnidaria is predicated on several fascinating organismal innovations including stinging cells, symbiosis, colonial body plans and elaborate life histories. However, understanding the origins and subsequent diversification of these traits remains difficult due to persistent uncertainty surrounding the evolutionary relationships within Cnidaria. While recent phylogenomic studies have advanced our knowledge of the cnidarian tree of life, no analysis to date has included genome-scale data for each major cnidarian lineage. Results Here we describe a well-supported hypothesis for cnidarian phylogeny based on phylogenomic analyses of new and existing genome-scale data that includes representatives of all cnidarian classes. Our results are robust to alternative modes of phylogenetic estimation and phylogenomic dataset construction. We show that two popular phylogenomic matrix construction pipelines yield profoundly different datasets, both in the identities and in the functional classes of the loci they include, but resolve the same topology. We then leverage our phylogenetic resolution of Cnidaria to understand the character histories of several critical organismal traits. Ancestral state reconstruction analyses based on our phylogeny establish several notable organismal transitions in the evolutionary history of Cnidaria and depict the ancestral cnidarian as a solitary, non-symbiotic polyp that lacked a medusa stage. In addition, Bayes factor tests strongly suggest that symbiosis has evolved multiple times independently across the cnidarian radiation. Conclusions Cnidaria have experienced more than 600 million years of independent evolution and in the process generated an array of organismal innovations. Our results add significant clarification on the cnidarian tree of life and the histories of some of these innovations. Further, we confirm the existence of Acraspeda (staurozoans plus scyphozoans and cubozoans), thus reviving an evolutionary hypothesis put forward more than a century ago. Electronic supplementary material The online version of this article (10.1186/s12862-018-1142-0) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
Song X, Gravili C, Ruthensteiner B, Lyu M, Wang J. Incongruent cladistics reveal a new hydrozoan genus (Cnidaria : Sertularellidae) endemic to the eastern and western coasts of the North Pacific Ocean. INVERTEBR SYST 2018. [DOI: 10.1071/is17070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Molecular phylogenetics provides objective references for zoological systematics which sometimes are inconsistent with morphological data. This applies particularly for some primitive phyla such as Cnidaria. The marine hydrozoan Symplectoscyphus turgidus (Sertularellidae) is a recent questionable case reported to occupy an unexpected phylogenetic position and suggested to belong to a new genus. However, its position, based on a single Californian specimen, seemed doubtful. Here we contributed 16S, 18S and 28S rRNA data of another morphologically related species from the Yellow Sea, forming a monophyletic clade with the Californian sample, confirming the clade stability. Further integrative analyses support describing this clade as the new genus Xingyurella, gen. nov., and lead to a taxonomic revision of species characterised by three hydrothecal marginal teeth and strong gonothecal spines. This resulted in a new species and three new combinations: Xingyurella xingyuarum, sp. nov., X. gotoi, comb. nov., X. pedrensis, comb. nov. and X. turgida, comb. nov. Future investigations are required to understand the evolution and speciation involved in the transoceanic distribution pattern of Xingyurella. The approach used herein for dealing with non-monophyletic conditions may be indicative for further studies by integrating trophosome and gonosome traits for Sertularellidae and other hydrozoans. http://zoobank.org/urn:lsid:zoobank.org:pub:E99F8777-8E31-4C4B-A065-71C71371EEBC.
Collapse
|
23
|
Postaire B, Gélin P, Bruggemann JH, Pratlong M, Magalon H. Population differentiation or species formation across the Indian and the Pacific Oceans? An example from the brooding marine hydrozoan Macrorhynchia phoenicea. Ecol Evol 2017; 7:8170-8186. [PMID: 29075441 PMCID: PMC5648676 DOI: 10.1002/ece3.3236] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/09/2017] [Accepted: 06/20/2017] [Indexed: 01/18/2023] Open
Abstract
Assessing population connectivity is necessary to construct effective marine protected areas. This connectivity depends, among other parameters, inherently on species dispersal capacities. Isolation by distance (IBD) is one of the main modes of differentiation in marine species, above all in species presenting low dispersal abilities. This study reports the genetic structuring in the tropical hydrozoan Macrorhynchia phoenicea α (sensu Postaire et al., 2016a), a brooding species, from 30 sampling sites in the Western Indian Ocean and the Tropical Southwestern Pacific, using 15 microsatellite loci. At the local scale, genet dispersal relied on asexual propagation at short distance, which was not found at larger scales. Considering one representative per clone, significant positive FIS values (from −0.327*** to 0.411***) were found within almost all sites. Gene flow was extremely low at all spatial scales, among sites within islands (<10 km distance) and among islands (100 to >11,000 km distance), with significant pairwise FST values (from 0.035*** to 0.645***). A general pattern of IBD was found at the Indo‐Pacific scale, but also within ecoregions in the Western Indian Ocean province. Clustering and network analyses identified each island as a potential independent population, while analysis of molecular variance indicated that population genetic differentiation was significant at small (within island) and intermediate (among islands within province) spatial scales. As shown by this species, a brooding life cycle might be corollary of the high population differentiation found in some coastal marine species, thwarting regular dispersal at distances more than a few kilometers and probably leading to high cryptic diversity, each island housing independent evolutionary lineages.
