1
|
Kalaentzis K, Koster S, Arntzen JW, Bogaerts S, France J, Franzen M, Kazilas C, Litvinchuk SN, Olgun K, de Visser M, Wielstra B. Phylogenomics resolves the puzzling phylogeny of banded newts (genus Ommatotriton). Mol Phylogenet Evol 2025; 203:108237. [PMID: 39551222 DOI: 10.1016/j.ympev.2024.108237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/10/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024]
Abstract
Resolving the order of speciation events that occurred in rapid succession is inherently hard and typically requires a phylogenomic approach. A case in point concerns the previously unresolved phylogeny of the three species of banded newt (genus Ommatotriton). We obtain c. 7k nuclear DNA markers using target enrichment by sequence capture and analyze the dataset using maximum likelihood inference of concatenated data with RAxML, summary multi-species coalescent analysis with ASTRAL and Bayesian species tree inference using a diffusion model with SNAPPER, and use TreeMix and PhyloNet to test for interspecific gene flow. All analyses recover three distinct species with no evidence of interspecific gene flow. All analyses retrieved the topology (O. nesterovi, (O. ophryticus, O. vittatus)), with high support. SNAPPER did show the tendency to get stuck in a local optimum, resulting in a different but still highly supported topology. Furthermore, we notice that fewer SNAPPER runs get stuck in a local optimum when we include an outgroup. Therefore, we recommend the exploration of multiple independent runs and the use of an outgroup with this approach. The banded newt radiation illustrates the use of genome-wide data to tackle formerly unresolved phylogenies.
Collapse
Affiliation(s)
- Konstantinos Kalaentzis
- Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, the Netherlands; Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, the Netherlands; Hydrobiological Station of Rhodes (HCMR), 85131 Rhodes, Greece
| | - Stephanie Koster
- Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, the Netherlands; Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, the Netherlands
| | - Jan W Arntzen
- Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, the Netherlands; Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, the Netherlands
| | | | - James France
- Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, the Netherlands; Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, the Netherlands
| | - Michael Franzen
- Zoologische Staatssammlung München (ZSM-SNSB), Münchhausenstraße 21, 81247 München, Germany
| | - Christos Kazilas
- Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, the Netherlands; Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, the Netherlands
| | - Spartak N Litvinchuk
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky pr. 4, 194064 St. Petersburg, Russia
| | - Kurtuluş Olgun
- Department of Biology, Faculty of Sciences, Adnan Menderes University, 09010 Aydın, Turkey
| | - Manon de Visser
- Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, the Netherlands; Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, the Netherlands
| | - Ben Wielstra
- Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, the Netherlands; Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, the Netherlands.
| |
Collapse
|
2
|
Hill-Terán G, Petrich J, Falcone Ferreyra ML, Aybar MJ, Coux G. Untangling Zebrafish Genetic Annotation: Addressing Complexities and Nomenclature Issues in Orthologous Evaluation of TCOF1 and NOLC1. J Mol Evol 2024; 92:744-760. [PMID: 39269459 DOI: 10.1007/s00239-024-10200-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 08/27/2024] [Indexed: 09/15/2024]
Abstract
Treacher Collins syndrome (TCS) is a genetic disorder affecting facial development, primarily caused by mutations in the TCOF1 gene. TCOF1, along with NOLC1, play important roles in ribosomal RNA transcription and processing. Previously, a zebrafish model of TCS successfully recapitulated the main characteristics of the syndrome by knocking down the expression of a gene on chromosome 13 (coding for Uniprot ID B8JIY2), which was identified as the TCOF1 orthologue. However, database updates renamed this gene as nolc1 and the zebrafish database (ZFIN) identified a different gene on chromosome 14 as the TCOF1 orthologue (coding for Uniprot ID E7F9D9). NOLC1 and TCOF1 are large proteins with unstructured regions and repetitive sequences that complicate alignments and comparisons. Also, the additional whole genome duplication of teleosts sets further difficulty. In this study, we present evidence that endorses that NOLC1 and TCOF1 are paralogs, and that the zebrafish gene on chromosome 14 is a low-complexity LisH domain-containing factor that displays homology to NOLC1 but lacks essential sequence features to accomplish TCOF1 nucleolar functions. Our analysis also supports the idea that zebrafish, as has been suggested for other non-tetrapod vertebrates, lack the TCOF1 gene that is associated with tripartite nucleolus. Using BLAST searches in a group of teleost genomes, we identified fish-specific sequences similar to E7F9D9 zebrafish protein. We propose naming them "LisH-containing Low Complexity Proteins" (LLCP). Interestingly, the gene on chromosome 13 (nolc1) displays the sequence features, developmental expression patterns, and phenotypic impact of depletion that are characteristic of TCOF1 functions. These findings suggest that in teleost fish, the nucleolar functions described for both NOLC1 and TCOF1 mediated by their repeated motifs, are carried out by a single gene, nolc1. Our study, which is mainly based on computational tools available as free web-based algorithms, could help to solve similar conflicts regarding gene orthology in zebrafish.
