1
|
Rincón Barrado M, Perez M, Villaverde T, García-Verdugo C, Caujapé-Castells J, Riina R, Sanmartín I. Phylogenomics and phylogeographic model testing using convolutional neural networks reveal a history of recent admixture in the Canarian Kleinia neriifolia. Mol Ecol 2024; 33:e17537. [PMID: 39425595 DOI: 10.1111/mec.17537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 09/12/2024] [Indexed: 10/21/2024]
Abstract
Multiple-island endemics (MIE) are considered ideal natural subjects to study patterns of island colonization that involve recent population-level genetic processes. Kleinia neriifolia is a Canarian MIE widespread across the archipelago, which exhibits a close phylogenetic relationship with species in northwest Africa and at the other side of the Sahara Desert. Here, we used target sequencing with plastid skimming (Hyb-Seq), a dense population-level sampling of K. neriifolia, and representatives of its African-southern Arabian relatives to infer phylogenetic relationships and divergence times at the species and population levels. Using population genetic techniques and machine learning (convolutional neural networks [CNNs]), we reconstructed phylogeographic relationships and patterns of genetic admixture based on a multilocus SNP nuclear dataset. Phylogenomic analysis based on the nuclear dataset identifies the northwestern African Kleinia anteuphorbium as the sister species of K. neriifolia, with divergence starting in the early Pliocene. Divergence from its sister clade, comprising species from the Horn of Africa and southern Arabia, is dated to the arid Messinian period, lending support to the climatic vicariance origin of the Rand Flora. Phylogeographic model testing with CNNs supports an initial colonization of the central island of Tenerife followed by eastward and westward migration across the archipelago, which resulted in the observed east/west phylogeographic split. Subsequent population extinctions linked to aridification events, and recolonization from Tenerife, are proposed to explain the patterns of genetic admixture in the eastern Canary Islands. We demonstrate that CNNs based on SNPs can be used to discriminate among complex scenarios of island migration and colonization.
Collapse
Affiliation(s)
- Mario Rincón Barrado
- Department of Biodiversity and Conservation, Real Jardín Botánico (RJB), CSIC, Madrid, Spain
| | - Manolo Perez
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, UK
| | - Tamara Villaverde
- Department of Biodiversity and Conservation, Real Jardín Botánico (RJB), CSIC, Madrid, Spain
- Instituto de Investigación en Cambio Global (IICG-URJC), Universidad Rey Juan Carlos, Móstoles, Spain
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles, Spain
| | | | - Juli Caujapé-Castells
- Dept. of Molecular Biodiversity & DNA Bank, Jardín Botánico Canario Viera y Clavijo-UA de I+D+i al CSIC, Las Palmas de Gran Canaria, Spain
| | - Ricarda Riina
- Department of Biodiversity and Conservation, Real Jardín Botánico (RJB), CSIC, Madrid, Spain
| | - Isabel Sanmartín
- Department of Biodiversity and Conservation, Real Jardín Botánico (RJB), CSIC, Madrid, Spain
| |
Collapse
|
2
|
Rincón-Barrado M, Villaverde T, Perez MF, Sanmartín I, Riina R. The sweet tabaiba or there and back again: phylogeographical history of the Macaronesian Euphorbia balsamifera. ANNALS OF BOTANY 2024; 133:883-904. [PMID: 38197716 PMCID: PMC11082519 DOI: 10.1093/aob/mcae001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/01/2024] [Indexed: 01/11/2024]
Abstract
BACKGROUND AND AIMS Biogeographical relationships between the Canary Islands and north-west Africa are often explained by oceanic dispersal and geographical proximity. Sister-group relationships between Canarian and eastern African/Arabian taxa, the 'Rand Flora' pattern, are rare among plants and have been attributed to the extinction of north-western African populations. Euphorbia balsamifera is the only representative species of this pattern that is distributed in the Canary Islands and north-west Africa; it is also one of few species present in all seven islands. Previous studies placed African populations of E. balsamifera as sister to the Canarian populations, but this relationship was based on herbarium samples with highly degraded DNA. Here, we test the extinction hypothesis by sampling new continental populations; we also expand the Canarian sampling to examine the dynamics of island colonization and diversification. METHODS Using target enrichment with genome skimming, we reconstructed phylogenetic relationships within E. balsamifera and between this species and its disjunct relatives. A single nucleotide polymorphism dataset obtained from the target sequences was used to infer population genetic diversity patterns. We used convolutional neural networks to discriminate among alternative Canary Islands colonization scenarios. KEY RESULTS The results confirmed the Rand Flora sister-group relationship between western E. balsamifera and Euphorbia adenensis in the Eritreo-Arabian region and recovered an eastern-western geographical structure among E. balsamifera Canarian populations. Convolutional neural networks supported a scenario of east-to-west island colonization, followed by population extinctions in Lanzarote and Fuerteventura and recolonization from Tenerife and Gran Canaria; a signal of admixture between the eastern island and north-west African populations was recovered. CONCLUSIONS Our findings support the Surfing Syngameon Hypothesis for the colonization of the Canary Islands by E. balsamifera, but also a recent back-colonization to the continent. Populations of E. balsamifera from northwest Africa are not the remnants of an ancestral continental stock, but originated from migration events from Lanzarote and Fuerteventura. This is further evidence that oceanic archipelagos are not a sink for biodiversity, but may be a source of new genetic variability.
Collapse
Affiliation(s)
- Mario Rincón-Barrado
- Real Jardín Botánico (RJB), CSIC, Madrid, 28014, Spain
- Centro Nacional de Biotecnología (CNB), CSIC, Madrid, 28049, Spain
| | - Tamara Villaverde
- Universidad Rey Juan Carlos (URJC), Área de Biodiversidad y Conservación, Móstoles, 28933, Spain
| | - Manolo F Perez
- Institut de Systématique, Evolution, Biodiversité (ISYEB – URM 7205 CNRS), Muséum National d’Histoire Naturelle, SU, EPHE & UA, Paris, France
| | | | - Ricarda Riina
- Real Jardín Botánico (RJB), CSIC, Madrid, 28014, Spain
| |
Collapse
|
3
|
Li D, Zhang F, Luo G, Zhang T, Lv J, Wang W, Yang J, You D, Xu N, Guo S, Yu J. Taxon-dependent effects of dispersal limitation versus environmental filters on bryophyte assemblages-Multiple perspective studies in land-bridge islands. Ecol Evol 2023; 13:e9844. [PMID: 36844668 PMCID: PMC9951200 DOI: 10.1002/ece3.9844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/25/2023] [Accepted: 02/03/2023] [Indexed: 02/28/2023] Open
Abstract
To explore the taxon-dependent contribution of dispersal limitation versus environmental filters to bryophyte assemblages. We investigated bryophytes and six environmental variables on 168 islands in the Thousand Island Lake,China. We compared the observed beta diversity with the expected values based on six null models (EE, EF, FE, FF, PE, and PF), detected the partial correlation of beta diversity with geographical distances. We quantified the contributions of spatial versus environmental variables and island isolation per se to species composition (SC) using variance partitioning. We modeled the species-area relationships (SARs) for bryophytes and the other eight biotas. To explore the taxon-dependent effects of spatial versus environmental filters on bryophytes, 16 taxa including five categories (total bryophytes, total mosses, liverworts, acrocarpous, and pleurocarpous mosses) and 11 species-richest families were included in the analyses. The observed beta diversity values were significantly different from the predicted values for all 16 taxa. For all five categories, the observed partial correlations between beta diversity and geographical distance after controlling environmental effects were not only positive, but also significantly different from the predicted values based on the null models. Spatial eigenvectors are more important in shaping SC than environmental variables for all 16 taxa except Brachytheciaceae and Anomodontaceae. Spatial eigenvectors contributed more to SC variation in liverworts than in mosses and in pleurocarpous mosses than in acrocarpous mosses. The effects of island isolation on SC were significant for all five categories, highly varied at the family level. The z values of the SARs for the five bryophyte categories were all larger than those of the other eight biotas. In subtropical fragmented forests, dispersal limitation exerted significant, taxon-dependent effects on bryophyte assemblages. It was dispersal limitation rather than environmental filtering that predominantly regulated the SC patterns of bryophytes.