Collapse
Affiliation(s)
- Bautisse Postaire
- UMR ENTROPIE Université de La Réunion/CNRS/IRD Université de La Réunion Saint Denis France.,Laboratoire d'Excellence CORAIL Perpignan France.,IMBE UMR 7263 Aix Marseille Université/CNRS/IRD/Avignon Université Marseille France
| | - Pauline Gélin
- UMR ENTROPIE Université de La Réunion/CNRS/IRD Université de La Réunion Saint Denis France.,Laboratoire d'Excellence CORAIL Perpignan France
| | - J Henrich Bruggemann
- UMR ENTROPIE Université de La Réunion/CNRS/IRD Université de La Réunion Saint Denis France.,Laboratoire d'Excellence CORAIL Perpignan France
| | - Marine Pratlong
- IMBE UMR 7263 Aix Marseille Université/CNRS/IRD/Avignon Université Marseille France.,I2M Equipe Evolution Biologique et Modélisation Aix Marseille Université/CNRS/Centrale Marseille Marseille France
| | - Hélène Magalon
- UMR ENTROPIE Université de La Réunion/CNRS/IRD Université de La Réunion Saint Denis France.,Laboratoire d'Excellence CORAIL Perpignan France
| |
Collapse
|
24
|
Ronowicz M, Boissin E, Postaire B, Bourmaud CAF, Gravier-Bonnet N, Schuchert P. Modern alongside traditional taxonomy-Integrative systematics of the genera Gymnangium Hincks, 1874 and Taxella Allman, 1874 (Hydrozoa, Aglaopheniidae). PLoS One 2017; 12:e0174244. [PMID: 28422958 PMCID: PMC5396908 DOI: 10.1371/journal.pone.0174244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/05/2017] [Indexed: 11/30/2022] Open
Abstract
We studied the diversity within the former genus Gymnangium in the South West Indian Ocean by using an integrative approach of both traditional (morphology-based) and modern molecular taxonomy. Nine species were recorded in the material collected. A total of 97 16S mitochondrial DNA sequences and 54 Calmodulin nuclear sequences from eight Gymnangium/Taxella species were analyzed. We found both morphological and molecular differences in the studied Gymnangium species that make it necessary to split the genus. It is proposed to revalidate the genus Taxella which is currently regarded as a synonym of Gymnangium. Two species of the genus Taxella (T. eximia and T. gracilicaulis), until now regarded as distinct species based on morphological characteristics, cluster together in one phylogenetic clade. Possible explanations are discussed. Two species from Madagascar new to science are herein described and rare species from the Indian Ocean islands are re-described.
Collapse
Affiliation(s)
- Marta Ronowicz
- Department of Marine Ecology, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
- * E-mail:
| | - Emilie Boissin
- USR3278 Centre de Recherche Insulaire et Observatoire de l'environnement, Université de Perpignan, Perpignan, France
| | - Bautisse Postaire
- Aix Marseille Université, CNRS, IRD, Avignon Université, IMBE UMR 7263, Marseille, France
- Université de La Réunion, UMR ENTROPIE, Faculté des Sciences et Technologies, Saint Denis, France
- Laboratoire d’Excellence Corail, Perpignan, France
| | - Chloé Annie-France Bourmaud
- Université de La Réunion, UMR ENTROPIE, Faculté des Sciences et Technologies, Saint Denis, France
- Laboratoire d’Excellence Corail, Perpignan, France
| | - Nicole Gravier-Bonnet
- Université de La Réunion, UMR ENTROPIE, Faculté des Sciences et Technologies, Saint Denis, France
- Laboratoire d’Excellence Corail, Perpignan, France
| | | |
Collapse
|
25
|
Leclère L, Röttinger E. Diversity of Cnidarian Muscles: Function, Anatomy, Development and Regeneration. Front Cell Dev Biol 2017; 4:157. [PMID: 28168188 PMCID: PMC5253434 DOI: 10.3389/fcell.2016.00157] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/30/2016] [Indexed: 12/12/2022] Open
Abstract
The ability to perform muscle contractions is one of the most important and distinctive features of eumetazoans. As the sister group to bilaterians, cnidarians (sea anemones, corals, jellyfish, and hydroids) hold an informative phylogenetic position for understanding muscle evolution. Here, we review current knowledge on muscle function, diversity, development, regeneration and evolution in cnidarians. Cnidarian muscles are involved in various activities, such as feeding, escape, locomotion and defense, in close association with the nervous system. This variety is reflected in the large diversity of muscle organizations found in Cnidaria. Smooth epithelial muscle is thought to be the most common type, and is inferred to be the ancestral muscle type for Cnidaria, while striated muscle fibers and non-epithelial myocytes would have been convergently acquired within Cnidaria. Current knowledge of cnidarian muscle development and its regeneration is limited. While orthologs of myogenic regulatory factors such as MyoD have yet to be found in cnidarian genomes, striated muscle formation potentially involves well-conserved myogenic genes, such as twist and mef2. Although satellite cells have yet to be identified in cnidarians, muscle plasticity (e.g., de- and re-differentiation, fiber repolarization) in a regenerative context and its potential role during regeneration has started to be addressed in a few cnidarian systems. The development of novel tools to study those organisms has created new opportunities to investigate in depth the development and regeneration of cnidarian muscle cells and how they contribute to the regenerative process.