Collapse
Affiliation(s)
- Guillermina Hill-Terán
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), CONICET-UNT, San Miguel de Tucumán, Tucumán, Argentina
| | - Julieta Petrich
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK), Rosario, Santa Fe., Argentina
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET, Suipacha 531, (S2002LRK), Rosario, Santa Fe., Argentina
| | - Maria Lorena Falcone Ferreyra
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK), Rosario, Santa Fe., Argentina
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET, Suipacha 531, (S2002LRK), Rosario, Santa Fe., Argentina
| | - Manuel J Aybar
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), CONICET-UNT, San Miguel de Tucumán, Tucumán, Argentina
- Facultad de Bioquímica Química y Farmacia, Instituto de Biología "Dr. Francisco D. Barbieri", Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán, Argentina
| | - Gabriela Coux
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), CONICET, CCT-Rosario CONICET, Ocampo y Esmeralda, (S2000EZP), Rosario, Argentina.
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 531, (S2002LRK), Rosario, Santa Fe., Argentina.
| |
Collapse
|
3
|
Schartl M, Woltering JM, Irisarri I, Du K, Kneitz S, Pippel M, Brown T, Franchini P, Li J, Li M, Adolfi M, Winkler S, de Freitas Sousa J, Chen Z, Jacinto S, Kvon EZ, Correa de Oliveira LR, Monteiro E, Baia Amaral D, Burmester T, Chalopin D, Suh A, Myers E, Simakov O, Schneider I, Meyer A. The genomes of all lungfish inform on genome expansion and tetrapod evolution. Nature 2024; 634:96-103. [PMID: 39143221 PMCID: PMC11514621 DOI: 10.1038/s41586-024-07830-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/15/2024] [Indexed: 08/16/2024]
Abstract
The genomes of living lungfishes can inform on the molecular-developmental basis of the Devonian sarcopterygian fish-tetrapod transition. We de novo sequenced the genomes of the African (Protopterus annectens) and South American lungfishes (Lepidosiren paradoxa). The Lepidosiren genome (about 91 Gb, roughly 30 times the human genome) is the largest animal genome sequenced so far and more than twice the size of the Australian (Neoceratodus forsteri)1 and African2 lungfishes owing to enlarged intergenic regions and introns with high repeat content (about 90%). All lungfish genomes continue to expand as some transposable elements (TEs) are still active today. In particular, Lepidosiren's genome grew extremely fast during the past 100 million years (Myr), adding the equivalent of one human genome every 10 Myr. This massive genome expansion seems to be related to a reduction of PIWI-interacting RNAs and C2H2 zinc-finger and Krüppel-associated box (KRAB)-domain protein genes that suppress TE expansions. Although TE abundance facilitates chromosomal rearrangements, lungfish chromosomes still conservatively reflect the ur-tetrapod karyotype. Neoceratodus' limb-like fins still resemble those of their extinct relatives and remained phenotypically static for about 100 Myr. We show that the secondary loss of limb-like appendages in the Lepidosiren-Protopterus ancestor was probably due to loss of sonic hedgehog limb-specific enhancers.
Collapse
Affiliation(s)
- Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany.
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, USA.
