1
|
Poulin R, Presswell B. Nomenclatural stability and the longevity of helminth species names. Syst Parasitol 2024; 101:34. [PMID: 38700784 PMCID: PMC11068675 DOI: 10.1007/s11230-024-10161-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/01/2024] [Indexed: 05/06/2024]
Abstract
Although most Latin binomial names of species are valid, many are eventually unaccepted when they are found to be synonyms of previously described species, or superseded by a new combination when the species they denote are moved to a different genus. What proportion of parasite species names become unaccepted over time, and how long does it take for incorrect names to become unaccepted? Here, we address these questions using a dataset comprising thousands of species names of parasitic helminths from four higher taxa (Acanthocephala, Nematoda, Cestoda, and Trematoda). Overall, among species names proposed in the past two-and-a-half centuries, nearly one-third have since been unaccepted, the most common reason being that they have been superseded by a new combination. A greater proportion of older names (proposed pre-1950) have since been unaccepted compared to names proposed more recently, however most taxonomic acts leading to species names being unaccepted (through either synonymy or reclassification) occurred in the past few decades. Overall, the average longevity of helminth species names that are currently unaccepted was 29 years; although many remained in use for over 100 years, about 50% of the total were invalidated within 20 years of first being proposed. The patterns observed were roughly the same for all four higher helminth taxa considered here. Our results provide a quantitative illustration of the self-correcting nature of parasite taxonomy, and can also help to calibrate future estimates of total parasite biodiversity.
Collapse
Affiliation(s)
- Robert Poulin
- Department of Zoology, University of Otago, PO Box 56, Dunedin, New Zealand.
| | - Bronwen Presswell
- Department of Zoology, University of Otago, PO Box 56, Dunedin, New Zealand
| |
Collapse
|
2
|
Poulin R, Presswell B, Bennett J, de Angeli Dutra D, Salloum PM. Biases in parasite biodiversity research: why some helminth species attract more research than others. Int J Parasitol Parasites Wildl 2023; 21:89-98. [PMID: 37182112 PMCID: PMC10172627 DOI: 10.1016/j.ijppaw.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/16/2023]
Abstract
As the number of known and described parasite species grows every year, one might ask: how much do we actually know about these species beyond the fact they exist? For free-living taxa, research effort is biased toward a small subset of species based on their properties or human-centric factors. Here, using a large data set on over 2500 helminth parasite species described in the past two decades, we test the importance of several predictors on two measures of research effort: the number of times a species description is cited following its publication, and the number of times a species' name is mentioned in the scientific literature. Our analysis highlights some taxonomic biases: for instance, descriptions of acanthocephalans and nematodes tend to receive more citations than those of other helminths, and species of cestodes are less frequently mentioned in the literature than other helminths. We also found that helminths infecting host species of conservation concern receive less research attention, perhaps because of the constraints associated with research on threatened animals, while those infecting host species of human use receive greater research effort. Intriguingly, we found that species originally described by many co-authors subsequently attract more research effort than those described by one or few authors, and that research effort correlates negatively with the human population size of the country where a species was discovered, but not with its economic strength, measured by its gross domestic product. Overall, our findings reveal that we have conducted very little research, or none at all, on the majority of helminth parasite species following their discovery. The biases in study effort we identify have serious implications for future research into parasite biodiversity and conservation.
Collapse
|
3
|
Survey on helminths of bats in the Yucatan Peninsula: infection levels, molecular information and host-parasite networks. Parasitology 2023; 150:172-183. [PMID: 36444644 PMCID: PMC10090612 DOI: 10.1017/s0031182022001627] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Helminth species of Neotropical bats are poorly known. In Mexico, few studies have been conducted on helminths of bats, especially in regions such as the Yucatan Peninsula where Chiroptera is the mammalian order with the greatest number of species. In this study, we characterized morphologically and molecularly the helminth species of bats and explored their infection levels and parasite–host interactions in the Yucatan Peninsula, Mexico. One hundred and sixty-three bats (representing 21 species) were captured between 2017 and 2022 in 15 sites throughout the Yucatan Peninsula. Conventional morphological techniques and molecular tools were used with the 28S gene to identify the collected helminths. Host–parasite network analyses were carried out to explore interactions by focusing on the level of host species. Helminths were found in 44 (26.9%) bats of 12 species. Twenty helminth taxa were recorded (7 trematodes, 3 cestodes and 10 nematodes), including 4 new host records for the Americas. Prevalence and mean intensity of infection values ranged from 7.1 to 100% and from 1 to 56, respectively. Molecular analyses confirmed the identity of some helminths at species and genus levels; however, some sequences did not correspond to any of the species available on GenBank. The parasite–host network suggests that most of the helminths recorded in bats were host-specific. The highest helminth richness was found in insectivorous bats. This study increases our knowledge of helminths parasitizing Neotropical bats, adding new records and nucleotide sequences.