Collapse
Affiliation(s)
- Lucas Leclère
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV) Villefranche-sur-mer, France
| | - Eric Röttinger
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging (IRCAN) Nice, France
| |
Collapse
|
26
|
Phylogenetic relationships of Proboscoida Broch, 1910 (Cnidaria, Hydrozoa): Are traditional morphological diagnostic characters relevant for the delimitation of lineages at the species, genus, and family levels? Mol Phylogenet Evol 2017; 106:118-135. [DOI: 10.1016/j.ympev.2016.09.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/08/2016] [Accepted: 09/14/2016] [Indexed: 11/21/2022]
|
27
|
Postaire B, Magalon H, Bourmaud CAF, Bruggemann JH. Molecular species delimitation methods and population genetics data reveal extensive lineage diversity and cryptic species in Aglaopheniidae (Hydrozoa). Mol Phylogenet Evol 2016; 105:36-49. [DOI: 10.1016/j.ympev.2016.08.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 08/16/2016] [Accepted: 08/21/2016] [Indexed: 01/04/2023]
|
28
|
Abstract
SUMMARYComplex life cycles are common in free-living and parasitic organisms alike. The adaptive decoupling hypothesis postulates that separate life cycle stages have a degree of developmental and genetic autonomy, allowing them to be independently optimized for dissimilar, competing tasks. That is, complex life cycles evolved to facilitate functional specialization. Here, I review the connections between the different stages in parasite life cycles. I first examine evolutionary connections between life stages, such as the genetic coupling of parasite performance in consecutive hosts, the interspecific correlations between traits expressed in different hosts, and the developmental and functional obstacles to stage loss. Then, I evaluate how environmental factors link life stages through carryover effects, where stressful larval conditions impact parasites even after transmission to a new host. There is evidence for both autonomy and integration across stages, so the relevant question becomes how integrated are parasite life cycles and through what mechanisms? By highlighting how genetics, development, selection and the environment can lead to interdependencies among successive life stages, I wish to promote a holistic approach to studying complex life cycle parasites and emphasize that what happens in one stage is potentially highly relevant for later stages.
Collapse
|
29
|
Puce S, Pica D, Schiaparelli S, Negrisolo E. Integration of Morphological Data into Molecular Phylogenetic Analysis: Toward the Identikit of the Stylasterid Ancestor. PLoS One 2016; 11:e0161423. [PMID: 27537333 PMCID: PMC4990279 DOI: 10.1371/journal.pone.0161423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 08/05/2016] [Indexed: 11/19/2022] Open
Abstract
Stylasteridae is a hydroid family including 29 worldwide-distributed genera, all provided with a calcareous skeleton. They are abundant in shallow and deep waters and represent an important component of marine communities. In the present paper, we studied the evolution of ten morphological characters, currently used in stylasterid taxonomy, using a phylogenetic approach. Our results indicate that stylasterid morphology is highly plastic and that many events of independent evolution and reversion have occurred. Our analysis also allows sketching a possible identikit of the stylasterid ancestor. It had calcareous skeleton, reticulate-granular coenosteal texture, polyps randomly arranged, gastrostyle, and dactylopore spines, while lacking a gastropore lip and dactylostyles. If the ancestor had single or double/multiple chambered gastropore tube is uncertain. These data suggest that the ancestor was similar to the extant genera Cyclohelia and Stellapora. Our investigation is the first attempt to integrate molecular and morphological information to clarify the stylasterid evolutionary scenario and represents the first step to infer the stylasterid ancestor morphology.
Collapse
Affiliation(s)
- Stefania Puce
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
- * E-mail:
| | - Daniela Pica
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Stefano Schiaparelli
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università di Genova, Genova, Italy
- Museo Nazionale dell'Antartide (MNA, Sede di Genova), Genova, Italy
| | - Enrico Negrisolo
- Dipartimento di Biomedicina Comparata e Alimentazione, Agripolis, Università di Padova, Legnaro, Padova, Italy
| |
Collapse
|
30
|
Leclère L, Copley RR, Momose T, Houliston E. Hydrozoan insights in animal development and evolution. Curr Opin Genet Dev 2016; 39:157-167. [DOI: 10.1016/j.gde.2016.07.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 06/02/2016] [Accepted: 07/07/2016] [Indexed: 12/21/2022]
|
31
|
Cunha AF, Maronna MM, Marques AC. Variability on microevolutionary and macroevolutionary scales: a review on patterns of morphological variation in Cnidaria Medusozoa. ORG DIVERS EVOL 2016. [DOI: 10.1007/s13127-016-0276-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Maronna MM, Miranda TP, Peña Cantero ÁL, Barbeitos MS, Marques AC. Towards a phylogenetic classification of Leptothecata (Cnidaria, Hydrozoa). Sci Rep 2016; 6:18075. [PMID: 26821567 PMCID: PMC4731775 DOI: 10.1038/srep18075] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 11/03/2015] [Indexed: 11/18/2022] Open
Abstract
Leptothecata are hydrozoans whose hydranths are covered by perisarc and gonophores and whose medusae bear gonads on their radial canals. They develop complex polypoid colonies and exhibit considerable morphological variation among species with respect to growth, defensive structures and mode of development. For instance, several lineages within this order have lost the medusa stage. Depending on the author, traditional taxonomy in hydrozoans may be either polyp- or medusa-oriented. Therefore, the absence of the latter stage in some lineages may lead to very different classification schemes. Molecular data have proved useful in elucidating this taxonomic challenge. We analyzed a super matrix of new and published rRNA gene sequences (16S, 18S and 28S), employing newly proposed methods to measure branch support and improve phylogenetic signal. Our analysis recovered new clades not recognized by traditional taxonomy and corroborated some recently proposed taxa. We offer a thorough taxonomic revision of the Leptothecata, erecting new orders, suborders, infraorders and families. We also discuss the origination and diversification dynamics of the group from a macroevolutionary perspective.