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria.
| | | | - Iker Irisarri
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Museum of Nature, Hamburg, Germany
| | - Kang Du
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, USA
| | - Susanne Kneitz
- Biochemistry and Cell Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Martin Pippel
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- DRESDEN-concept Genome Center (DcGC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Thomas Brown
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- DRESDEN-concept Genome Center (DcGC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
- Leibniz Institute for Zoo & Wildlife Research, Berlin, Germany
| | - Paolo Franchini
- Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Jing Li
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Ming Li
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Mateus Adolfi
- Developmental Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | - Sylke Winkler
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Zhuoxin Chen
- Department of Developmental & Cell Biology, University of California, Irvine, CA, USA
| | - Sandra Jacinto
- Department of Developmental & Cell Biology, University of California, Irvine, CA, USA
| | - Evgeny Z Kvon
- Department of Developmental & Cell Biology, University of California, Irvine, CA, USA
| | | | - Erika Monteiro
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | | | | | - Domitille Chalopin
- Institute of Cellular Biochemistry and Genetics, CNRS, University of Bordeaux, Bordeaux, France
| | - Alexander Suh
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, Science for Life Laboratory, Uppsala, Sweden
- School of Biological Sciences, University of East Anglia, Norwich, UK
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, Germany
| | - Eugene Myers
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center of Systems Biology Dresden, Dresden, Germany
| | - Oleg Simakov
- Department for Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria
| | - Igor Schneider
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Axel Meyer
- Department of Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
4
|
Sikes DS, Thayer MK, Newton AF. Large carrion and burying beetles evolved from Staphylinidae (Coleoptera, Staphylinidae, Silphinae): a review of the evidence. Zookeys 2024; 1200:159-182. [PMID: 38756344 PMCID: PMC11096728 DOI: 10.3897/zookeys.1200.122835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/29/2024] [Indexed: 05/18/2024] Open
Abstract
Large carrion beetles (Silphidae) are the focus of ongoing behavioral ecology, forensic, ecological, conservation, evolutionary, systematic, and other research, and were recently reclassified as a subfamily of Staphylinidae. Twenty-three analyses in 21 publications spanning the years 1927-2023 that are relevant to the question of the evolutionary origin and taxonomic classification of Silphidae are reviewed. Most of these analyses (20) found Silphidae nested inside Staphylinidae (an average of 4.38 branches deep), two found Silphidae in an ambiguous position, and one found Silphidae outside Staphylinidae, as sister to Hydrophilidae. There is strong evidence supporting the hypothesis that large carrion beetles evolved from within Staphylinidae and good justification for their classification as the subfamily Silphinae of the megadiverse, and apparently now monophyletic, Staphylinidae. Considerable uncertainty remains regarding the interrelationships and monophyly of many staphylinid subfamilies. Nonetheless, the subfamily Tachyporinae was found to be the sister of Silphinae in more analyses (7) than any other subfamily.
Collapse
Affiliation(s)
- Derek S. Sikes
- University of Alaska Museum / Department of Biology and Wildlife, University of Alaska Fairbanks, 1962 Yukon Dr., Fairbanks, Alaska, USAUniversity of Alaska FairbanksFairbanksUnited States of America
| | - Margaret K. Thayer
- Negaunee Integrative Research Center, Field Museum of Natural History, 1400 South DuSable Lake Shore Drive, Chicago, Illinois, USANegaunee Integrative Research Center, Field Museum of Natural HistoryChicagoUnited States of America
| | - Alfred F. Newton
- Negaunee Integrative Research Center, Field Museum of Natural History, 1400 South DuSable Lake Shore Drive, Chicago, Illinois, USANegaunee Integrative Research Center, Field Museum of Natural HistoryChicagoUnited States of America
| |
Collapse
|
5
|
Winn JC, Maduna SN, Bester-van der Merwe AE. A comprehensive phylogenomic study unveils evolutionary patterns and challenges in the mitochondrial genomes of Carcharhiniformes: A focus on Triakidae. Genomics 2024; 116:110771. [PMID: 38147941 DOI: 10.1016/j.ygeno.2023.110771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 12/28/2023]
Abstract
The complex evolutionary patterns in the mitochondrial genome (mitogenome) of the most species-rich shark order, the Carcharhiniformes (ground sharks) has led to challenges in the phylogenomic reconstruction of the families and genera belonging to the order, particularly the family Triakidae (houndsharks). The current state of Triakidae phylogeny remains controversial, with arguments for both monophyly and paraphyly within the family. We hypothesize that this variability is triggered by the selection of different a priori partitioning schemes to account for site and gene heterogeneity within the mitogenome. Here we used an extensive statistical framework to select the a priori partitioning scheme for inference of the mitochondrial phylogenomic relationships within Carcharhiniformes, tested site heterogeneous CAT + GTR + G4 models and incorporated the multi-species coalescent model (MSCM) into our analyses to account for the influence of gene tree discordance on species tree inference. We included five newly assembled houndshark mitogenomes to increase resolution of Triakidae. During the assembly procedure, we uncovered a 714 bp-duplication in the mitogenome of Galeorhinus galeus. Phylogenetic reconstruction confirmed monophyly within Triakidae and the existence of two distinct clades of the expanded Mustelus genus. The latter alludes to potential evolutionary reversal of reproductive mode from placental to aplacental, suggesting that reproductive mode has played a role in the trajectory of adaptive divergence. These new sequences have the potential to contribute to population genomic investigations, species phylogeography delineation, environmental DNA metabarcoding databases and, ultimately, improved conservation strategies for these ecologically and economically important species.