Collapse
|
4
|
Scholz T, Kuchta R. Fish tapeworms (Cestoda) in the molecular era: achievements, gaps and prospects. Parasitology 2022; 149:1876-1893. [PMID: 36004800 PMCID: PMC11010522 DOI: 10.1017/s0031182022001202] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 12/29/2022]
Abstract
The tapeworms of fishes (Chondrichthyes and Actinopterygii) account one-third (1670 from around 5000) of the total tapeworm (Platyhelminthes: Cestoda) species diversity. In total 1186 species from 9 orders occur as adults in elasmobranchs (sharks, rays and chimaeras), and 484 species from 8 orders mature in ray-finned fishes (referred to here as teleosts). Teleost tapeworms are dominated by freshwater species (78%), but only 3% of elasmobranch tapeworms are known from freshwater rays of South America and Asia (Borneo). In the last 2 decades, vast progress has been made in understanding species diversity, host associations and interrelationships among fish tapeworms. In total, 172 new species have been described since 2017 (149 from elasmobranchs and 23 from teleosts; invalidly described taxa are not included, especially those from the Oriental region). Molecular data, however, largely limited to a few molecular markers (mainly 28S rDNA, but also 18S and cox1), are available for about 40% of fish tapeworm species. They allowed us to significantly improve our understanding of their interrelationships, including proposals of a new, more natural classification at the higher-taxonomy level (orders and families) as well as at the lower-taxonomy level (genera). In this review, we summarize the main advances and provide perspectives for future research.
Collapse
Affiliation(s)
- Tomáš Scholz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Roman Kuchta
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
5
|
Poulin R, de Angeli Dutra D, Presswell B. Short and sweet: an analysis of the length of parasite species names. Syst Parasitol 2022; 99:699-706. [PMID: 35921033 PMCID: PMC9548468 DOI: 10.1007/s11230-022-10058-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/15/2022] [Indexed: 12/02/2022]
Abstract
In its advice to taxonomists, the International Commission on Zoological Nomenclature (ICZN) recommends that scientific species names should be compact, memorable, and easy to pronounce. Here, using a dataset of over 3000 species of parasitic helminths described in the past two decades, we investigate trends in the length of Latin specific names (=epithets) chosen by taxonomists. Our results reveal no significant temporal change in the length of species epithets as a function of year of description, with annual averages fluctuating around the overall average length of just over 9 letters. We also found that lengths of species epithets did not differ among the various host taxa from which the parasites were recovered, however acanthocephalan species have been given longer species epithets than other helminth taxa. Finally, although species epithets were shorter than genus names for three-quarters of the species in our dataset, we detected no relationship between the length of species epithets and that of genus names across all species included, i.e., there was no evidence that shorter species epithets are chosen to compensate for long genus names. We conclude by encouraging parasite taxonomists to follow the recommendations of the ICZN and choose species epithets that are, as much as possible, compact and easy to remember, pronounce and spell.
Collapse
Affiliation(s)
- Robert Poulin
- Department of Zoology, University of Otago, PO Box 56, Dunedin, New Zealand.
| | | | - Bronwen Presswell
- Department of Zoology, University of Otago, PO Box 56, Dunedin, New Zealand
| |
Collapse
|
6
|
Poulin R, McDougall C, Presswell B. What's in a name? Taxonomic and gender biases in the etymology of new species names. Proc Biol Sci 2022; 289:20212708. [PMID: 35538778 PMCID: PMC9091844 DOI: 10.1098/rspb.2021.2708] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
As our inventory of Earth's biodiversity progresses, the number of species given a Latin binomial name is also growing. While the coining of species names is bound by rules, the sources of inspiration used by taxonomists are an eclectic mix. We investigated naming trends for nearly 2900 new species of parasitic helminths described in the past two decades. Our analysis indicates that the likelihood of new species being given names that convey some information about them (name derived from morphology, host or locality of origin) or not (named after an eminent scientist, or for something else) depends on the higher taxonomic group to which the parasite or its host belongs. We also found a consistent gender bias among species named after eminent scientists, with male scientists being immortalized disproportionately more frequently than female scientists. Finally, we found that the tendency for taxonomists to name new species after a family member or close friend has increased over the past 20 years. We end by offering suggestions for future species naming, aimed at honouring the scientific community's diversity and avoiding etymological nepotism and cronyism, while still allowing for creativity in crafting new Latin species names.