Collapse
Affiliation(s)
- Maximiliano M. Maronna
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo Rua do Matão Trav. 14, 101, 05508-090, São Paulo, Brazil
| | - Thaís P. Miranda
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo Rua do Matão Trav. 14, 101, 05508-090, São Paulo, Brazil
| | - Álvaro L. Peña Cantero
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Departamento de Zoología Universidad de Valencia, Valencia, Spain
| | - Marcos S. Barbeitos
- Departamento de Zoologia, Caixa Postal 19020, Universidade Federal do Paraná, 81531-990, Curitiba, PR, Brazil
| | - Antonio C. Marques
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo Rua do Matão Trav. 14, 101, 05508-090, São Paulo, Brazil
- Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, Brazil
| |
Collapse
|
33
|
Kayal E, Bentlage B, Cartwright P, Yanagihara AA, Lindsay DJ, Hopcroft RR, Collins AG. Phylogenetic analysis of higher-level relationships within Hydroidolina (Cnidaria: Hydrozoa) using mitochondrial genome data and insight into their mitochondrial transcription. PeerJ 2015; 3:e1403. [PMID: 26618080 PMCID: PMC4655093 DOI: 10.7717/peerj.1403] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/23/2015] [Indexed: 11/20/2022] Open
Abstract
Hydrozoans display the most morphological diversity within the phylum Cnidaria. While recent molecular studies have provided some insights into their evolutionary history, sister group relationships remain mostly unresolved, particularly at mid-taxonomic levels. Specifically, within Hydroidolina, the most speciose hydrozoan subclass, the relationships and sometimes integrity of orders are highly unsettled. Here we obtained the near complete mitochondrial sequence of twenty-six hydroidolinan hydrozoan species from a range of sources (DNA and RNA-seq data, long-range PCR). Our analyses confirm previous inference of the evolution of mtDNA in Hydrozoa while introducing a novel genome organization. Using RNA-seq data, we propose a mechanism for the expression of mitochondrial mRNA in Hydroidolina that can be extrapolated to the other medusozoan taxa. Phylogenetic analyses using the full set of mitochondrial gene sequences provide some insights into the order-level relationships within Hydroidolina, including siphonophores as the first diverging clade, a well-supported clade comprised of Leptothecata-Filifera III-IV, and a second clade comprised of Aplanulata-Capitata s.s.-Filifera I-II. Finally, we describe our relatively inexpensive and accessible multiplexing strategy to sequence long-range PCR amplicons that can be adapted to most high-throughput sequencing platforms.
Collapse
Affiliation(s)
- Ehsan Kayal
- Department of Invertebrate Zoology, Smithsonian Institution, Washington, DC, USA
| | - Bastian Bentlage
- Department of Invertebrate Zoology, Smithsonian Institution, Washington, DC, USA
| | - Paulyn Cartwright
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| | - Angel A. Yanagihara
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Dhugal J. Lindsay
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Russell R. Hopcroft
- Institute of Marine Science, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Allen G. Collins
- Department of Invertebrate Zoology, Smithsonian Institution, Washington, DC, USA
- National Systematics Laboratory of NOAA’s Fisheries Service, National Museum of Natural History, Washington, DC, USA
| |
Collapse
|
34
|
A new deep-sea hydroid (Cnidaria: Hydrozoa) from the Bering Sea Basin reveals high genetic relevance to Arctic and adjacent shallow-water species. Polar Biol 2015. [DOI: 10.1007/s00300-015-1793-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Sanders SM, Cartwright P. Patterns of Wnt signaling in the life cycle of Podocoryna carnea and its implications for medusae evolution in Hydrozoa (Cnidaria). Evol Dev 2015; 17:325-36. [PMID: 26487183 DOI: 10.1111/ede.12165] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hydrozoans are known for their complex life cycles, alternating between benthic, asexually reproducing polyps and pelagic, sexually reproducing medusae. Although patterning in hydrozoan polyps has been well studied, little is known about the signaling mechanisms governing medusa development. In order to investigate the role of Wnt signaling in medusa development, we use RNA-Seq data collected from three discrete life cycle stages of Podocoryna carnea to assemble, annotate, and assess enrichment and differential expression (DE) of Wnt pathway elements in P. carnea's transcriptome. Enrichment analyses revealed a statistically significant enrichment of DE Wnt signaling transcripts in the transcriptome of P. carnea, of which, the vast majority of these were significantly up-regulated in developing and adult medusae stages. Whole mount in situ hybridization (ISH) reveals co-expression of the Wnt ligand, Wnt3, and a membrane bound Wnt receptor, frizzled3, at the distal and oral ends of the developmental axes of medusae and polyps in P. carnea. DE and ISH results presented here reveal expression of Wnt signaling components consistent with it playing a role in medusa development. Specifically, Wnt ligand expression in the oral region suggests that the Wnt pathway may play a role in medusa patterning, similar to that of polyps. Previous Wnt expression studies in hydrozoan taxa with reduced medusa have failed to detect co-expression of Wnt3 and a frizzled receptor at their truncated developmental axes, suggesting that down regulation of Wnt pathway elements may play a key role in the loss of the medusa life cycle stage in hydrozoan evolution.