Collapse
Affiliation(s)
- Jessica C Winn
- Molecular Breeding and Biodiversity Group, Department of Genetics, Stellenbosch University, Stellenbosch, Western Cape 7602, South Africa
| | - Simo N Maduna
- Department of Ecosystems in the Barents Region, Svanhovd Research Station, Norwegian Institute of Bioeconomy Research, 9925 Svanvik, Norway
| | - Aletta E Bester-van der Merwe
- Molecular Breeding and Biodiversity Group, Department of Genetics, Stellenbosch University, Stellenbosch, Western Cape 7602, South Africa.
| |
Collapse
|
6
|
Lozano-Fernandez J. A Practical Guide to Design and Assess a Phylogenomic Study. Genome Biol Evol 2022; 14:evac129. [PMID: 35946263 PMCID: PMC9452790 DOI: 10.1093/gbe/evac129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Over the last decade, molecular systematics has undergone a change of paradigm as high-throughput sequencing now makes it possible to reconstruct evolutionary relationships using genome-scale datasets. The advent of "big data" molecular phylogenetics provided a battery of new tools for biologists but simultaneously brought new methodological challenges. The increase in analytical complexity comes at the price of highly specific training in computational biology and molecular phylogenetics, resulting very often in a polarized accumulation of knowledge (technical on one side and biological on the other). Interpreting the robustness of genome-scale phylogenetic studies is not straightforward, particularly as new methodological developments have consistently shown that the general belief of "more genes, more robustness" often does not apply, and because there is a range of systematic errors that plague phylogenomic investigations. This is particularly problematic because phylogenomic studies are highly heterogeneous in their methodology, and best practices are often not clearly defined. The main aim of this article is to present what I consider as the ten most important points to take into consideration when planning a well-thought-out phylogenomic study and while evaluating the quality of published papers. The goal is to provide a practical step-by-step guide that can be easily followed by nonexperts and phylogenomic novices in order to assess the technical robustness of phylogenomic studies or improve the experimental design of a project.
Collapse
Affiliation(s)
- Jesus Lozano-Fernandez
- Department of Genetics, Microbiology and Statistics, Biodiversity Research Institute (IRBio), University of Barcelona, Avd. Diagonal 643, 08028 Barcelona, Spain
- Institute of Evolutionary Biology (CSIC – Universitat Pompeu Fabra), Passeig marítim de la Barcelona 37-49, 08003 Barcelona, Spain
| |
Collapse
|
7
|
Uribe JE, González VL, Irisarri I, Kano Y, Herbert DG, Strong EE, Harasewych MG. A phylogenomic backbone for gastropod molluscs. Syst Biol 2022; 71:1271-1280. [PMID: 35766870 DOI: 10.1093/sysbio/syac045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Gastropods have survived several mass extinctions during their evolutionary history resulting in extraordinary diversity in morphology, ecology, and developmental modes, which complicate the reconstruction of a robust phylogeny. Currently, gastropods are divided into six subclasses: Caenogastropoda, Heterobranchia, Neomphaliones, Neritimorpha, Patellogastropoda, and Vetigastropoda. Phylogenetic relationships among these taxa historically lack consensus, despite numerous efforts using morphological and molecular information. We generated sequence data for transcriptomes derived from twelve taxa belonging to clades with little or no prior representation in previous studies in order to infer the deeper cladogenetic events within Gastropoda and, for the first time, infer the position of the deep-sea Neomphaliones using a phylogenomic approach. We explored the impact of missing data, homoplasy, and compositional heterogeneity on the inferred phylogenetic hypotheses. We recovered a highly supported backbone for gastropod relationships that is congruent with morphological and mitogenomic evidence, in which Patellogastropoda, true limpets, are the sister lineage to all other gastropods (Orthogastropoda) which are divided into two main clades (i) Vetigastropoda s.l. (including Pleurotomariida + Neomphaliones) and (ii) Neritimorpha + (Caenogastropoda + Heterobranchia). As such, our results support the recognition of five subclasses (or infraclasses) in Gastropoda: Patellogastropoda, Vetigastropoda, Neritimorpha, Caenogastropoda and Heterobranchia.