Collapse
Affiliation(s)
- Robert Poulin
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
7
|
Beer A, Burns E, Randhawa HS. Natural history collections: collaborative opportunities and important sources of information about helminth biodiversity in New Zealand. NEW ZEALAND JOURNAL OF ZOOLOGY 2022. [DOI: 10.1080/03014223.2022.2067190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | | | - Haseeb S. Randhawa
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
- South Atlantic Environmental Research Institute, Stanley, Falkland Islands
- New Brunswick Museum, Saint John, Canada
| |
Collapse
|
8
|
Threatened, host-specific affiliates of a red-listed host: Three new species of Acanthobothrium van Beneden, 1849 (Cestoda: Onchoproteocephalidea) from the endangered white skate, Rostroraja alba (Lacépède). Int J Parasitol Parasites Wildl 2022; 17:114-126. [PMID: 35028287 PMCID: PMC8739874 DOI: 10.1016/j.ijppaw.2021.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/18/2021] [Accepted: 12/26/2021] [Indexed: 11/26/2022]
Abstract
The white skate, Rostroraja alba (Lacépède), is listed as an endangered species, the second-highest category before being declared extinct in the wild, in the International Union for Conservation of Nature's (IUCN) Red List of Threatened Species. This species is heavily affected by anthropogenic impacts such as capture induced stress by overfishing and by-catch, habitat degradation and pollution that caused a drastic decline in populations in recent years. As part of a larger study on elasmobranch affiliates in southern Africa, two specimens of R. alba were screened. Three species of the tapeworm genus Acanthobothrium van Beneden, 1849 (Cestoda: Onchoproteocephalidea) were discovered. Application of Ghoshroy and Caira's classification system facilitated the differentiation of congeners through a combination of specific morphological characteristics. As a consequence, three species new to science are described herein, namely Acanthobothrium umbungus n. sp., Acanthobothrium usengozinius n. sp., and Acanthobothrium ulondolozus n. sp. In light of these new discoveries from an endangered host, it is apparent to address the conservation status of its affiliate species, that co-evolved with their elasmobranch hosts for millions of years, thereby creating unique and intimate host-parasite interrelationships. Currently, altering environmental conditions caused by anthropogenic pressures have direct impacts on this host-parasite system with increasing risks of extinction. As merely 9% of elasmobranchs in South African waters have been examined for endohelminths and other affiliate taxa, extensive studies on these organisms and their hosts implementing multisource approaches are needed. This will provide a better understanding on the intimate nature of host-parasite systems that may lead to new prospects in conservation science and the preservation of threatened host species, such as R. alba, together with their unique fauna of affiliate species. Three new species of Acanthobothrium were discovered in the endangered white skate, Rostroraja alba, off the coast of South Africa. The three species described (A. umbungus n. sp., A. usengozinius n. sp., and A. ulondolozus n. sp.) display merely a single cestode genus among the hidden diversity of species from elasmobranchs. The current increase in threatened free-living host species results in an even greater loss in affiliate species that remain unknown and scientifically underexplored. Assessing the status and incorporating affiliate species (i.e. cestodes) into novel conservation schemes may contribute to the conservation of threatened host species and marine populations worldwide, which, in turn, will protect affiliate species as vital “key players” for host species and entire ecosystems.
Collapse
|
9
|
Poulin R, Presswell B. Is parasite taxonomy really in trouble? A quantitative analysis. Int J Parasitol 2022; 52:469-474. [DOI: 10.1016/j.ijpara.2022.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 11/25/2022]
|
10
|
Thomas LJ, Milotic M, Vaux F, Poulin R. Lurking in the water: testing eDNA metabarcoding as a tool for ecosystem-wide parasite detection. Parasitology 2022; 149:261-269. [PMID: 34709144 PMCID: PMC11016200 DOI: 10.1017/s0031182021001840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/14/2021] [Accepted: 10/17/2021] [Indexed: 11/07/2022]
Abstract
In the light of global biodiversity change and emerging disease, there is an urgent need to establish efficient monitoring programmes of parasites in aquatic ecosystems. However, parasite identification is time-consuming, requires a high degree of taxonomic expertize and in general requires lethal sampling. The use of environmental DNA methodology to identify parasites has the potential to circumvent these limitations. This study evaluates the use of eDNA metabarcoding to detect the presence of all species of nematode and platyhelminth parasites in two New Zealand lakes. We developed two novel metabarcoding primer pairs targeting a region of cytochrome oxidase I gene (COI) specific to platyhelminths and nematodes. We successfully detected parasite DNA in both lakes. Platyhelminth DNA yield was in general greater than nematode DNA yield. This most likely results from the larger biomass of the former quantified using traditional methods, or the presence of free-swimming life stages in the life cycle of many platyhelminths. By using eDNA, we did not detect all expected parasite families revealed through traditional methods, likely due to a lack of sequencing data available from public databases such as GenBank. As such, genetic resources need to include full reference sequences if parasitology is to truly harness eDNA to characterize and monitor parasite biodiversity in natural systems.