Collapse
Affiliation(s)
- Steven M Sanders
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA
| | - Paulyn Cartwright
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA
| |
Collapse
|
36
|
Postaire B, Magalon H, Bourmaud CAF, Gravier-Bonnet N, Bruggemann J. Phylogenetic relationships within Aglaopheniidae (Cnidaria, Hydrozoa) reveal unexpected generic diversity. ZOOL SCR 2015. [DOI: 10.1111/zsc.12135] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Bautisse Postaire
- Laboratoire d'Excellence CORAIL; Université de La Réunion UMR ENTROPIE 9220; CS 92003 97744 Saint Denis CEDEX 9 France
| | - Helene Magalon
- Laboratoire d'Excellence CORAIL; Université de La Réunion UMR ENTROPIE 9220; CS 92003 97744 Saint Denis CEDEX 9 France
| | - Chloe A.-F. Bourmaud
- Laboratoire d'Excellence CORAIL; Université de La Réunion UMR ENTROPIE 9220; CS 92003 97744 Saint Denis CEDEX 9 France
| | - Nicole Gravier-Bonnet
- Laboratoire d'Excellence CORAIL; Université de La Réunion UMR ENTROPIE 9220; CS 92003 97744 Saint Denis CEDEX 9 France
| | - J. Henrich Bruggemann
- Laboratoire d'Excellence CORAIL; Université de La Réunion UMR ENTROPIE 9220; CS 92003 97744 Saint Denis CEDEX 9 France
| |
Collapse
|
37
|
Sanders SM, Cartwright P. Interspecific Differential Expression Analysis of RNA-Seq Data Yields Insight into Life Cycle Variation in Hydractiniid Hydrozoans. Genome Biol Evol 2015; 7:2417-31. [PMID: 26251524 PMCID: PMC4558869 DOI: 10.1093/gbe/evv153] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2015] [Indexed: 12/25/2022] Open
Abstract
Hydrozoans are known for their complex life cycles, which can alternate between an asexually reproducing polyp stage and a sexually reproducing medusa stage. Most hydrozoan species, however, lack a free-living medusa stage and instead display a developmentally truncated form, called a medusoid or sporosac, which generally remains attached to the polyp. Although evolutionary transitions in medusa truncation and loss have been investigated phylogenetically, little is known about the genes involved in the development and loss of this life cycle stage. Here, we present a new workflow for evaluating differential expression (DE) between two species using short read Illumina RNA-seq data. Through interspecific DE analyses between two hydractiniid hydrozoans, Hydractinia symbiolongicarpus and Podocoryna carnea, we identified genes potentially involved in the developmental, functional, and morphological differences between the fully developed medusa of P. carnea and reduced sporosac of H. symbiolongicarpus. A total of 10,909 putative orthologs of H. symbiolongicarpus and P. carnea were identified from de novo assemblies of short read Illumina data. DE analysis revealed 938 of these are differentially expressed between P. carnea developing and adult medusa, when compared with H. symbiolongicarpus sporosacs, the majority of which have not been previously characterized in cnidarians. In addition, several genes with no corresponding ortholog in H. symbiolongicarpus were expressed in developing medusa of P. carnea. Results presented here show interspecific DE analyses of RNA-seq data to be a sensitive and reliable method for identifying genes and gene pathways potentially involved in morphological and life cycle differences between species.
Collapse
Affiliation(s)
- Steven M Sanders
- Department of Ecology and Evolutionary Biology, University of Kansas
| | - Paulyn Cartwright
- Department of Ecology and Evolutionary Biology, University of Kansas
| |
Collapse
|
38
|
Ronowicz M, Kukliński P, Mapstone GM. Trends in the diversity, distribution and life history strategy of Arctic Hydrozoa (Cnidaria). PLoS One 2015; 10:e0120204. [PMID: 25793294 PMCID: PMC4368823 DOI: 10.1371/journal.pone.0120204] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/20/2015] [Indexed: 11/19/2022] Open
Abstract
This is the first attempt to compile a comprehensive and updated species list for Hydrozoa in the Arctic, encompassing both hydroid and medusa stages and including Siphonophorae. We address the hypothesis that the presence of a pelagic stage (holo- or meroplanktonic) was not necessary to successfully recolonize the Arctic by Hydrozoa after the Last Glacial Maximum. Presence-absence data of Hydrozoa in the Arctic were prepared on the basis of historical and present-day literature. The Arctic was divided into ecoregions. Species were grouped into distributional categories according to their worldwide occurrences. Each species was classified according to life history strategy. The similarity of species composition among regions was calculated with the Bray-Curtis index. Average and variation in taxonomic distinctness were used to measure diversity at the taxonomic level. A total of 268 species were recorded. Arctic-boreal species were the most common and dominated each studied region. Nineteen percent of species were restricted to the Arctic. There was a predominance of benthic species over holo- and meroplanktonic species. Arctic, Arctic-Boreal and Boreal species were mostly benthic, while widely distributed species more frequently possessed a pelagic stage. Our results support hypothesis that the presence of a pelagic stage (holo- or meroplanktonic) was not necessary to successfully recolonize the Arctic. The predominance of benthic Hydrozoa suggests that the Arctic could have been colonised after the Last Glacial Maximum by hydroids rafting on floating substrata or recolonising from glacial refugia.