Collapse
Affiliation(s)
- Juan E Uribe
- Department of Invertebrate Zoology, MRC 163, National Museum of Natural History, Smithsonian Institution, P O Box 37012 Washington, DC 20013-7012, USA
| | - Vanessa L González
- Global Genome Initiative, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| | - Iker Irisarri
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Göttingen, and Campus Institute Data Science (CIDAS), Göttingen, Germany.,Leibniz Institute for the Analysis of Biodiversity Change (LIB), Zoological Museum Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| | - Yasunori Kano
- Department of Marine Ecosystems Dynamics, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| | - David G Herbert
- Department of Natural Sciences, National Museum Wales, Cathays Park, Cardiff, CF10 3NP, UK
| | - Ellen E Strong
- Department of Invertebrate Zoology, MRC 163, National Museum of Natural History, Smithsonian Institution, P O Box 37012 Washington, DC 20013-7012, USA
| | - M G Harasewych
- Department of Invertebrate Zoology, MRC 163, National Museum of Natural History, Smithsonian Institution, P O Box 37012 Washington, DC 20013-7012, USA
| |
Collapse
|
8
|
Abstract
Whole genome sequences are beginning to revolutionize our understanding of phylogenetic relationships. Yet, even whole genome sequences can fail to resolve the evolutionary history of the most rapidly radiating lineages, where incomplete lineage sorting, standing genetic variation, introgression, and other factors obscure the phylogenetic history of the group. To overcome such challenges, one emerging strategy is to integrate results across different methods. Most such approaches have been implemented on reduced representation genomic data sets, but whole genomes should provide the maximum possible evidence approach. Here, we test the ability of single nucleotide polymorphisms extracted from whole genome resequencing data, implemented in an integrative genomic approach, to resolve key nodes in the phylogeny of the mbuna, rock-dwelling cichlid fishes of Lake Malaŵi, which epitomize the phylogenetic intractability that often accompanies explosive lineage diversification. This monophyletic radiation has diversified at an unparalleled rate into several hundred species in less than 2 million years. Using an array of phylogenomic methods, we consistently recovered four major clades of mbuna, but a large basal polytomy among them. Although introgression between clades apparently contributed to the challenge of phylogenetic reconstruction, reduction of the data set to nonintrogressed sites still did not help to resolve the basal polytomy. On the other hand, relationships among six congeneric species pairs were resolved without ambiguity, even in one case where existing data led us to predict that resolution would be difficult. We conclude that the bursts of diversification at the earliest stages of the mbuna radiation may be phylogenetically unresolvable, but other regions of the tree are phylogenetically clearly supported. Integration of multiple phylogenomic approaches will continue to increase confidence in relationships inferred from these and other whole-genome data sets. [Incomplete lineage sorting; introgression; linkage disequilibrium; multispecies coalescence; rapid radiation; soft polytomy.]