Collapse
Affiliation(s)
- Leighton J. Thomas
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Marin Milotic
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Felix Vaux
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Robert Poulin
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| |
Collapse
|
11
|
Noll FB, Barbosa MFDC, Santos EF, Castilho RDC, Lamas CJ, Freitas AV, de Moraes GJ. The contribution of the BIOTA/FAPESP Program to the advancement of the knowledge on terrestrial invertebrates. BIOTA NEOTROPICA 2022. [DOI: 10.1590/1676-0611-bn-2022-1398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Abstract The variability of the organisms living in a given area constitute what is referred to as biodiversity, one of nature’s fundamental properties, responsible for the balance and stability of ecosystems. The loss of biodiversity has been of great concern to scientists, especially because of the role played by human activities in this regard, able to lead to irreversible circumstances. The São Paulo Research Foundation (Fundação de Amparo à Pesquisa do Estado de São Paulo, FAPESP) plays a major role in supporting research efforts in the most diverse branches of science. In the late 1990´s, FAPESP launched a major program to promote research on biodiversity, named BIOTA/FAPESP. So far, this program has financed the conduction of 26 projects, involving research activities in most of Brazil, while focusing mainly the State of São Paulo. These projects have generated about 1140 publications in peer-reviewed journals of high standard, providing relevant information, including the original description of 1187 species and 76 genera, the complementary description of 350 species, as well as a number of inventory works, biological studies, etc. The program has also been instrumental in the establishment or adequacy of research facilities and training of new taxonomists. Most extensively studied groups of terrestrial invertebrates include Insecta of the orders Hymenoptera, Lepidoptera and Diptera, and Arachnida of the subclasses Araneae and Acari. Distinct projects have also contributed to the detection of organisms potentially useful as biological control agents and in the determination of maps of major interest for the establishment of public policies. In the future, priority groups for study should include the Annelida and the Nematoda, for the potential both have as beneficial organisms, or for the potential some Nematoda have as organisms harmful to plants and animals.
Collapse
|
12
|
Research on helminths from Mexican amphibians: gaps, trends, and biases. J Helminthol 2021; 95:e67. [PMID: 34802480 DOI: 10.1017/s0022149x21000614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We present a taxonomic, spatial, and thematic overview of the current state of knowledge on helminth parasites of Mexican amphibians. Sixty-six host species have been studied so far, representing 17.5% of the amphibian species distributed in Mexico. A total of 139 nominal species of helminths - 68 platyhelminths, 62 nematodes, three acanthocephalans, three annelids (hirudineans), and three arthropods (pentastomids) - have been recorded parasitizing these hosts. Most taxa found in larval stages have not been identified at the species level. The gastrointestinal nematode Aplectana itzocanensis exhibits the broadest host range, while the bladder fluke Gorgoderina attenuata and A. itzocanensis show the widest geographic distribution. Our analysis of helminthological studies evidenced gaps and biases on research efforts that have been devoted to relatively few host species, regions, and approaches. Most helminthological records come from two species, the cane toad Rhinella marina and the Montezuma's frog Lithobates montezumae, and most studies have focused on describing the helminth fauna of a host species in a particular location or on the description of new helminth species. The highest proportion of records corresponds to the Veracruzan biogeographic province, and helminth richness is significantly correlated with host richness and with total amphibian richness by biogeographic province. Only three provinces (Yucatan Peninsula, Pacific Lowlands, and Baja Californian) have positive, yet still low helminth species discovery effort. Based on our findings, we recommend pursuing research approaches unexplored in Mexico and we provide guidelines to improve research on helminths parasitizing amphibians.
Collapse
|
13
|
Cribb TH, Cutmore SC, Bray RA. The biodiversity of marine trematodes: then, now and in the future. Int J Parasitol 2021; 51:1085-1097. [PMID: 34757087 DOI: 10.1016/j.ijpara.2021.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 10/19/2022]
Abstract
Trematodes are the richest class of platyhelminths in the marine environment, infecting all classes of marine vertebrates as sexual adults and many phyla of marine invertebrates as part of their life cycles. Despite the cryptic nature of their existence (almost all marine trematodes are internal parasites), they have been the focus of study for almost 250 years, with the first species described in 1774. Here we review progress in the study of the "biodiversity" of these parasites, contrasting the progress made in the last 50 years (post-1971) to that in the almost 200 years before it (pre-1972). We consider an understanding of biodiversity to require knowledge of the species present in the system, an understanding of their evolutionary relationships (which informs higher classification), and, specifically for trematodes, an understanding of their complex life cycles. The fauna is now large, comprising well over 5,000 species. Although species description continues, we see evidence of a slow-down in all aspects of discovery. There has been only one completely new family identified since 1984 and the proposal of new genera is in decline as is the description of new species, especially for those of tetrapods. However, the extent to which this slow-down reflects an approach to the richness asymptote is made uncertain by changes in the field; reduced effort and difficulty of study may be important components of the effect. Regardless of how close we are to a complete description of the fauna, we infer that the outline is well-understood although the details are not. Adoption of molecular methodologies over the last 40 years have complemented morphometric analyses to facilitate objective recognition of species; however, despite these objective data, there is still inconsistency between authors on species delimitation. Molecular methodologies have also completely revolutionised inference of relationships at all levels, from within genera to between orders, and underpinned elucidation of novel life cycles. We expect the next 50 years to produce further dividends from technological innovations. The backdrop to the field will be global environmental concerns and the growing problem of funding for basic biodiversity studies.