Collapse
Affiliation(s)
- Dandan Li
- College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Feng Zhang
- College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Guangyu Luo
- College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Ting Zhang
- College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Jinqiao Lv
- College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Wenchao Wang
- College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Jun Yang
- College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Dejun You
- College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Nanlong Xu
- College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Shuiliang Guo
- College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Jing Yu
- College of Life SciencesShanghai Normal UniversityShanghaiChina
| |
Collapse
|
4
|
Osman IB, Hugonnot V, Daoud-Bouattour A, Muller SD. The first African record of Isothecium algarvicum in Kroumiria (Tunisia), a relictual element of the Neogene flora? LINDBERGIA 2022. [DOI: 10.25227/linbg.01164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Imen Ben Osman
- I. Ben Osman ✉ and A. Daoud-Bouattour, Dépt de Biologie, Faculté des Sciences de Tunis, Univ. de Tunis El-Manar, Tunis, Tunisia and LR18ES13 Biogéographie, Climatologie Appliquée et Dynamiques Environnementales (BiCADE), Faculté des Lettres, des A
| | - Vincent Hugonnot
- I. Ben Osman ✉ and A. Daoud-Bouattour, Dépt de Biologie, Faculté des Sciences de Tunis, Univ. de Tunis El-Manar, Tunis, Tunisia and LR18ES13 Biogéographie, Climatologie Appliquée et Dynamiques Environnementales (BiCADE), Faculté des Lettres, des A
| | | | - Serge D. Muller
- S. D. Muller, Inst. des Sciences de l'Évolution (ISEM), Univ. de Montpellier, CNRS, IRD, EPHE, Montpellier Cedex 05, France
| |
Collapse
|
5
|
McCullough JM, Oliveros C, Benz BW, Zenil-Ferguson R, Cracraft J, Moyle RG, Andersen MJ. Wallacean and Melanesian Islands Promote Higher Rates of Diversification within the Global Passerine radiation Corvides. Syst Biol 2022; 71:1423-1439. [PMID: 35703981 DOI: 10.1093/sysbio/syac044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/14/2022] Open
Abstract
The complex island archipelagoes of Wallacea and Melanesia have provided empirical data behind integral theories in evolutionary biology, including allopatric speciation and island biogeography. Yet, questions regarding the relative impact of the layered biogeographic barriers, such as deep-water trenches and isolated island systems, on faunal diversification remain underexplored. One such barrier is Wallace's Line, a significant biogeographic boundary that largely separates Australian and Asian biodiversity. To assess the relative roles of biogeographic barriers-specifically isolated island systems and Wallace's Line-we investigated the tempo and mode of diversification in a diverse avian radiation, Corvides (Crows and Jays, Birds-of-paradise, Vangas, and allies). We combined a genus-level dataset of thousands of ultraconserved elements (UCEs) and a species-level, 12-gene Sanger sequence matrix to produce a well-resolved supermatrix tree that we leveraged to explore the group's historical biogeography and effects of biogeographic barriers on their macroevolutionary dynamics. The tree is well-resolved and differs substantially from what has been used extensively for past comparative analyses within this group. We confirmed that Corvides, and its major constituent clades, arose in Australia and that a burst of dispersals west across Wallace's Line occurred after the uplift of Wallacea during the mid-Miocene. We found that dispersal across this biogeographic barrier were generally rare, though westward dispersals were two times more frequent than eastward dispersals. Wallacea's central position between Sundaland and Sahul no doubt acted as a bridge for island-hopping dispersal out of Australia, across Wallace's Line, to colonize the rest of Earth. In addition, we found that the complex island archipelagoes east of Wallace's Line harbor the highest rates of net diversification and are a substantial source of colonists to continental systems on both sides of this biogeographic barrier. Our results support emerging evidence that island systems, particularly the geologically complex archipelagoes of the Indo-pacific, are drivers of species diversification.
Collapse
Affiliation(s)
- Jenna M McCullough
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA
| | - Carl Oliveros
- Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, KS, USA
| | - Brett W Benz
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | | | - Joel Cracraft
- Department of Ornithology, American Museum of Natural History, New York, NY, USA
| | - Robert G Moyle
- Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, KS, USA
| | - Michael J Andersen
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
6
|
Sousa R, Vasconcelos J, Vera-Escalona I, Pinto AR, Hawkins SJ, Freitas M, Delgado J, González JA, Riera R. Pleistocene expansion, anthropogenic pressure and ocean currents: Disentangling the past and ongoing evolutionary history of Patella aspera Röding, 1798 in the archipelago of Madeira. MARINE ENVIRONMENTAL RESEARCH 2021; 172:105485. [PMID: 34715642 DOI: 10.1016/j.marenvres.2021.105485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/12/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
AIMS Rising sea-level following the Last Glacial Maximum lead to fragmentation of coastal limpet populations between islands of the Archipelago of Madeira. This fragmentation is reinforced by recent heavy exploitation reducing effective population size on Madeira Island. We use the limpet P. aspera to understand how the role of processes at different time scales (i.e. changes in the sea level and overexploitation) can influence the genetic composition of an extant species, relating these processes to reproductive phenology and seasonal shifts in ocean currents. LOCATION Madeira Island, Porto Santo and Desertas (Archipelago of Madeira, NE Atlantic Ocean). TAXON The limpet Patella aspera. METHODS Twelve microsatellite genetic markers were used. A power analysis was used to evaluate the power of the microsatellite markers to detect a signal of population differentiation. Long-term past migrations were assessed using a Bayesian Markov Montecarlo approach in the software MIGRATE-n to estimate mutation-scaled migration rates (M = m/μ; m, probability of a lineage immigrating per generation; μ, mutation rate). Two scenarios were evaluated using an Approximate Bayesian Computation (ABC) in the software DIYABC 2.1 (i) Scenario 1: considered a population scenario from a reduced Ne at time t3 to a higher Ne at time t2; and (ii) Scenario 2 considering a reduction of Ne from a time t3 to a time t2. RESULTS Colonization of the archipelago by Portuguese settlers six centuries ago probably led to an important decrease in the genetic diversity of the species (Ne). Contemporary gene flow strongly support a pattern of high asymmetric connectivity explained by the reproductive phenology of the species and spatio-temporal seasonal changes in the ocean currents. Spatio-temporal reconstructions using Bayesian methods, including coalescent and Approximate Bayesian Computation (ABC) approaches, suggest changes in the migration patterns from highly symmetric to highly asymmetric connectivity with subtle population differentiation as consequence of post-glacial maximum sea level rise during the Holocene. MAIN CONCLUSIONS Our results suggest that anthropogenic activity could have had serious effects on the genetic diversity of heavily exploited littoral species since the end of the Pleistocene, probably accelerating in recent years.