Collapse
|
9
|
Bothe V, Schneider I, Fröbisch NB. A Morphological and Histological Investigation of Imperfect Lungfish Fin Regeneration. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.784828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Regeneration, the replacement of body parts in a living animal, has excited scientists for centuries and our knowledge of vertebrate appendage regeneration has increased significantly over the past decades. While the ability of amniotes to regenerate body parts is very limited, members of other vertebrate clades have been shown to have rather high regenerative capacities. Among tetrapods (four-limbed vertebrates), only salamanders show unparalleled capacities of epimorphic tissue regeneration including replacement of organ and body parts in an apparently perfect fashion. The closest living relatives of Tetrapoda, the lungfish, show regenerative abilities that are comparable to those of salamanders and recent studies suggest that these high regenerative capacities may indeed be ancestral for bony fish (osteichthyans) including tetrapods. While great progress has been made in recent years in understanding the cellular and molecular mechanisms deployed during appendage regeneration, comparatively few studies have investigated gross morphological and histological features of regenerated fins and limbs. Likewise, rather little is known about how fin regeneration compares morphologically to salamander limb regeneration. In this study, we investigated the morphology and histology of regenerated fins in all three modern lungfish families. Data from histological serial sections, 3D reconstructions, and x-ray microtomography scans were analyzed to assess morphological features, quality and pathologies in lungfish fin regenerates. We found several anomalies resulting from imperfect regeneration in regenerated fins in all investigated lungfish species, including fusion of skeletal elements, additional or fewer elements, and distal branching. The similarity of patterns in regeneration abnormalities compared to salamander limb regeneration lends further support to the hypothesis that high regenerative capacities are plesiomorphic for sarcopterygians.
Collapse
|
10
|
Montero-Mendieta S, De la Riva I, Irisarri I, Leonard JA, Webster MT, Vilà C. Phylogenomics and evolutionary history of Oreobates (Anura: Craugastoridae) Neotropical frogs along elevational gradients. Mol Phylogenet Evol 2021; 161:107167. [PMID: 33798672 DOI: 10.1016/j.ympev.2021.107167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 03/11/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
Mountain ranges offer opportunities for understanding how species evolved and diversified across different environmental conditions. Neotropical frogs of the genus Oreobates (Anura: Craugastoridae) are adapted to highland and lowland habitats along the Andes, but many aspects of their evolution remain unknown. We studied their evolutionary history using ~18,000 exons enriched by targeted sequence-capture. Since capture success was very variable across samples, we evaluated to what degree differing data filtering produced robust inferences. The inferred evolutionary framework evidenced phylogenetic discordances among lowland species that can be explained by taxonomic misidentification or admixture of ancestral lineages. Highland species showed smaller effective populations than lowland frogs, probably due to greater habitat fragmentation in montane environments. Stronger genetic drift likely decreased the power of purifying selection and led to an increased proportion of nonsynonymous mutations in highland populations that could play an important role in their adaptation. Overall, our work sheds light on the evolutionary history and diversification of this group of Neotropical frogs along elevational gradients in the Andes as well as on their patterns of intraspecific diversity.
Collapse
Affiliation(s)
- Santiago Montero-Mendieta
- Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - Ignacio De la Riva
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| | - Iker Irisarri
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| | - Jennifer A Leonard
- Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - Matthew T Webster
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Carles Vilà
- Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain.
| |
Collapse
|
11
|
Schartl M, Meyer A. Neoceratodus forsteri (Australian lungfish). Trends Genet 2021; 37:600-601. [PMID: 33707046 DOI: 10.1016/j.tig.2021.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Affiliation(s)
- Manfred Schartl
- Developmental Biochemistry, Biocenter, Am Hubland, University of Würzburg, 97074 Würzburg, Germany; The Xiphophorus Genetic Stock Center, Texas State University, 601 University Drive Centennial Hall 419, San Marcos, TX-78666, USA.