Collapse
Affiliation(s)
- Thomas H Cribb
- The University of Queensland, School of Biological Sciences, St Lucia, Queensland 4072, Australia.
| | - Scott C Cutmore
- The University of Queensland, School of Biological Sciences, St Lucia, Queensland 4072, Australia
| | - Rodney A Bray
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
14
|
González-García MT, Andrade-Gómez L, Pinacho-Pinacho CD, Sereno-Uribe AL, García-Varela M. Host-induced phenotypic plasticity in Saccocoelioides lamothei Aguirre-Macedo and Violante-González, 2008 (Digenea: Haploporidae) a parasite of freshwater, brackish and marine fishes from Middle America. Parasitology 2021; 148:519-531. [PMID: 33298206 PMCID: PMC10950380 DOI: 10.1017/s0031182020002334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 11/08/2022]
Abstract
Saccocoelioides is a genus of trematodes associated with fishes from the Americas. In the current research, morphologically distinct specimens of Saccocoelioides spp. were collected from six countries in Middle America. Specimens were sequenced using three molecular markers, the domains D1-D3 of the large subunit (LSU) from the nuclear rDNA, the cytochrome c oxidase subunit 1 (cox1) and nicotinamide adenine dinucleotide dehydrogenase subunit 1 (nad1) from mitochondrial DNA. A total of 74 new sequences were compared and aligned with other sequences available in GenBank. Maximum likelihood and Bayesian inference analyses were inferred from the LSU and cox1 datasets, revealing unequivocally that all the specimens correspond to S. lamothei. A haplotype network was built with 119 sequences of the nad1 gene. The network detected 57 distinct haplotypes divided into three haplogroups. To explore morphological differences among samples of S. lamothei, 17 morphological features were measured from 53 specimens from three fish families: Eleotridae, Mugilidae and Gobiidae. Principal component analysis yielded three main polygons that corresponded with each family analysed, suggesting host-induced phenotypic plasticity. The current evidence suggests that S. lamothei infects at least five fish families along the Pacific coasts of Mexico, Guatemala, El Salvador, Honduras, Nicaragua and Costa Rica.
Collapse
Affiliation(s)
- Marcelo Tonatiuh González-García
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria, C.P. 04510, Ciudad de México, México
| | - Leopoldo Andrade-Gómez
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria, C.P. 04510, Ciudad de México, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria, C. P. 04510, Ciudad de México, México
| | - Carlos Daniel Pinacho-Pinacho
- Investigador Cátedras CONACyT, Instituto de Ecología, A.C., Red de Estudios Moleculares Avanzados, Km 2.5 Ant. Carretera a Coatepec, Xalapa, Veracruz91070, México
| | - Ana Lucia Sereno-Uribe
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria, C.P. 04510, Ciudad de México, México
| | - Martín García-Varela
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria, C.P. 04510, Ciudad de México, México
| |
Collapse
|
15
|
Affiliation(s)
| | - Rowland Sadler
- Department of Life Sciences, The Natural History Museum, London, UK
| | - Simon P. Loader
- Department of Life Sciences, The Natural History Museum, London, UK
| |
Collapse
|
16
|
High diversity of metazoan parasites in carp gudgeons (Eleotridae: Hypseleotris spp.) from Eastern Australia. J Helminthol 2020; 94:e146. [PMID: 32366344 DOI: 10.1017/s0022149x20000280] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Knowledge of the parasite fauna of Australian freshwater fish is fragmentary and incomplete. An understanding of fish hosts and their associated parasites is vital for the successful management of aquatic ecosystems. In this study, we surveyed the parasite fauna of carp gudgeons (Hypseleotris spp.), a complex of species of Australian freshwater fishes, using morphology and molecular data for the 18S and 28S ribosomal RNA genes. We examined 137 individuals of three different taxa in the carp gudgeon species complex and found 16 parasitic taxa of the Digenea, Cestoda, Nematoda and Arthropoda (five adults and 11 larvae). Eleven parasites are reported for the first time from the carp gudgeons (Pseudodactylogyrus sp., Gyrodactylus sp., Clinostomum sp., Paradilepis patriciae, P. cf. kempi, two unidentified species of Paradilepis, Dendrouterina sp., Parvitaenia sp., two lineages of Cyclophyllidea gen. sp., Procamallanus sp., larvae of a spirurine nematode and Lernaea sp.), in addition to Apatemon cf. hypseleotris Negm-Eldin & Davies, 2001 and the invasive tapeworm Schyzocotyle acheilognathi (Yamaguti, 1934), which were previously reported from these fish hosts. Parasite species richness was double in Lake's and Midgley's carp gudgeons relative to western carp gudgeon. These findings highlight the key role of carp gudgeons as intermediate hosts for multiple parasites with complex life cycles using native birds as definitive hosts and the usefulness of DNA data for the identification of parasite larvae.