Collapse
Affiliation(s)
- Ricardo Sousa
- Observatório Oceânico da Madeira, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (OOM/ARDITI) - Edifício Madeira Tecnopolo, Funchal, Madeira, Portugal; Direção Regional do Mar (DRM)/ Direção de Serviços de Monitorização, Estudos e Investigação do Mar (DSEIMar), 9004-562, Funchal, Madeira, Portugal; MARE - Marine and Environmental Sciences Centre, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Edifício Madeira Tecnopolo Piso 0, Caminho da Penteada, 9020-105, Funchal, Madeira, Portugal
| | - Joana Vasconcelos
- MARE - Marine and Environmental Sciences Centre, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Edifício Madeira Tecnopolo Piso 0, Caminho da Penteada, 9020-105, Funchal, Madeira, Portugal; Faculdade de Ciências de Vida, Universidade da Madeira, Campus Universitário da Madeira, Caminho da Penteada, 9020-020, Funchal, Madeira, Portugal; Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile
| | - Iván Vera-Escalona
- CIBAS, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile; IU-ECOAQUA, Group of Biodiversity and Conservation (BIOCON), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Ana Rita Pinto
- Direção Regional do Mar (DRM)/ Direção de Serviços de Monitorização, Estudos e Investigação do Mar (DSEIMar), 9004-562, Funchal, Madeira, Portugal
| | - S J Hawkins
- Marine Biological Association of the UK, Plymouth, PL1 2PB, UK; School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, SO14 3ZH, UK
| | - Mafalda Freitas
- Observatório Oceânico da Madeira, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (OOM/ARDITI) - Edifício Madeira Tecnopolo, Funchal, Madeira, Portugal; Direção Regional do Mar (DRM)/ Direção de Serviços de Monitorização, Estudos e Investigação do Mar (DSEIMar), 9004-562, Funchal, Madeira, Portugal; MARE - Marine and Environmental Sciences Centre, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Edifício Madeira Tecnopolo Piso 0, Caminho da Penteada, 9020-105, Funchal, Madeira, Portugal
| | - João Delgado
- Direção Regional do Mar (DRM)/ Direção de Serviços de Monitorização, Estudos e Investigação do Mar (DSEIMar), 9004-562, Funchal, Madeira, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Porto, Portugal
| | - José A González
- Ecología Marina Aplicada y Pesquerías (i-UNAT), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Rodrigo Riera
- Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile; IU-ECOAQUA, Group of Biodiversity and Conservation (BIOCON), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
7
|
Florencio M, Patiño J, Nogué S, Traveset A, Borges PAV, Schaefer H, Amorim IR, Arnedo M, Ávila SP, Cardoso P, de Nascimento L, Fernández-Palacios JM, Gabriel SI, Gil A, Gonçalves V, Haroun R, Illera JC, López-Darias M, Martínez A, Martins GM, Neto AI, Nogales M, Oromí P, Rando JC, Raposeiro PM, Rigal F, Romeiras MM, Silva L, Valido A, Vanderpoorten A, Vasconcelos R, Santos AMC. Macaronesia as a Fruitful Arena for Ecology, Evolution, and Conservation Biology. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.718169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Research in Macaronesia has led to substantial advances in ecology, evolution and conservation biology. We review the scientific developments achieved in this region, and outline promising research avenues enhancing conservation. Some of these discoveries indicate that the Macaronesian flora and fauna are composed of rather young lineages, not Tertiary relicts, predominantly of European origin. Macaronesia also seems to be an important source region for back-colonisation of continental fringe regions on both sides of the Atlantic. This group of archipelagos (Azores, Madeira, Selvagens, Canary Islands, and Cabo Verde) has been crucial to learn about the particularities of macroecological patterns and interaction networks on islands, providing evidence for the development of the General Dynamic Model of oceanic island biogeography and subsequent updates. However, in addition to exceptionally high richness of endemic species, Macaronesia is also home to a growing number of threatened species, along with invasive alien plants and animals. Several innovative conservation and management actions are in place to protect its biodiversity from these and other drivers of global change. The Macaronesian Islands are a well-suited field of study for island ecology and evolution research, mostly due to its special geological layout with 40 islands grouped within five archipelagos differing in geological age, climate and isolation. A large amount of data is now available for several groups of organisms on and around many of these islands. However, continued efforts should be made toward compiling new information on their biodiversity, to pursue various fruitful research avenues and develop appropriate conservation management tools.
Collapse
|
8
|
When adaptive radiations collide: Different evolutionary trajectories between and within island and mainland lizard clades. Proc Natl Acad Sci U S A 2021; 118:2024451118. [PMID: 34635588 DOI: 10.1073/pnas.2024451118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 11/18/2022] Open
Abstract
Oceanic islands are known as test tubes of evolution. Isolated and colonized by relatively few species, islands are home to many of nature's most renowned radiations from the finches of the Galápagos to the silverswords of the Hawaiian Islands. Despite the evolutionary exuberance of insular life, island occupation has long been thought to be irreversible. In particular, the presumed much tougher competitive and predatory milieu in continental settings prevents colonization, much less evolutionary diversification, from islands back to mainlands. To test these predictions, we examined the ecological and morphological diversity of neotropical Anolis lizards, which originated in South America, colonized and radiated on various islands in the Caribbean, and then returned and diversified on the mainland. We focus in particular on what happens when mainland and island evolutionary radiations collide. We show that extensive continental radiations can result from island ancestors and that the incumbent and invading mainland clades achieve their ecological and morphological disparity in very different ways. Moreover, we show that when a mainland radiation derived from island ancestors comes into contact with an incumbent mainland radiation the ensuing interactions favor the island-derived clade.
Collapse
|
9
|
Bechteler J, Schäfer-Verwimp A, Glenny D, Cargill DC, Maul K, Schütz N, von Konrat M, Quandt D, Nebel M. The evolution and biogeographic history of epiphytic thalloid liverworts. Mol Phylogenet Evol 2021; 165:107298. [PMID: 34464738 DOI: 10.1016/j.ympev.2021.107298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/05/2021] [Accepted: 08/26/2021] [Indexed: 11/28/2022]
Abstract
Among liverworts, the epiphytic lifestyle is not only present in leafy forms but also in thalloid liverworts, which so far has received little attention in evolutionary and biogeographical studies. Metzgeria, with about 107 species worldwide, is the only genus of thalloid liverworts that comprises true epiphytes. In the present study, we provide the first comprehensive molecular phylogeny, including estimated divergence times and ancestral ranges of this genus. Analyses are based on a plastid marker dataset representing about half of the Metzgeria species diversity. We show for the first time with molecular data that Austrometzgeria is indeed a member of Metzgeria and that two morpho-species M. furcata and M. leptoneura are not monophyletic, but rather represent geographically well-defined clades. Our analyses indicate that Metzgeria started to diversify in the Cretaceous in an area encompassing today's South America and Australasia. Thus, Metzgeria is one of the few known epiphytic liverwort genera whose biogeographic history was directly shaped by Gondwana vicariance. Subsequent dispersal events in the Cenozoic resulted in the colonization of Asia, Africa, North America, and Europe and led to today's worldwide distribution of its species. We also provide the first reliable stem age estimate for Metzgeria due to the inclusion of its sister taxon Vandiemenia in our dating analyses. Additionally, this stem age estimate of about 240 million years most likely marks the starting point of a transition from a terrestrial to an epiphytic lifestyle in thalloid liverworts of the Metzgeriales. We assume that the Cretaceous Terrestrial Revolution played a key role in the evolution of epiphytic thalloid liverworts similar to that known for leafy liverworts.
Collapse
Affiliation(s)
- Julia Bechteler
- Nees Institute for Biodiversity of Plants, University of Bonn, Meckenheimer Allee 170, Bonn D-53115, Germany.
| | | | - David Glenny
- Allan Herbarium, Manaaki Whenua, PO Box 69-040, Lincoln 7640, New Zealand
| | - D Christine Cargill
- Australian National Herbarium, Centre for Australian National Biodiversity Research, (a joint venture between Parks Australia and CSIRO), GPO Box 1700, Canberra, 2601 ACT, Australia
| | - Karola Maul
- Nees Institute for Biodiversity of Plants, University of Bonn, Meckenheimer Allee 170, Bonn D-53115, Germany
| | - Nicole Schütz
- Department of Botany, Natural History Museum Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany
| | - Matt von Konrat
- Gantz Family Collections Center, Science & Education, Field Museum, 1400 South Lake Shore Drive, Chicago, IL 60605-2496, U.S.A
| | - Dietmar Quandt
- Nees Institute for Biodiversity of Plants, University of Bonn, Meckenheimer Allee 170, Bonn D-53115, Germany
| | - Martin Nebel
- Nees Institute for Biodiversity of Plants, University of Bonn, Meckenheimer Allee 170, Bonn D-53115, Germany
| |
Collapse
|
10
|
Carter BE. The roles of dispersal limitation, climatic niches and glacial history in endemism of the North American bryophyte flora. AMERICAN JOURNAL OF BOTANY 2021; 108:1555-1567. [PMID: 34448197 DOI: 10.1002/ajb2.1721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/17/2021] [Indexed: 06/13/2023]
Abstract
PREMISE Bryophytes (mosses, liverworts, and hornworts) tend to have very large geographic ranges, which impedes progress toward understanding the drivers of diversification and extinction. This study aimed to investigate whether North American endemics differ geographically from more widespread species and whether differences in climatic niche or traits related to dispersal and establishment differ between endemics and more widespread species. METHODS All available herbarium records of bryophytes from North America north of Mexico (106 collections) were used. Traits related to dispersal were obtained from the literature. Analyses tested whether range sizes and extents differed between endemics and nonendemics, and whether trait differences were associated with endemism. Climate data were used to determine whether differences in niche breadth are present between endemics and nonendemics, and whether suitable climate for endemics occurs outside North America. RESULTS Nonendemics have range sizes twice as large as endemics and they occur farther north and have greater longitudinal extents. However, they do not have the widest niche breadths and do not differ in spore size (with few exceptions) or sexual condition. Asexual propagules are more prevalent among nonendemics. Climatic models indicate that substantial areas of climate suitable for endemics exist outside of North America. CONCLUSIONS Distributions of endemics and nonendemics are consistent with an important role of glaciation in shaping the North American bryophyte flora. Endemics are not limited to the continent based on a lack of suitable climate elsewhere or by spore size or sexual condition.