| | - Axel Meyer
- Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| |
Collapse
|
12
|
Meyer A, Schloissnig S, Franchini P, Du K, Woltering JM, Irisarri I, Wong WY, Nowoshilow S, Kneitz S, Kawaguchi A, Fabrizius A, Xiong P, Dechaud C, Spaink HP, Volff JN, Simakov O, Burmester T, Tanaka EM, Schartl M. Giant lungfish genome elucidates the conquest of land by vertebrates. Nature 2021; 590:284-289. [PMID: 33461212 PMCID: PMC7875771 DOI: 10.1038/s41586-021-03198-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/06/2021] [Indexed: 01/29/2023]
Abstract
Lungfishes belong to lobe-fined fish (Sarcopterygii) that, in the Devonian period, 'conquered' the land and ultimately gave rise to all land vertebrates, including humans1-3. Here we determine the chromosome-quality genome of the Australian lungfish (Neoceratodus forsteri), which is known to have the largest genome of any animal. The vast size of this genome, which is about 14× larger than that of humans, is attributable mostly to huge intergenic regions and introns with high repeat content (around 90%), the components of which resemble those of tetrapods (comprising mainly long interspersed nuclear elements) more than they do those of ray-finned fish. The lungfish genome continues to expand independently (its transposable elements are still active), through mechanisms different to those of the enormous genomes of salamanders. The 17 fully assembled lungfish macrochromosomes maintain synteny to other vertebrate chromosomes, and all microchromosomes maintain conserved ancient homology with the ancestral vertebrate karyotype. Our phylogenomic analyses confirm previous reports that lungfish occupy a key evolutionary position as the closest living relatives to tetrapods4,5, underscoring the importance of lungfish for understanding innovations associated with terrestrialization. Lungfish preadaptations to living on land include the gain of limb-like expression in developmental genes such as hoxc13 and sall1 in their lobed fins. Increased rates of evolution and the duplication of genes associated with obligate air-breathing, such as lung surfactants and the expansion of odorant receptor gene families (which encode proteins involved in detecting airborne odours), contribute to the tetrapod-like biology of lungfishes. These findings advance our understanding of this major transition during vertebrate evolution.
Collapse
Affiliation(s)
- Axel Meyer
- Department of Biology, University of Konstanz, Konstanz, Germany.
| | | | - Paolo Franchini
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Kang Du
- Developmental Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, USA
| | | | - Iker Irisarri
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen, Germany
| | - Wai Yee Wong
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | | | - Susanne Kneitz
- Biochemistry and Cell Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Akane Kawaguchi
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | | | - Peiwen Xiong
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Corentin Dechaud
- Institut de Génomique Fonctionnelle, École Normale Superieure, Université Claude Bernard, Lyon, France
| | - Herman P Spaink
- Faculty of Science, Universiteit Leiden, Leiden, The Netherlands
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle, École Normale Superieure, Université Claude Bernard, Lyon, France
| | - Oleg Simakov
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria.
| | | | - Elly M Tanaka
- Research Institute of Molecular Pathology (IMP), Vienna, Austria.
| | - Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany.
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, USA.
| |
Collapse
|
13
|
Irisarri I, Burki F, Whelan S. Automated Removal of Non-homologous Sequence Stretches with PREQUAL. Methods Mol Biol 2021; 2231:147-162. [PMID: 33289892 DOI: 10.1007/978-1-0716-1036-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Large-scale multigene datasets used in phylogenomics and comparative genomics often contain sequence errors inherited from source genomes and transcriptomes. These errors typically manifest as stretches of non-homologous characters and derive from sequencing, assembly, and/or annotation errors. The lack of automatic tools to detect and remove sequence errors leads to the propagation of these errors in large-scale datasets. PREQUAL is a command line tool that identifies and masks regions with non-homologous adjacent characters in sets of unaligned homologous sequences. PREQUAL uses a full probabilistic approach based on pair hidden Markov models. On the front end, PREQUAL is user-friendly and simple to use while also allowing full customization to adjust filtering sensitivity. It is primarily aimed at amino acid sequences but can handle protein-coding nucleotide sequences. PREQUAL is computationally efficient and shows high sensitivity and accuracy. In this chapter, we briefly introduce the motivation for PREQUAL and its underlying methodology, followed by a description of basic and advanced usage, and conclude with some notes and recommendations. PREQUAL fills an important gap in the current bioinformatics tool kit for phylogenomics, contributing toward increased accuracy and reproducibility in future studies.
Collapse
Affiliation(s)
- Iker Irisarri
- Department of Organismal Biology (Program in Systematic Biology), Uppsala University, Uppsala, Sweden.
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, Madrid, Spain.