Collapse
Affiliation(s)
- Marta Ronowicz
- Marine Ecology Department, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| | - Piotr Kukliński
- Marine Ecology Department, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland; Life Science Department, Natural History Museum, London, United Kingdom
| | | |
Collapse
|
39
|
Reassessment of morphological diagnostic characters and species boundaries requires taxonomical changes for the genus orthopyxis L. Agassiz, 1862 (campanulariidae, hydrozoa) and some related campanulariids. PLoS One 2015; 10:e0117553. [PMID: 25723572 PMCID: PMC4344204 DOI: 10.1371/journal.pone.0117553] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/22/2014] [Indexed: 12/26/2022] Open
Abstract
The genus Orthopyxis is widely known for its morphological variability, making species identification particularly difficult. A number of nominal species have been recorded in the southwestern Atlantic, although most of these records are doubtful. The goal of this study was to infer species boundaries in the genus Orthopyxis from the southwestern Atlantic using an integrative approach. Intergeneric limits were also tested using comparisons with specimens of the genus Campanularia. We performed DNA analyses using the mitochondrial genes 16S and COI and the nuclear ITS1 and ITS2 regions. Orthopyxis was monophyletic in maximum likelihood analyses using the combined dataset and in analyses with 16S alone. Four lineages of Orthopyxis were retrieved for all analyses, corresponding morphologically to the species Orthopyxis sargassicola (previously known in the area), Orthopyxis crenata (first recorded for the southwestern Atlantic), Orthopyxis caliculata (= Orthopyxis minuta Vannucci, 1949 and considered a synonym of O. integra by some authors), and Orthopyxis mianzani sp. nov. A re-evaluation of the traditional morphological diagnostic characters, guided by our molecular analyses, revealed that O. integra does not occur in the study area, and O. caliculata is the correct identification of one of the lineages occurring in this region, corroborating the validity of that species. Orthopyxis mianzani sp. nov. resembles O. caliculata with respect to gonothecae morphology and a smooth hydrothecae rim, although it shows significant differences for other characters, such as perisarc thickness, which has traditionally been thought to have wide intraspecific variation. The species O. sargassicola is morphologically similar to O. crenata, although they differ in gonothecae morphology, and these species can only be reliably identified when this structure is present.
Collapse
|
40
|
Schuchert P. High genetic diversity in the hydroid Plumularia setacea: A multitude of cryptic species or extensive population subdivision? Mol Phylogenet Evol 2014; 76:1-9. [DOI: 10.1016/j.ympev.2014.02.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/19/2014] [Accepted: 02/20/2014] [Indexed: 10/25/2022]
|
41
|
Stampar SN, Maronna MM, Kitahara MV, Reimer JD, Morandini AC. Fast-evolving mitochondrial DNA in Ceriantharia: a reflection of hexacorallia paraphyly? PLoS One 2014; 9:e86612. [PMID: 24475157 PMCID: PMC3903554 DOI: 10.1371/journal.pone.0086612] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 12/12/2013] [Indexed: 11/19/2022] Open
Abstract
The low evolutionary rate of mitochondrial genes in Anthozoa has challenged their utility for phylogenetic and systematic purposes, especially for DNA barcoding. However, the evolutionary rate of Ceriantharia, one of the most enigmatic "orders" within Anthozoa, has never been specifically examined. In this study, the divergence of mitochondrial DNA of Ceriantharia was compared to members of other Anthozoa and Medusozoa groups. In addition, nuclear markers were used to check the relative phylogenetic position of Ceriantharia in relation to other Cnidaria members. The results demonstrated a pattern of divergence of mitochondrial DNA completely different from those estimated for other anthozoans, and phylogenetic analyses indicate that Ceriantharia is not included within hexacorallians in most performed analyses. Thus, we propose that the Ceriantharia should be addressed as a separate clade.
Collapse
Affiliation(s)
- Sérgio N. Stampar
- Universidade Estadual Paulista “Júlio de Mesquita Filho”, Laboratório de Biologia Aquática - LABIA, Faculdade de Ciências e Letras de Assis, Departamento de Ciências Biológicas, Assis, São Paulo, Brazil
- Universidade de São Paulo, Instituto de Biociências, Departamento de Zoologia, São Paulo, São Paulo, Brazil
| | - Maximiliano M. Maronna
- Universidade de São Paulo, Instituto de Biociências, Departamento de Genética e Biologia Evolutiva, São Paulo, São Paulo, Brazil
| | - Marcelo V. Kitahara
- Universidade de São Paulo, Centro de Biologia Marinha, São Sebastião, São Paulo, Brazil
| | - James D. Reimer
- Molecular Invertebrate Systematics and Ecology Laboratory, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - André C. Morandini
- Universidade de São Paulo, Instituto de Biociências, Departamento de Zoologia, São Paulo, São Paulo, Brazil
| |
Collapse
|
42
|
de Villiers MJ, Pirie MD, Hughes M, Möller M, Edwards TJ, Bellstedt DU. An approach to identify putative hybrids in the 'coalescent stochasticity zone', as exemplified in the African plant genus Streptocarpus (Gesneriaceae). THE NEW PHYTOLOGIST 2013; 198:284-300. [PMID: 23373903 DOI: 10.1111/nph.12133] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 11/29/2012] [Indexed: 06/01/2023]
Abstract
The inference of phylogenetic relationships is often complicated by differing evolutionary histories of independently-inherited markers. The causes of the resulting gene tree incongruence can be challenging to identify, often relying on coalescent simulations dependent on unverifiable assumptions. We investigated alternative techniques using the South African rosulate species of Streptocarpus as a study group. Two independent gene trees - from the nuclear ITS region and from three concatenated plastid regions (trnL-F, rpl20-rps12 and trnC-D) - displayed widespread, strongly supported incongruence. We investigated the causes by detecting genetic exchange across morphological borders using morphological optimizations and genetic exchange across species boundaries using the genealogical sorting index. Incongruence between gene trees was associated with ancestral shifts in growth form (in four species) but not in pollination syndrome, suggesting introgression limited by reproductive barriers. Genealogical sorting index calculations showed polyphyly of two additional species, while individuals of all others were significantly associated. In one case the association was stronger according to the internal transcribed spacer data than according to the plastid data, which, given the smaller effective population size of the plastid, may also indicate introgression. These approaches offer alternative ways to identify potential hybridization events where incomplete lineage sorting cannot be rejected using simulations.