Collapse
|
17
|
Poulin R, Presswell B, Jorge F. The state of fish parasite discovery and taxonomy: a critical assessment and a look forward. Int J Parasitol 2020; 50:733-742. [PMID: 32151615 DOI: 10.1016/j.ijpara.2019.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/05/2019] [Accepted: 12/23/2019] [Indexed: 01/13/2023]
Abstract
Efforts to find and characterise new parasite species in fish hosts are crucial not just to complete our inventory of Earth's biodiversity, but also to monitor and mitigate disease threats in fisheries and aquaculture in the face of global climate change. Here, we review recent quantitative assessments of research efforts into fish parasite discovery and taxonomy. We address broad questions including: Are efforts aimed at finding new parasite species targeted at geographical hotspots of fish biodiversity, where there should be more parasite species to be found? Is the application of molecular tools to study parasite genetic diversity deployed strategically across regions of the world, or focused disproportionately on certain areas? How well coordinated is the search for new parasite species of fish among workers specialising on different higher helminth taxa? Are parasite discovery efforts in any geographical area consistent over time, or subject to idiosyncrasies due to the waxing and waning of highly prolific research careers? Is the quality of taxonomic descriptions of new species improving over time, with the incorporation of new tools to characterise species? Are taxonomic descriptions moving away from a focus on the adult stage only toward attempts to characterise the full life cycle of newly-discovered helminth species? By using empirical evidence to answer these questions, we assess the current state of research into fish parasite discovery and taxonomy. We also explore the far-reaching implications of recent research on parasite microbiomes for parasite taxonomy. We end with recommendations aimed at maximising the knowledge gained per fish sacrificed, and per dollar and time invested into research on fish parasite biodiversity.
Collapse
Affiliation(s)
- Robert Poulin
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.
| | - Bronwen Presswell
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Fátima Jorge
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
18
|
Abstract
The use of the "integrative approach" for classification of organisms since its formal establishment in 2005 has become a recurrent theme of zoosystematics. A bibliometric survey of the publications on integrative taxonomy of animals, which is aimed at exploring the most popular areas of research and characterizing the practical systematists' attitudes to this new approach, is presented. An analysis of 582 papers, which appeared between 2005 and 2017 in journals indexed by Scopus and the Web of Science Core Collection, has illustrated the gradual growth of the popularity of integrative taxonomy as well as some biases in the representation of higher taxa in "integrated" studies. It has been shown that the "integrative" papers have more chance of appearing in a top-ranking journal and gain relatively more citations as compared with non-integrative papers. The obtained results are discussed in the context of the "taxonomic impediment" problem thought to be a consequence of the institutional crisis of traditional taxonomy, which has been vividly debated over the past decades.
Collapse
Affiliation(s)
- Maxim V Vinarski
- Laboratory of Macroecology and Biogeography of Invertebrates, Saint-Petersburg State University, Saint-Petersburg, Russia
| |
Collapse
|
19
|
Jorge F, Poulin R. Poor geographical match between the distributions of host diversity and parasite discovery effort. Proc Biol Sci 2019; 285:rspb.2018.0072. [PMID: 29848643 DOI: 10.1098/rspb.2018.0072] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/02/2018] [Indexed: 11/12/2022] Open
Abstract
Mapping global parasite diversity is crucial to identify geographical hotspots of emerging disease, and guide public health and conservation efforts. In principle, assuming a bottom-up coupling between the diversity of resources and consumers, the geographical distribution of parasite diversity should match that of host diversity. We test the expected spatial congruence between host and parasite diversity for helminth parasites of vertebrate hosts, across grid cells of a global map. Using high-resolution databases on host species distributions and newly compiled data on the geographical distribution of parasite species discovery, we found positive covariation between host species richness and the number of parasite species discovered, for all vertebrate groups, regardless of the analytical method used, spatial autocorrelation, and spatial resolution. However, all associations were very weak, indicating a poor match between host species richness and parasite species discovery. The research deficit in parasite discovery peaks in areas corresponding to hotspots of host diversity, where disproportionately fewer new parasites are discovered than expected based on local host richness. This spatially biased research effort prevents a full inventory of parasite biodiversity, and impedes predictions of where new diseases may emerge. The host taxon-specific maps we produced, however, can guide future efforts to uncover parasite biodiversity.