Collapse
Affiliation(s)
- Benjamin E Carter
- Department of Biological Sciences, San Jose State University, One Washington Square, San Jose, CA, 95192, USA
| |
Collapse
|
11
|
Bryophytes are predicted to lag behind future climate change despite their high dispersal capacities. Nat Commun 2020; 11:5601. [PMID: 33154374 PMCID: PMC7645420 DOI: 10.1038/s41467-020-19410-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 10/13/2020] [Indexed: 11/25/2022] Open
Abstract
The extent to which species can balance out the loss of suitable habitats due to climate warming by shifting their ranges is an area of controversy. Here, we assess whether highly efficient wind-dispersed organisms like bryophytes can keep-up with projected shifts in their areas of suitable climate. Using a hybrid statistical-mechanistic approach accounting for spatial and temporal variations in both climatic and wind conditions, we simulate future migrations across Europe for 40 bryophyte species until 2050. The median ratios between predicted range loss vs expansion by 2050 across species and climate change scenarios range from 1.6 to 3.3 when only shifts in climatic suitability were considered, but increase to 34.7–96.8 when species dispersal abilities are added to our models. This highlights the importance of accounting for dispersal restrictions when projecting future distribution ranges and suggests that even highly dispersive organisms like bryophytes are not equipped to fully track the rates of ongoing climate change in the course of the next decades. Bryophytes tend to be sensitive to warming, but their high dispersal ability could help them track climate change. Here the authors combine correlative niche models and mechanistic dispersal models for 40 European bryophyte species under RCP4.5 and RCP8.5, finding that most of these species are unlikely to track climate change over the coming decades.
Collapse
|
12
|
Rodrigues ASB, Martins A, Garcia CA, Sérgio C, Porley R, Fontinha S, González-Mancebo J, Gabriel R, Phephu N, Van Rooy J, Dirkse G, Long D, Stech M, Patiño J, Sim-Sim M. Climate-driven vicariance and long-distance dispersal explain the Rand Flora pattern in the liverwort Exormotheca pustulosa (Marchantiophyta). Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
The ‘Rand flora’ is a biogeographical disjunction which refers to plant lineages occurring at the margins of the African continent and neighbouring oceanic archipelagos. Here, we tested whether the phylogeographical pattern of Exormotheca pustulosa Mitt. was the result of vicariance induced by past climatic changes or the outcome of a series of recent long-distance dispersal events. Two chloroplast markers (rps4-trnF region and psbA-trnH spacer) and one nuclear marker (ITS2) were analysed. Phylogenetic and phylogeographical relationships were inferred as well as divergence time estimates and ancestral areas. Exormotheca possibly originated in Eastern Africa during the Late Oligocene/Early Miocene while Exormotheca putulosa diversified during the Late Miocene. Three main E. pustulosa groups were found: the northern Macaronesia/Western Mediterranean, the South Africa/Saint Helena and the Cape Verde groups. The major splits among these groups occurred during the Late Miocene/Pliocene; diversification was recent, dating back to the Pleistocene. Climate-driven vicariance and subsequent long-distance dispersal events may have shaped the current disjunct distribution of E. pustulosa that corresponds to the Rand Flora pattern. Colonization of Macaronesia seems to have occurred twice by two independent lineages. The evolutionary history of E. pustulosa populations of Cape Verde warrants further study.
Collapse
Affiliation(s)
- Ana Sofia Bartolomeu Rodrigues
- cE3c – Centre for Ecology, Evolution and Environmental Changes, Natural History and Systematics (NHS) Research Group/MUHNAC – Museu Nacional de História Natural e da Ciência, Universidade de Lisboa, Rua da Escola Politécnica, Lisboa, Portugal
| | - Anabela Martins
- cE3c – Centre for Ecology, Evolution and Environmental Changes, Natural History and Systematics (NHS) Research Group/MUHNAC – Museu Nacional de História Natural e da Ciência, Universidade de Lisboa, Rua da Escola Politécnica, Lisboa, Portugal
| | - César Augusto Garcia
- cE3c – Centre for Ecology, Evolution and Environmental Changes, Natural History and Systematics (NHS) Research Group/MUHNAC – Museu Nacional de História Natural e da Ciência, Universidade de Lisboa, Rua da Escola Politécnica, Lisboa, Portugal
| | - Cecília Sérgio
- cE3c – Centre for Ecology, Evolution and Environmental Changes, Natural History and Systematics (NHS) Research Group/MUHNAC – Museu Nacional de História Natural e da Ciência, Universidade de Lisboa, Rua da Escola Politécnica, Lisboa, Portugal
| | - Ron Porley
- Cerca dos Pomares, CxP 409M, Aljezur, Portugal
| | - Susana Fontinha
- cE3c – Centre for Ecology, Evolution and Environmental Changes, Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
- Banco de Germoplasma ISOPlexis, Universidade da Madeira, Funchal, Madeira, Portugal
| | | | - Rosalina Gabriel
- cE3c/ABG – Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group and University of Azores, Angra do Heroísmo, Azores, Portugal
| | - Nonkululo Phephu
- Department of Nature Conservation, Tshwane University of Technology, Pretoria, South Africa
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, PO WITS, South Africa
| | - Jacques Van Rooy
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, PO WITS, South Africa
- National Herbarium, South African National Biodiversity Institute (SANBI), Pretoria, South Africa
| | - Gerard Dirkse
- Naturalis Biodiversity Center, RA Leiden, The Netherlands
| | | | - Michael Stech
- Naturalis Biodiversity Center, RA Leiden, The Netherlands
- Leiden University, Leiden, The Netherlands
| | - Jairo Patiño
- Plant Conservation and Biogeography Group, Departamento de Botánica, Ecología y Fisiología Vegetal, Facultad de Ciencias, Apartado 456, CP 38200, Universidad de La Laguna, La Laguna, Tenerife, Canary Islands, Spain
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales & Agrobiología (IPNA-CSIC), La Laguna, Tenerife, Canary Islands, Spain
| | - Manuela Sim-Sim
- cE3c – Centre for Ecology, Evolution and Environmental Changes, Natural History and Systematics (NHS) Research Group/MUHNAC – Museu Nacional de História Natural e da Ciência, Universidade de Lisboa, Rua da Escola Politécnica, Lisboa, Portugal
- cE3c – Centre for Ecology, Evolution and Environmental Changes, Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| |
Collapse
|
13
|
Tsang SM, Wiantoro S, Veluz MJ, Sugita N, Nguyen YL, Simmons NB, Lohman DJ. Dispersal out of Wallacea spurs diversification of Pteropus flying foxes, the world's largest bats (Mammalia: Chiroptera). JOURNAL OF BIOGEOGRAPHY 2020; 47:527-537. [PMID: 33041434 PMCID: PMC7546435 DOI: 10.1111/jbi.13750] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 10/04/2019] [Indexed: 05/25/2023]
Abstract
AIM Islands provide opportunities for isolation and speciation. Many landmasses in the Indo-Australian Archipelago (IAA) are oceanic islands, and founder-event speciation is expected to be the predominant form of speciation of volant taxa on these islands. We studied the biogeographic history of flying foxes, a group with many endemic species and a predilection for islands, to test this hypothesis and infer the biogeographic origin of the group. LOCATION Australasia, Indo-Australian Archipelago, Madagascar, Pacific Islands. TAXON Pteropus (Pteropodidae). METHODS To infer the biogeographic history of Pteropus, we sequenced up to 6169 bp of genetic data from 10 markers and reconstructed a multilocus species tree of 34 currently recognized Pteropus species and subspecies with 3 Acerodon outgroups using BEAST and subsequently estimated ancestral areas using models implemented in BioGeoBEARS. RESULTS Species-level resolution was occasionally low because of slow rates of molecular evolution and/or recent divergences. Older divergences, however, were more strongly supported and allow the evolutionary history of the group to be inferred. The genus diverged in Wallacea from its common ancestor with Acerodon; founder-event speciation out of Wallacea was a common inference. Pteropus species in Micronesia and the western Indian Ocean were also inferred to result from founder-event speciation. MAIN CONCLUSIONS Dispersal between regions of the IAA and the islands found therein fostered diversification of Pteropus throughout the IAA and beyond. Dispersal in Pteropus is far higher than in most other volant taxa studied to date, highlighting the importance of inter-island movement in the biogeographic history of this large clade of large bats.