Collapse
Affiliation(s)
- Margaret J de Villiers
- Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - Michael D Pirie
- Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - Mark Hughes
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, UK
| | - Michael Möller
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, UK
| | - Trevor J Edwards
- Botany Department, La Trobe University, Melbourne, Vic., Australia
| | - Dirk U Bellstedt
- Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| |
Collapse
|
43
|
Kayal E, Roure B, Philippe H, Collins AG, Lavrov DV. Cnidarian phylogenetic relationships as revealed by mitogenomics. BMC Evol Biol 2013; 13:5. [PMID: 23302374 PMCID: PMC3598815 DOI: 10.1186/1471-2148-13-5] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 12/21/2012] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Cnidaria (corals, sea anemones, hydroids, jellyfish) is a phylum of relatively simple aquatic animals characterized by the presence of the cnidocyst: a cell containing a giant capsular organelle with an eversible tubule (cnida). Species within Cnidaria have life cycles that involve one or both of the two distinct body forms, a typically benthic polyp, which may or may not be colonial, and a typically pelagic mostly solitary medusa. The currently accepted taxonomic scheme subdivides Cnidaria into two main assemblages: Anthozoa (Hexacorallia + Octocorallia) - cnidarians with a reproductive polyp and the absence of a medusa stage - and Medusozoa (Cubozoa, Hydrozoa, Scyphozoa, Staurozoa) - cnidarians that usually possess a reproductive medusa stage. Hypothesized relationships among these taxa greatly impact interpretations of cnidarian character evolution. RESULTS We expanded the sampling of cnidarian mitochondrial genomes, particularly from Medusozoa, to reevaluate phylogenetic relationships within Cnidaria. Our phylogenetic analyses based on a mitochogenomic dataset support many prior hypotheses, including monophyly of Hexacorallia, Octocorallia, Medusozoa, Cubozoa, Staurozoa, Hydrozoa, Carybdeida, Chirodropida, and Hydroidolina, but reject the monophyly of Anthozoa, indicating that the Octocorallia + Medusozoa relationship is not the result of sampling bias, as proposed earlier. Further, our analyses contradict Scyphozoa [Discomedusae + Coronatae], Acraspeda [Cubozoa + Scyphozoa], as well as the hypothesis that Staurozoa is the sister group to all the other medusozoans. CONCLUSIONS Cnidarian mitochondrial genomic data contain phylogenetic signal informative for understanding the evolutionary history of this phylum. Mitogenome-based phylogenies, which reject the monophyly of Anthozoa, provide further evidence for the polyp-first hypothesis. By rejecting the traditional Acraspeda and Scyphozoa hypotheses, these analyses suggest that the shared morphological characters in these groups are plesiomorphies, originated in the branch leading to Medusozoa. The expansion of mitogenomic data along with improvements in phylogenetic inference methods and use of additional nuclear markers will further enhance our understanding of the phylogenetic relationships and character evolution within Cnidaria.
Collapse
Affiliation(s)
- Ehsan Kayal
- Dept. Ecology, Evolution, and Organismal Biology, Iowa State University, 50011, Ames, Iowa, USA
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 20013-7012, Washington, DC, USA
| | - Béatrice Roure
- Dept. Biochimie, Fac. Médecine, Université de Montral, Pavillon Roger-Gaudry, C.P. 6128, Succ. Centre-Ville, H3C 3J7, Montral, QC, Canada
| | - Hervé Philippe
- Dept. Biochimie, Fac. Médecine, Université de Montral, Pavillon Roger-Gaudry, C.P. 6128, Succ. Centre-Ville, H3C 3J7, Montral, QC, Canada
| | - Allen G Collins
- National Systematics Laboratory of NOAA’s Fisheries Service, National Museum of Natural History, MRC-153, Smithsonian Institution, PO Box 37012, 20013-7012, Washington, DC, USA
| | - Dennis V Lavrov
- Dept. Ecology, Evolution, and Organismal Biology, Iowa State University, 50011, Ames, Iowa, USA
| |
Collapse
|
44
|
Breinholt JW, Porter ML, Crandall KA. Testing phylogenetic hypotheses of the subgenera of the freshwater crayfish genus Cambarus (Decapoda: Cambaridae). PLoS One 2012; 7:e46105. [PMID: 23049950 PMCID: PMC3458831 DOI: 10.1371/journal.pone.0046105] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 08/29/2012] [Indexed: 11/19/2022] Open
Abstract
Background The genus Cambarus is one of three most species rich crayfish genera in the Northern Hemisphere. The genus has its center of diversity in the Southern Appalachians of the United States and has been divided into 12 subgenera. Using Cambarus we test the correspondence of subgeneric designations based on morphology used in traditional crayfish taxonomy to the underlying evolutionary history for these crayfish. We further test for significant correlation and explanatory power of geographic distance, taxonomic model, and a habitat model to estimated phylogenetic distance with multiple variable regression. Methodology/Principal Findings We use three mitochondrial and one nuclear gene regions to estimate the phylogenetic relationships for species within the genus Cambarus and test evolutionary hypotheses of relationships and associated morphological and biogeographical hypotheses. Our resulting phylogeny indicates that the genus Cambarus is polyphyletic, however we fail to reject the monophyly of Cambarus with a topology test. The majority of the Cambarus subgenera are rejected as monophyletic, suggesting the morphological characters used to define those taxa are subject to convergent evolution. While we found incongruence between taxonomy and estimated phylogenetic relationships, a multiple model regression analysis indicates that taxonomy had more explanatory power of genetic relationships than either habitat or geographic distance. Conclusions We find convergent evolution has impacted the morphological features used to delimit Cambarus subgenera. Studies of the crayfish genus Orconectes have shown gonopod morphology used to delimit subgenera is also affected by convergent evolution. This suggests that morphological diagnoses based on traditional crayfish taxonomy might be confounded by convergent evolution across the cambarids and has little utility in diagnosing relationships or defining natural groups. We further suggest that convergent morphological evolution appears to be a common occurrence in invertebrates suggesting the need for careful phylogenetically based interpretations of morphological evolution in invertebrate systematics.