Collapse
Affiliation(s)
- Fátima Jorge
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Robert Poulin
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
20
|
Poulin R, Hay E, Jorge F. Taxonomic and geographic bias in the genetic study of helminth parasites. Int J Parasitol 2019; 49:429-435. [PMID: 30797772 DOI: 10.1016/j.ijpara.2018.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 11/25/2022]
Abstract
The use of genetic information is now fundamental in parasite taxonomy and systematics, for resolving parasite phylogenies, discovering cryptic species, and elucidating patterns of gene flow among parasite populations. The accumulation of available gene sequences per geographical area or per parasite taxonomic group is likely proportional to species richness, but not without some biases. Certain areas and certain taxonomic groups receive more research effort than others, possibly causing a deficit in the relative number of parasite species being characterized genetically in some areas or taxonomic groups. Here, we use data on the number of parasite records per country or helminth family from the London Natural History Museum host-parasite database, and matching data on the number of gene sequences available from the National Center for Biotechnology Information (NCBI) GenBank database, to determine how available gene sequences scale with species richness across countries or parasitic helminth families. Our quantitative analysis identified countries/regions of the world and helminth families that have received the most effort in genetic research. More importantly, it allowed us to generate lists (based on residuals from the statistical model) of the 20 countries/regions and the 20 helminth families with the largest deficit in available gene sequences relative to their helminth species richness. We propose these lists as useful guides toward future allocation of effort to maximise advances in parasite biodiscovery, systematics and population structure.
Collapse
Affiliation(s)
- Robert Poulin
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.
| | - Eleanor Hay
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Fátima Jorge
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
21
|
Abstract
We need reliable data on the spatial distribution of parasites in order to achieve an inventory of global parasite biodiversity and establish robust conservation initiatives based on regional disease risk. This requires an integrated and spatially consistent effort toward the discovery of new parasite species. Using a large and representative dataset on the geographical coordinates where 4943 helminth species were first discovered, we first test whether the geographical distribution of parasite species reports is spatially congruent across helminth higher taxa; i.e. whether areas, where many trematodes are found, are also areas where many nematodes or cestodes have been discovered. Second, we test whether the global geographical distribution of new helminth species reports has changed significantly over time, i.e. across the last few decades. After accounting for spatial autocorrelation in the data, we find no strong statistical support for either of the patterns we investigated. Overall, our results indicate that helminth species discoveries are both spatially incongruent among higher taxa of helminths, and inconsistent over time. These findings suggest that the global parasite discovery effort is inefficient, spatially biased and subject to idiosyncrasies. Coordinated biodiscovery programmes, involving research teams with expertise in multiple taxonomic groups, seem the best approach to remedy these issues.
Collapse
|
22
|
Arfianti T, Wilson S, Costello MJ. Progress in the discovery of amphipod crustaceans. PeerJ 2018; 6:e5187. [PMID: 30018857 PMCID: PMC6045924 DOI: 10.7717/peerj.5187] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/15/2018] [Indexed: 11/22/2022] Open
Abstract
At present, amphipod crustaceans comprise 9,980 species, 1,664 genera, 444 subfamilies, and 221 families. Of these, 1,940 species (almost 20%) have been discovered within the last decade, including 18 fossil records for amphipods, which mostly occurred in Miocene amber and are probably all freshwater species. There have been more authors describing species since the 1950s and fewer species described per author since the 1860s, implying greater taxonomic effort and that it might be harder to find new amphipod species, respectively. There was no evidence of any change in papers per author or publication life-times of taxonomists over time that might have biased apparent effort. Using a nonhomogeneous renewal process model, we predicted that by the year 2100, 5,600 to 6,600 new amphipod species will be discovered. This indicates that about two-thirds of amphipods remain to be discovered which is twice the proportion than for species overall. Amphipods thus rank amongst the least well described taxa. To increase the prospect of discovering new amphipod species, studying undersampled areas and benthic microhabitats are recommended.
Collapse
Affiliation(s)
- Tri Arfianti
- Institute of Marine Science, University of Auckland, Auckland, New Zealand.,Research Center for Oceanography, Indonesian Institute of Sciences, Jakarta Utara, Indonesia
| | - Simon Wilson
- Discipline of Statistics, Trinity College Dublin, Dublin, Ireland
| | - Mark John Costello
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
23
|
Blair D. Use of molecular data in species-level taxonomy of parasites: A commentary. Parasitol Int 2018; 67:188-189. [DOI: 10.1016/j.parint.2017.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 11/30/2022]
|
24
|
Abstract
The extent of New Zealand's freshwater fish-parasite diversity has yet to be fully revealed, with host-parasite relationships still to be described from nearly half the known fish community. While advances in the number of fish species examined and parasite taxa described are being made, some parasite groups, such as nematodes, remain poorly understood. In the present study we combined morphological and molecular analyses to characterize a capillariid nematode found infecting the swim bladder of the brown mudfish Neochanna apoda, an endemic New Zealand fish from peat-swamp-forests. Morphologically, the studied nematodes are distinct from other Capillariinae taxa by the features of the male posterior end, namely the shape of the bursa lobes, and shape of spicule distal end. Male specimens were classified into three different types according to differences in the shape of the bursa lobes at the posterior end, but only one was successfully characterized molecularly. Molecular analysis indicated that the studied capillariid is distinct from other genera. However, inferences about the phylogenetic position of the capillariid reported here will remain uncertain, due to the limited number of Capillariinae taxa characterized molecularly. The discovery of this new capillariid, which atypically infects the swim bladder of its host, which itself inhabits a very unique ecosystem, underlines the very interesting evolutionary history of this parasite, which for now will remain unresolved.