Collapse
Affiliation(s)
- Susan M. Tsang
- Biology Department, City College, City University of New York, NY 10031, USA
- Biology Ph.D. Program, Graduate Center, City University of New York, NY 10034, USA
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, NY 10024, USA
- Mammalogy Section, National Museum of Natural History, Manila 1000, Philippines
| | - Sigit Wiantoro
- Museum Zoologicum Bogoriense, Research Centre for Biology, Indonesian Institute of Sciences-LIPI, Bogor 16911, Indonesia
| | - Maria Josefa Veluz
- Mammalogy Section, National Museum of Natural History, Manila 1000, Philippines
| | - Norimasa Sugita
- Department of Zoology, National Museum of Nature and Science, Tokyo, Tsukuba, Ibaraki 305-0005, Japan
- National Institute for Environmental Studies, Tokyo, Tsukuba, Ibaraki 305-8506, Japan
| | - Y-Lan Nguyen
- Biology Department, City College, City University of New York, NY 10031, USA
- Macaulay Honors College, City University of New York, NY 10021, USA
| | - Nancy B. Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, NY 10024, USA
| | - David J. Lohman
- Biology Department, City College, City University of New York, NY 10031, USA
- Biology Ph.D. Program, Graduate Center, City University of New York, NY 10034, USA
- Entomology Section, National Museum of Natural History, Manila 1000, Philippines
| |
Collapse
|
14
|
Ledent A, Désamoré A, Laenen B, Mardulyn P, McDaniel SF, Zanatta F, Patiño J, Vanderpoorten A. No borders during the post-glacial assembly of European bryophytes. Ecol Lett 2019; 22:973-986. [PMID: 30900805 DOI: 10.1111/ele.13254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/11/2018] [Accepted: 02/24/2019] [Indexed: 11/28/2022]
Abstract
Climatic fluctuations during the Last Glacial Maximum (LGM) exerted a profound influence on biodiversity patterns, but their impact on bryophytes, the second most diverse group of land plants, has been poorly documented. Approximate Bayesian computations based on coalescent simulations showed that the post-glacial assembly of European bryophytes involves a complex history from multiple sources. The contribution of allochthonous migrants was 95-100% of expanding populations in about half of the 15 investigated species, which is consistent with the globally balanced genetic diversities and extremely low divergence observed among biogeographical regions. Such a substantial contribution of allochthonous migrants in the post-glacial assembly of Europe is unparalleled in other plants and animals. The limited role of northern micro-refugia, which was unexpected based on bryophyte life-history traits, and of southern refugia, is consistent with recent palaeontological evidence that LGM climates in Eurasia were much colder and drier than what palaeoclimatic models predict.
Collapse
Affiliation(s)
- A Ledent
- Institute of Botany, University of Liege, Sart Tilman, 4000, Liege, Belgium
| | - A Désamoré
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - B Laenen
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - P Mardulyn
- Evolutionary Biology & Ecology, Université Libre de Bruxelles, 1050, Brussels, Belgium
| | - S F McDaniel
- Biology Department, University of Florida, Gainesville, FL, 32611, USA
| | - F Zanatta
- Institute of Botany, University of Liege, Sart Tilman, 4000, Liege, Belgium
| | - J Patiño
- Plant Conservation and Biogeography Group, Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de La Laguna, 38071, La Laguna, Spain.,Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38071, La Laguna, Spain
| | - A Vanderpoorten
- Institute of Botany, University of Liege, Sart Tilman, 4000, Liege, Belgium
| |
Collapse
|
15
|
Vigalondo B, Patiño J, Draper I, Mazimpaka V, Shevock JR, Losada-Lima A, González-Mancebo JM, Garilleti R, Lara F. The long journey of Orthotrichum shevockii (Orthotrichaceae, Bryopsida): From California to Macaronesia. PLoS One 2019; 14:e0211017. [PMID: 30759110 PMCID: PMC6373912 DOI: 10.1371/journal.pone.0211017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 01/07/2019] [Indexed: 11/18/2022] Open
Abstract
Biogeography, systematics and taxonomy are complementary scientific disciplines. To understand a species’ origin, migration routes, distribution and evolutionary history, it is first necessary to establish its taxonomic boundaries. Here, we use an integrative approach that takes advantage of complementary disciplines to resolve an intriguing scientific question. Populations of an unknown moss found in the Canary Islands (Tenerife Island) resembled two different Californian endemic species: Orthotrichum shevockii and O. kellmanii. To determine whether this moss belongs to either of these species and, if so, to explain its presence on this distant oceanic island, we combined the evaluation of morphological qualitative characters, statistical morphometric analyses of quantitative traits, and molecular phylogenetic inferences. Our results suggest that the two Californian mosses are conspecific, and that the Canarian populations belong to this putative species, with only one taxon thus involved. Orthotrichum shevockii (the priority name) is therefore recognized as a morphologically variable species that exhibits a transcontinental disjunction between western North America and the Canary Islands. Within its distribution range, the area of occupancy is limited, a notable feature among bryophytes at the intraspecific level. To explain this disjunction, divergence time and ancestral area estimation analyses are carried out and further support the hypothesis of a long-distance dispersal event from California to Tenerife Island.
Collapse
Affiliation(s)
- Beatriz Vigalondo
- Departamento de Biología (Botánica), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail:
| | - Jairo Patiño
- Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de La Laguna, La Laguna, Santa Cruz de Tenerife, Spain
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), La Laguna, Tenerife, Spain
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, United States of America
| | - Isabel Draper
- Departamento de Biología (Botánica), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Vicente Mazimpaka
- Departamento de Biología (Botánica), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - James R. Shevock
- Department of Botany, California Academy of Sciences, San Francisco, CA, United States of America
| | - Ana Losada-Lima
- Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de La Laguna, La Laguna, Santa Cruz de Tenerife, Spain
| | - Juana M. González-Mancebo
- Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de La Laguna, La Laguna, Santa Cruz de Tenerife, Spain
| | - Ricardo Garilleti
- Departamento de Botánica y Geología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
| | - Francisco Lara
- Departamento de Biología (Botánica), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
16
|
Theodoridis S, Randin C, Szövényi P, Boucher FC, Patsiou TS, Conti E. How Do Cold-Adapted Plants Respond to Climatic Cycles? Interglacial Expansion Explains Current Distribution and Genomic Diversity in Primula farinosa L. Syst Biol 2018; 66:715-736. [PMID: 28334079 DOI: 10.1093/sysbio/syw114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 12/14/2016] [Indexed: 12/16/2022] Open
Abstract
Understanding the effects of past climatic fluctuations on the distribution and population-size dynamics of cold-adapted species is essential for predicting their responses to ongoing global climate change. In spite of the heterogeneity of cold-adapted species, two main contrasting hypotheses have been proposed to explain their responses to Late Quaternary glacial cycles, namely, the interglacial contraction versus the interglacial expansion hypotheses. Here, we use the cold-adapted plant Primula farinosa to test two demographic models under each of the two alternative hypotheses and a fifth, null model. We first approximate the time and extent of demographic contractions and expansions during the Late Quaternary by projecting species distribution models across the last 72 ka. We also generate genome-wide sequence data using a Reduced Representation Library approach to reconstruct the spatial structure, genetic diversity, and phylogenetic relationships of lineages within P. farinosa. Finally, by integrating the results of climatic and genomic analyses in an Approximate Bayesian Computation framework, we propose the most likely model for the extent and direction of population-size changes in $P$. farinosa through the Late Quaternary. Our results support the interglacial expansion of $P$. farinosa, differing from the prevailing paradigm that the observed distribution of cold-adapted species currently fragmented in high altitude and latitude regions reflects the consequences of postglacial contraction processes.