Collapse
|
45
|
MOURA CARLOSJ, CUNHA MARINAR, PORTEIRO FILIPEM, ROGERS ALEXD. A molecular phylogenetic appraisal of the systematics of the Aglaopheniidae (Cnidaria: Hydrozoa, Leptothecata) from the north-east Atlantic and west Mediterranean. Zool J Linn Soc 2012. [DOI: 10.1111/j.1096-3642.2011.00784.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Moura CJ, Cunha MR, Porteiro FM, Yesson C, Rogers AD. Evolution of Nemertesia hydroids (Cnidaria: Hydrozoa, Plumulariidae) from the shallow and deep waters of the NE Atlantic and western Mediterranean. ZOOL SCR 2011. [DOI: 10.1111/j.1463-6409.2011.00503.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Parallel evolution and phenotypic divergence in lichenized fungi: A case study in the lichen-forming fungal family Graphidaceae (Ascomycota: Lecanoromycetes: Ostropales). Mol Phylogenet Evol 2011; 61:45-63. [DOI: 10.1016/j.ympev.2011.04.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 03/14/2011] [Accepted: 04/30/2011] [Indexed: 11/20/2022]
|
48
|
Moura CJ, Cunha MR, Porteiro FM, Rogers AD. The use of the DNA barcode gene 16S mRNA for the clarification of taxonomic problems within the family Sertulariidae (Cnidaria, Hydrozoa). ZOOL SCR 2011. [DOI: 10.1111/j.1463-6409.2011.00489.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
49
|
Moura CJ, Cunha MR, Porteiro FM, Rogers AD. Polyphyly and cryptic diversity in the hydrozoan families Lafoeidae and Hebellidae (Cnidaria:Hydrozoa). INVERTEBR SYST 2011. [DOI: 10.1071/is11045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The taxonomy of the putative superfamily Lafoeoidea (Hydrozoa), which includes the families Hebellidae and Lafoeidae, has been widely disputed at all systematic levels, mainly because these are morphologically simple and plastic animals. We used the molecular marker 16S mRNA to address phylogenetic relations of ‘Lafoeoidea’ hydroids mainly from shallow and deep waters of the north-east Atlantic and west Mediterranean. This study proves that the morphological simplicity of the ‘Lafoeoidea’ has led to several erroneous taxonomic assignments. We demonstrate that the superfamily ‘Lafoeoidea’ is not monophyletic and thus not valid; the families Hebellidae and Lafoeidae are polyphyletic. The ‘Lafoeidae’ subfamilies ‘Lafoeinae’ and ‘Zygophylacinae’ were recovered as monophyletic but quite distantly related and should be erected to the level of distinct families. The 16S haplotype data analysed in conjunction with morphological characters and distribution data were useful in differentiating morphologically undistinguishable, nominal and cryptic or pseudo-cryptic species, including undescribed taxa. Particularly within the ‘Lafoeinae’ group, unexpectedly high genetic biodiversity (including cryptic species) was encountered in the possibly not monophyletic genera Lafoea, Acryptolaria and Filellum. Cryptic diversity is also likely associated with the ‘Zygophylacinae’ nominal species Cryptolaria pectinata. The indications of genetic segregation by geographical distance of the ‘Lafoeoidea’ hydroids, particularly verified in deep waters, is probably a consequence of their reduced potential for large-scale dispersal, which likely interacts with the influence of the seabed topography, oceanographic circulation and adaptability to tolerate different abiotic conditions.
Collapse
|
50
|
Cartwright P, Nawrocki AM. Character evolution in Hydrozoa (phylum Cnidaria). Integr Comp Biol 2010; 50:456-72. [PMID: 21558215 DOI: 10.1093/icb/icq089] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The diversity of hydrozoan life cycles, as manifested in the wide range of polyp, colony, and medusa morphologies, has been appreciated for centuries. Unraveling the complex history of characters involved in this diversity is critical for understanding the processes driving hydrozoan evolution. In this study, we use a phylogenetic approach to investigate the evolution of morphological characters in Hydrozoa. A molecular phylogeny is reconstructed using ribosomal DNA sequence data. Several characters involving polyp, colony, and medusa morphology are coded in the terminal taxa. These characters are mapped onto the phylogeny and then the ancestral character states are reconstructed. This study confirms the complex evolutionary history of hydrozoan morphological characters. Many of the characters involving polyp, colony, and medusa morphology appear as synapomorphies for major hydrozoan clades, yet homoplasy is commonplace.
Collapse
Affiliation(s)
- Paulyn Cartwright
- Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Ave, Lawrence KS 66045, USA.
| | | |
Collapse
|