Collapse
|
25
|
An updated look at the uneven distribution of cryptic diversity among parasitic helminths. J Helminthol 2017; 92:197-202. [PMID: 28260533 DOI: 10.1017/s0022149x17000189] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cryptic parasite diversity is a major issue for taxonomy and systematics, and for attempts to control diseases of humans, domestic animals and wildlife. Here, we re-examine an earlier report that, after correcting for sampling effort, more cryptic species of trematodes are found per published study than for other helminth taxa. We performed a meta-analysis of 110 studies that used DNA sequences to search for cryptic species in parasitic helminth taxa. After correcting for study effort and accounting for the biogeographical region of origins, we found that more cryptic species tend to be uncovered among trematodes, and fewer among cestodes and animal-parasitic nematodes, than in other helminth groups. However, this pattern was only apparent when we included only studies using nuclear markers in the analysis; it was not seen in a separate analysis based only on mitochondrial markers. We propose that the greater occurrence of cryptic diversity among trematodes may be due to some of their unique features, such as their mode of reproduction or frequent lack of hard morphological structures, or to the way in which trematode species are described. Whatever the reason, the high frequency of cryptic species among trematodes has huge implications for estimates of parasite diversity and for future taxonomic research.
Collapse
|
26
|
Abstract
AbstractMany helminth taxa have complex life cycles, involving different life stages infecting different host species in a particular order to complete a single generation. Although the broad outlines of these cycles are known for any higher taxon, the details (morphology and biology of juvenile stages, specific identity of intermediate hosts) are generally unknown for particular species. In this review, we first provide quantitative evidence that although new helminth species are described annually at an increasing rate, the parallel effort to elucidate life cycles has become disproportionately smaller over time. We then review the use of morphological matching, experimental infections and genetic matching as approaches to elucidate helminth life cycles. Next we discuss the various research areas or disciplines that could benefit from a solid knowledge of particular life cycles, including integrative taxonomy, the study of parasite evolution, food-web ecology, and the management and control of parasitic diseases. Finally, we end by proposing changes to the requirements for new species descriptions and further large-scale attempts to genetically match adult and juvenile helminth stages in regional faunas, as part of a plea to parasitologists to bring parasite life-cycle studies back into mainstream research.
Collapse
|
27
|
Blasco-Costa I, Locke SA. Life History, Systematics and Evolution of the Diplostomoidea Poirier, 1886: Progress, Promises and Challenges Emerging From Molecular Studies. ADVANCES IN PARASITOLOGY 2017; 98:167-225. [PMID: 28942769 DOI: 10.1016/bs.apar.2017.05.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Members of the Diplostomoidea mature in amniotes and employ vertebrates, annelids and molluscs as second intermediate hosts. Diplostomoid life cycles generally follow a three-host pattern typical of digeneans, but novelties have arisen in some species, including obligate four-host life cycles, vertical transmission, and intracellular parasitism. In this review, we summarize the basic biology of diplostomoids with reference to molecular studies, and present challenges, gaps and areas where molecular data could address long-standing questions. Our analysis of published studies revealed that most molecular surveys find more diplostomoid species than expected, but this tendency is influenced by how much effort goes into examining specimens morphologically and the number of sequenced worms. To date, molecular work has concentrated disproportionately on intraspecific or species-level diversity of larval stages in the Diplostomidae in temperate northern regions. Although the higher taxonomy of the superfamily is recognized to be in need of revision, little molecular work has been conducted at this level. Our phylogenetic analysis indicates several families and subfamilies require reconsideration, and that larval morphotypes are more reflective of evolutionary relationships than definitive hosts. The host associations of adult diplostomoids result from host-switching processes, whereas molecular surveys indicate that larval diplostomoid metacercariae have narrow ranges of second intermediate hosts, consistent with coevolution. Molecular data are often used to link diplostomoid developmental stages, and we provide data from adult Neodiplostomum and Mesoophorodiplostomum that correct earlier misidentifications of their larval stages and propose alternatives to collecting definitive hosts.
Collapse
|