Collapse
Affiliation(s)
- Spyros Theodoridis
- Department of Systematic and Evolutionary Botany, University of Zurich, CH-8008 Zurich, Switzerland.,Zurich-Basel Plant Science Center, CH-8092 Zurich, Switzerland
| | - Christophe Randin
- Institute of Botany, University of Basel, CH-4056 Basel, Switzerland.,Department of Ecology & Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Peter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich, CH-8008 Zurich, Switzerland
| | - Florian C Boucher
- Department of Systematic and Evolutionary Botany, University of Zurich, CH-8008 Zurich, Switzerland.,Department of Botany and Zoology, University of Stellenbosch, 7602 Matieland, South Africa
| | - Theofania S Patsiou
- Department of Systematic and Evolutionary Botany, University of Zurich, CH-8008 Zurich, Switzerland.,Zurich-Basel Plant Science Center, CH-8092 Zurich, Switzerland.,Institute of Botany, University of Basel, CH-4056 Basel, Switzerland
| | - Elena Conti
- Department of Systematic and Evolutionary Botany, University of Zurich, CH-8008 Zurich, Switzerland.,Zurich-Basel Plant Science Center, CH-8092 Zurich, Switzerland
| |
Collapse
|
17
|
Albert JS, Schoolmaster DR, Tagliacollo V, Duke-Sylvester SM. Barrier Displacement on a Neutral Landscape: Toward a Theory of Continental Biogeography. Syst Biol 2018; 66:167-182. [PMID: 27590192 DOI: 10.1093/sysbio/syw080] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/23/2016] [Indexed: 01/07/2023] Open
Abstract
Macroevolutionary theory posits three processes leading to lineage diversification and the formation of regional biotas: dispersal (species geographic range expansion), speciation (species lineage splitting), and extinction (species lineage termination). The Theory of Island Biogeography (TIB) predicts species richness values using just two of these processes; dispersal and extinction. Yet most species on Earth live on continents or continental shelves, and the dynamics of evolutionary diversification at regional and continental scales are qualitatively different from those that govern the formation of species richness on biogeographic islands. Certain geomorphological processes operating perennially on continental platforms displace barriers to gene flow and organismal dispersal, and affect all three terms of macroevolutionary diversification. For example, uplift of a dissected landscape and river capture both merge and separate portions of adjacent areas, allowing dispersal and larger geographic ranges, vicariant speciation and smaller geographic ranges, and extinction when range sizes are subdivided below a minimum persistence threshold. The TIB also does not predict many biogeographic and phylogenetic patterns widely observed in continentally distributed taxa, including: (i) power function-like species-area relationships; (ii) log-normal distribution of species geographic range sizes, in which most species have restricted ranges (are endemic) and few species have broad ranges (are cosmopolitan); (iii) mid-domain effects with more species toward the geographic center, and more early-branching, species-poor clades toward the geographic periphery; (iv) exponential rates of net diversification with log-linear accumulation of lineages through geological time; and (v) power function-like relationships between species-richness and clade diversity, in which most clades are species-poor and few clades are species-rich. Current theory does not provide a robust mechanistic framework to connect these seemingly disparate patterns. Here we present SEAMLESS (Spatially Explicit Area Model of Landscape Evolution by SimulationS) that generates clade diversification by moving geographic barriers on a continuous, neutral landscape. SEAMLESS is a neutral Landscape Evolution Model (LEM) that treats species and barriers as functionally equivalent with respect to model parameters. SEAMLESS differs from other model-based biogeographic methods (e.g., Lagrange, GeoSSE, BayArea, and BioGeoBEARS) by modeling properties of dispersal barriers rather than areas, and by modeling the evolution of species lineages on a continuous landscape, rather than the evolution of geographic ranges along branches of a phylogeny. SEAMLESS shows how dispersal is required to maintain species richness and avoid clade-wide extinction, demonstrates that ancestral range size does not predict species richness, and provides a unified explanation for the suite of commonly observed biogeographic and phylogenetic patterns listed above. SEAMLESS explains how a simple barrier-displacement mechanism affects lineage diversification under neutral conditions, and is advanced here toward the formulation of a general theory of continental biogeography. [Diversification, extinction, geodispersal, macroevolution, river capture, vicariance.].
Collapse
Affiliation(s)
- James S Albert
- Department of Biology, University of Louisiana at Lafayette, 104 E. University Circle, Lafayette, LA 70503, USA
| | | | - Victor Tagliacollo
- Universidade Federal do Tocantins Avenida NS 15, 109 Norte Palmas, Tocantins 77001-090, Brazil
| | - Scott M Duke-Sylvester
- Department of Biology, University of Louisiana at Lafayette, 104 E. University Circle, Lafayette, LA 70503, USA
| |
Collapse
|
18
|
Nieto‐Blázquez ME, Antonelli A, Roncal J. Historical Biogeography of endemic seed plant genera in the Caribbean: Did GAARlandia play a role? Ecol Evol 2017; 7:10158-10174. [PMID: 29238545 PMCID: PMC5723623 DOI: 10.1002/ece3.3521] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/11/2017] [Accepted: 09/14/2017] [Indexed: 12/16/2022] Open
Abstract
The Caribbean archipelago is a region with an extremely complex geological history and an outstanding plant diversity with high levels of endemism. The aim of this study was to better understand the historical assembly and evolution of endemic seed plant genera in the Caribbean, by first determining divergence times of endemic genera to test whether the hypothesized Greater Antilles and Aves Ridge (GAARlandia) land bridge played a role in the archipelago colonization and second by testing South America as the main colonization source as expected by the position of landmasses and recent evidence of an asymmetrical biotic interchange. We reconstructed a dated molecular phylogenetic tree for 625 seed plants including 32 Caribbean endemic genera using Bayesian inference and ten calibrations. To estimate the geographic range of the ancestors of endemic genera, we performed a model selection between a null and two complex biogeographic models that included timeframes based on geological information, dispersal probabilities, and directionality among regions. Crown ages for endemic genera ranged from Early Eocene (53.1 Ma) to Late Pliocene (3.4 Ma). Confidence intervals for divergence times (crown and/or stem ages) of 22 endemic genera occurred within the GAARlandia time frame. Contrary to expectations, the Antilles appears as the main ancestral area for endemic seed plant genera and only five genera had a South American origin. In contrast to patterns shown for vertebrates and other organisms and based on our sampling, we conclude that GAARlandia did not act as a colonization route for plants between South America and the Antilles. Further studies on Caribbean plant dispersal at the species and population levels will be required to reveal finer-scale biogeographic patterns and mechanisms.
Collapse
Affiliation(s)
| | - Alexandre Antonelli
- Department of Biological and Environmental SciencesUniversity of GöteborgGöteborgSweden
- Gothenburg Botanical GardenGöteborgSweden
- Gothenburg Global Biodiversity CentreGöteborgSweden
| | - Julissa Roncal
- Department of BiologyMemorial University of NewfoundlandSt. John'sNLCanada
| |
Collapse
|
19
|
Whittaker RJ, Fernández-Palacios JM, Matthews TJ, Borregaard MK, Triantis KA. Island biogeography: Taking the long view of nature’s laboratories. Science 2017; 357:357/6354/eaam8326. [DOI: 10.1126/science.aam8326] [Citation(s) in RCA: 264] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Cradles and museums of Antarctic teleost biodiversity. Nat Ecol Evol 2017; 1:1379-1384. [DOI: 10.1038/s41559-017-0239-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/15/2017] [Indexed: 11/08/2022]
|
21
|
Madagascar sheds new light on the molecular systematics and biogeography of grammitid ferns: New unexpected lineages and numerous long-distance dispersal events. Mol Phylogenet Evol 2017; 111:1-17. [DOI: 10.1016/j.ympev.2017.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 12/22/2022]
|
22
|
Carvajal-Endara S, Hendry AP, Emery NC, Davies TJ. Habitat filtering not dispersal limitation shapes oceanic island floras: species assembly of the Galápagos archipelago. Ecol Lett 2017; 20:495-504. [PMID: 28294532 DOI: 10.1111/ele.12753] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/03/2016] [Accepted: 01/25/2017] [Indexed: 01/13/2023]
Abstract
Remote locations, such as oceanic islands, typically harbour relatively few species, some of which go on to generate endemic radiations. Species colonising these locations tend to be a non-random subset from source communities, which is thought to reflect dispersal limitation. However, non-random colonisation could also result from habitat filtering, whereby only a few continental species can become established. We evaluate the imprints of these processes on the Galápagos flora by analysing a comprehensive regional phylogeny for ~ 39 000 species alongside information on dispersal strategies and climatic suitability. We found that habitat filtering was more important than dispersal limitation in determining species composition. This finding may help explain why adaptive radiation is common on oceanic archipelagoes - because colonising species can be relatively poor dispersers with specific niche requirements. We suggest that the standard assumption that plant communities in remote locations are primarily shaped by dispersal limitation deserves reconsideration.
Collapse
Affiliation(s)
- Sofía Carvajal-Endara
- Department of Biology, McGill University, 1205 Ave Docteur Penfield, Montreal, QC, H3A 1B1, Canada
| | - Andrew P Hendry
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, QC, H3A 2K6, Canada
| | - Nancy C Emery
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, 80309-0334, USA
| | - T Jonathan Davies
- Department of Biology, McGill University, 1205 Ave Docteur Penfield, Montreal, QC, H3A 1B1, Canada
| |
Collapse
|
23
|
Désamoré A, Patiño J, Mardulyn P, Mcdaniel SF, Zanatta F, Laenen B, Vanderpoorten A. High migration rates shape the postglacial history of amphi-Atlantic bryophytes. Mol Ecol 2016; 25:5568-5584. [PMID: 27661065 DOI: 10.1111/mec.13839] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 08/29/2016] [Accepted: 08/31/2016] [Indexed: 11/28/2022]
Abstract
Paleontological evidence and current patterns of angiosperm species richness suggest that European biota experienced more severe bottlenecks than North American ones during the last glacial maximum. How well this pattern fits other plant species is less clear. Bryophytes offer a unique opportunity to contrast the impact of the last glacial maximum in North America and Europe because about 60% of the European bryoflora is shared with North America. Here, we use population genetic analyses based on approximate Bayesian computation on eight amphi-Atlantic species to test the hypothesis that North American populations were less impacted by the last glacial maximum, exhibiting higher levels of genetic diversity than European ones and ultimately serving as a refugium for the postglacial recolonization of Europe. In contrast with this hypothesis, the best-fit demographic model involved similar patterns of population size contractions, comparable levels of genetic diversity and balanced migration rates between European and North American populations. Our results thus suggest that bryophytes have experienced comparable demographic glacial histories on both sides of the Atlantic. Although a weak, but significant genetic structure was systematically recovered between European and North American populations, evidence for migration from and towards both continents suggests that amphi-Atlantic bryophyte population may function as a metapopulation network. Reconstructing the biogeographic history of either North American or European bryophyte populations therefore requires a large, trans-Atlantic geographic framework.
Collapse
Affiliation(s)
- Aurélie Désamoré
- Institute of Botany, University of Liège, B22 Sart Tilman, Liège, Belgium. .,Department of Zoology, Swedish Museum of Natural History, Box 50007, SE-104 05, Stockholm, Sweden.
| | - Jairo Patiño
- Institute of Botany, University of Liège, B22 Sart Tilman, Liège, Belgium.,Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Tenerife, Canary Islands, 38206, Spain.,Centre for Ecology, Evolution and Environmental Changes and Platform for Enhancing Ecological Research & Sustainability, Universidade dos Açores, 9700-042, Angra do Heroísmo, Terceira, Açores, Portugal
| | - Patrick Mardulyn
- Department of Evolutionary Biology and Ecology, Université libre de Bruxelles, Campus du Solbosch, Avenue F.D. Roosevelt 50, 1050, Bruxelles, Belgium
| | - Stuart F Mcdaniel
- Department of Biology, University of Florida, Box 118525, Gainesville, FL, 32611-8525, USA
| | - Florian Zanatta
- Institute of Botany, University of Liège, B22 Sart Tilman, Liège, Belgium
| | - Benjamin Laenen
- Institute of Botany, University of Liège, B22 Sart Tilman, Liège, Belgium.,SciLifeLab Stockholm, Department of Ecology, Environment and Plant Sciences, Stockholm University, Tomtebodav. 23a, 171 21, Solna, Stockholm, Sweden
| | - Alain Vanderpoorten
- Institute of Botany, University of Liège, B22 Sart Tilman, Liège, Belgium.,Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Tenerife, Canary Islands, 38206, Spain
| |
Collapse
|
24
|
Colonization and diversification of the Euphorbia species (sect. Aphyllis subsect. Macaronesicae) on the Canary Islands. Sci Rep 2016; 6:34454. [PMID: 27681300 PMCID: PMC5041082 DOI: 10.1038/srep34454] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 09/14/2016] [Indexed: 12/19/2022] Open
Abstract
Diversification between islands and ecological radiation within islands are postulated to have occurred in the Euphorbia species (sect. Aphyllis subsect. Macaronesicae) on the Canary Islands. In this study, the biogeographical pattern of 11 species of subsect. Macaronesicae and the genetic differentiation among five species were investigated to distinguish the potential mode and mechanism of diversification and speciation. The biogeographical patterns and genetic structure were examined using statistical dispersal-vicariance analysis, Bayesian phylogenetic analysis, reduced median-joining haplotype network analysis, and discriminant analysis of principal components. The gene flow between related species was evaluated with an isolation-with-migration model. The ancestral range of the species of subsect. Macaronesicae was inferred to be Tenerife and the Cape Verde Islands, and Tenerife-La Gomera acted as sources of diversity to other islands of the Canary Islands. Inter-island colonization of E. lamarckii among the western islands and a colonization of E. regis-jubae from Gran Canaria to northern Africa were revealed. Both diversification between islands and radiation within islands have been revealed in the Euphorbia species (sect. Aphyllis subsect. Macaronesicae) of the Canary Islands. It was clear that this group began the speciation process in Tenerife-La Gomera, and this process occurred with gene flow between some related species.
Collapse
|
25
|
Climate threat on the Macaronesian endemic bryophyte flora. Sci Rep 2016; 6:29156. [PMID: 27377592 PMCID: PMC4932530 DOI: 10.1038/srep29156] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 06/15/2016] [Indexed: 11/09/2022] Open
Abstract
Oceanic islands are of fundamental importance for the conservation of biodiversity because they exhibit high endemism rates coupled with fast extinction rates. Nowhere in Europe is this pattern more conspicuous than in the Macaronesian biogeographic region. A large network of protected areas within the region has been developed, but the question of whether these areas will still be climatically suitable for the globally threatened endemic element in the coming decades remains open. Here, we make predictions on the fate of the Macaronesian endemic bryophyte flora in the context of ongoing climate change. The potential distribution of 35 Macaronesian endemic bryophyte species was assessed under present and future climate conditions using an ensemble modelling approach. Projections of the models under different climate change scenarios predicted an average decrease of suitable areas of 62-87% per species and a significant elevational increase by 2070, so that even the commonest species were predicted to fit either the Vulnerable or Endangered IUCN categories. Complete extinctions were foreseen for six of the studied Macaronesian endemic species. Given the uncertainty regarding the capacity of endemic species to track areas of suitable climate within and outside the islands, active management associated to an effective monitoring program is suggested.
Collapse
|
26
|
Carter BE, Shaw B, Shaw AJ. Endemism in the moss flora of North America. AMERICAN JOURNAL OF BOTANY 2016; 103:769-779. [PMID: 27056933 DOI: 10.3732/ajb.1500484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/02/2016] [Indexed: 06/05/2023]
Abstract
PREMISE OF THE STUDY Identifying regions of high endemism is a critical step toward understanding the mechanisms underlying diversification and establishing conservation priorities. Here, we identified regions of high moss endemism across North America. We also identified lineages that contribute disproportionately to endemism and document the progress of efforts to inventory the endemic flora. METHODS To understand the documentation of endemic moss diversity in North America, we tabulated species publication dates to document the progress of species discovery across the continent. We analyzed herbarium specimen data and distribution data from the Flora of North America project to delineate major regions of moss endemism. Finally, we surveyed the literature to assess the importance of intercontinental vs. within-continent diversification for generating endemic species. KEY RESULTS Three primary regions of endemism were identified and two of these were further divided into a total of nine subregions. Overall endemic richness has two peaks, one in northern California and the Pacific Northwest, and the other in the southern Appalachians. Description of new endemic species has risen steeply over the last few decades, especially in western North America. Among the few studies documenting sister species relationships of endemics, recent diversification appears to have played a larger role in western North America, than in the east. CONCLUSIONS Our understanding of bryophyte endemism continues to grow rapidly. Large continent-wide data sets confirm early views on hotspots of endemic bryophyte richness and indicate a high rate of ongoing species discovery in North America.
Collapse
Affiliation(s)
- Benjamin E Carter
- Department of Biology, Duke University, Durham, North Carolina 27708 USA
| | - Blanka Shaw
- Department of Biology, Duke University, Durham, North Carolina 27708 USA
| | - A Jonathan Shaw
- Department of Biology, Duke University, Durham, North Carolina 27708 USA
| |
Collapse
|
27
|
Condamine FL, Leslie AB, Antonelli A. Ancient islands acted as refugia and pumps for conifer diversity. Cladistics 2016; 33:69-92. [DOI: 10.1111/cla.12155] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2016] [Indexed: 01/19/2023] Open
Affiliation(s)
- Fabien L. Condamine
- Department of Biological and Environmental Sciences; University of Gothenburg; Box 461 SE-405 30 Göteborg Sweden
- Department of Biological Sciences; University of Alberta; Edmonton T6G 2E9 AB Canada
- CNRS, UMR 5554 Institut des Sciences de l'Evolution, Université de Montpellier; Place Eugène Bataillon 34095 Montpellier France
| | - Andrew B. Leslie
- Department of Ecology and Evolutionary Biology; Brown University; Providence RI 02912 USA
| | - Alexandre Antonelli
- Department of Biological and Environmental Sciences; University of Gothenburg; Box 461 SE-405 30 Göteborg Sweden
- Gothenburg Botanical Garden; Carl Skottsbergs gata 22A 413 19 Gothenburg Sweden
| |
Collapse
|
28
|
Patiño J, Goffinet B, Sim-Sim M, Vanderpoorten A. Is the sword moss (Bryoxiphium) a preglacial Tertiary relict? Mol Phylogenet Evol 2015; 96:200-206. [PMID: 26708122 DOI: 10.1016/j.ympev.2015.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/01/2015] [Accepted: 12/11/2015] [Indexed: 12/15/2022]
Abstract
The disjunction of floras between East Asia, Southeast North America, West North America, and Southwest Eurasia has been interpreted in terms of the fragmentation of a once continuous mixed mesophytic forest that occurred throughout the Northern Hemisphere due to the climatic and geological changes during the late Tertiary. The sword moss, Bryoxiphium, exhibits a distribution that strikingly resembles that of the mesophytic forest elements such as Liriodendron and is considered as the only living member of an early Tertiary flora in Iceland. These hypotheses are tested here using molecular dating analyses and ancestral area estimations. The results suggest that the extant range of Bryoxiphium results from the fragmentation of a formerly wider range encompassing North America and Southeast Asia about 10 million years ago. The split of continental ancestral populations is too recent to match with a continental drift scenario but is spatially and temporally remarkably congruent with that observed in Tertiary angiosperm relict species. The timing of the colonization of Iceland from Macaronesian ancestors, about two million years ago, is, however, incompatible with the hypothesis that Bryoxiphium is the only living member of an early Tertiary flora of the island. Alaska was recurrently colonized from East Asia. The ability of Bryoxiphium to overcome large oceanic barriers is further evidenced by its occurrence on remote oceanic archipelagos. In particular, Madeira was colonized twice independently from American and East Asian ancestors, respectively. The striking range disjunction of Bryoxiphium is interpreted in terms of its mating system, as the taxon exhibits a very singular pattern of spatial segregation of the sexes.
Collapse
Affiliation(s)
- Jairo Patiño
- University of Liege, Institute of Botany, B22 Sart Tilman, Liege, Belgium; cE3c - Centre for Ecology, Evolution and Environmental Changes and Platform for Enhancing Ecological Research & Sustainability, Universidade dos Açores, Angra do Heroísmo, Terceira, Açores, Portugal; Department of Plant Biology, University of La Laguna, Tenerife, Spain.
| | - Bernard Goffinet
- University of Connecticut, Department of Ecology and Evolutionary Biology, Storrs, CT, USA
| | - Manuela Sim-Sim
- cE3c, Centre for Ecology, Evolution and Environmental Changes, Universidade de Lisboa, Faculdade de Ciências de Lisboa, Departamento de Biologia Vegetal and Museu Nacional de História Natural e da Ciência, Jardim Botânico, Lisboa, Portugal
| | - Alain Vanderpoorten
- University of Liege, Institute of Botany, B22 Sart Tilman, Liege, Belgium; cE3c - Centre for Ecology, Evolution and Environmental Changes and Platform for Enhancing Ecological Research & Sustainability, Universidade dos Açores, Angra do Heroísmo, Terceira, Açores, Portugal
| |
Collapse
|
29
|
Mairal M, Sanmartín I, Aldasoro JJ, Culshaw V, Manolopoulou I, Alarcón M. Palaeo-islands as refugia and sources of genetic diversity within volcanic archipelagos: the case of the widespread endemicCanarina canariensis(Campanulaceae). Mol Ecol 2015; 24:3944-63. [DOI: 10.1111/mec.13282] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 12/13/2022]
Affiliation(s)
- M. Mairal
- Real Jardín Botánico (RJB-CSIC); 28014 Madrid Spain
| | - I. Sanmartín
- Real Jardín Botánico (RJB-CSIC); 28014 Madrid Spain
| | - J. J. Aldasoro
- Institut Botànic de Barcelona (IBB-CSIC-ICUB); 08038 Barcelona Spain
| | - V. Culshaw
- Real Jardín Botánico (RJB-CSIC); 28014 Madrid Spain
| | | | - M. Alarcón
- Institut Botànic de Barcelona (IBB-CSIC-ICUB); 08038 Barcelona Spain
| |
Collapse
|
30
|
Vargas P, Arjona Y, Nogales M, Heleno RH. Long-distance dispersal to oceanic islands: success of plants with multiple diaspore specializations. AOB PLANTS 2015; 7:plv073. [PMID: 26174146 PMCID: PMC4526753 DOI: 10.1093/aobpla/plv073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/04/2015] [Indexed: 05/07/2023]
Abstract
A great number of scientific papers claim that angiosperm diversification is manifested by an ample differentiation of diaspore traits favouring long-distance seed dispersal. Oceanic islands offer an ideal framework to test whether the acquisition of multiple sets of diaspore traits (syndromes) by a single species results in a wider geographic distribution. To this end, we performed floristic and syndrome analyses and found that diplochorous species (two syndromes) are overrepresented in the recipient flora of the Azores in contrast to that of mainland Europe, but not to mainland Portugal. An additional analysis of inter-island colonization showed a general trend of a higher number of islands colonized by species with a single syndrome (monochorous) and two syndromes than species with no syndrome (unspecialized). Nevertheless, statistical significance for differences in colonization is meagre in some cases, partially due to the low proportion of diplochorous species in Europe (244 of ∼10 000 species), mainland Portugal (89 of 2294 species), and the Azores (9 of 148 species), Canaries (17 of 387 lowland species) and Galápagos (18 of 313 lowland species). Contrary to expectations, this first study shows only a very marginal advantage for long-distance dispersal of species bearing multiple syndromes.
Collapse
Affiliation(s)
- Pablo Vargas
- Real Jardín Botánico de Madrid (RJB-CSIC), 28014 Madrid, Spain
| | - Yurena Arjona
- Real Jardín Botánico de Madrid (RJB-CSIC), 28014 Madrid, Spain Island Ecology and Evolution Research Group (IPNA-CSIC), 38206 La Laguna, Tenerife, Canary Islands, Spain
| | - Manuel Nogales
- Island Ecology and Evolution Research Group (IPNA-CSIC), 38206 La Laguna, Tenerife, Canary Islands, Spain
| | - Ruben H Heleno
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| |
Collapse
|