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Göttingen, Göttingen, Germany.
| | - Fabien Burki
- Department of Organismal Biology (Program in Systematic Biology), Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Simon Whelan
- Department of Evolutionary Genetics (Program in Evolutionary Biology), Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Woltering JM, Irisarri I, Ericsson R, Joss JMP, Sordino P, Meyer A. Sarcopterygian fin ontogeny elucidates the origin of hands with digits. SCIENCE ADVANCES 2020; 6:eabc3510. [PMID: 32875118 PMCID: PMC7438105 DOI: 10.1126/sciadv.abc3510] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/09/2020] [Indexed: 05/03/2023]
Abstract
How the hand and digits originated from fish fins during the Devonian fin-to-limb transition remains unsolved. Controversy in this conundrum stems from the scarcity of ontogenetic data from extant lobe-finned fishes. We report the patterning of an autopod-like domain by hoxa13 during fin development of the Australian lungfish, the most closely related extant fish relative of tetrapods. Differences from tetrapod limbs include the absence of digit-specific expansion of hoxd13 and hand2 and distal limitation of alx4 and pax9, which potentially evolved through an enhanced response to shh signaling in limbs. These developmental patterns indicate that the digit program originated in postaxial fin radials and later expanded anteriorly inside of a preexisting autopod-like domain during the evolution of limbs. Our findings provide a genetic framework for the transition of fins into limbs that supports the significance of classical models proposing a bending of the tetrapod metapterygial axis.
Collapse
Affiliation(s)
- Joost M. Woltering
- Zoology and Evolutionary Biology, Department of Biology, Universität Konstanz, Universitätstrasse 10, 78464 Konstanz, Germany
| | - Iker Irisarri
- Zoology and Evolutionary Biology, Department of Biology, Universität Konstanz, Universitätstrasse 10, 78464 Konstanz, Germany
| | | | | | - Paolo Sordino
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Axel Meyer
- Zoology and Evolutionary Biology, Department of Biology, Universität Konstanz, Universitätstrasse 10, 78464 Konstanz, Germany
| |
Collapse
|
15
|
Irisarri I, Uribe JE, Eernisse DJ, Zardoya R. A mitogenomic phylogeny of chitons (Mollusca: Polyplacophora). BMC Evol Biol 2020; 20:22. [PMID: 32024460 PMCID: PMC7003433 DOI: 10.1186/s12862-019-1573-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/30/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Polyplacophora, or chitons, have long fascinated malacologists for their distinct and rather conserved morphology and lifestyle compared to other mollusk classes. However, key aspects of their phylogeny and evolution remain unclear due to the few morphological, molecular, or combined phylogenetic analyses, particularly those addressing the relationships among the major chiton lineages. RESULTS Here, we present a mitogenomic phylogeny of chitons based on 13 newly sequenced mitochondrial genomes along with eight available ones and RNAseq-derived mitochondrial sequences from four additional species. Reconstructed phylogenies largely agreed with the latest advances in chiton systematics and integrative taxonomy but we identified some conflicts that call for taxonomic revisions. Despite an overall conserved gene order in chiton mitogenomes, we described three new rearrangements that might have taxonomic utility and reconstructed the most likely scenario of gene order change in this group. Our phylogeny was time-calibrated using various fossils and relaxed molecular clocks, and the robustness of these analyses was assessed with several sensitivity analyses. The inferred ages largely agreed with previous molecular clock estimates and the fossil record, but we also noted that the ambiguities inherent to the chiton fossil record might confound molecular clock analyses. CONCLUSIONS In light of the reconstructed time-calibrated framework, we discuss the evolution of key morphological features and call for a continued effort towards clarifying the phylogeny and evolution of chitons.
Collapse
Affiliation(s)
- Iker Irisarri
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), c/ José Gutiérrez Abascal 2, 28006, Madrid, Spain.
- Department of Organismal Biology (Systematic Biology Program), Evolutionary Biology Centre, Uppsala University, Norbyv. 18C, 75236, Uppsala, Sweden.
| | - Juan E Uribe
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), c/ José Gutiérrez Abascal 2, 28006, Madrid, Spain
- Department of Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th St. & Constitutional Ave. NW, Washington, DC, 20560, USA
| | - Douglas J Eernisse
- Department of Biological Science, California State University Fullerton, 800 N. State College Blvd, Fullerton, CA, 92831-3599, USA
| | - Rafael Zardoya
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), c/ José Gutiérrez Abascal 2, 28006, Madrid, Spain
| |
Collapse
|
16
|
López JM, Morona R, González A. Pattern of nitrergic cells and fibers organization in the central nervous system of the Australian lungfish, Neoceratodus forsteri (Sarcopterygii: Dipnoi). J Comp Neurol 2019; 527:1771-1800. [PMID: 30689201 DOI: 10.1002/cne.24645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 12/18/2022]
Abstract
The Australian lungfish Neoceratodus forsteri is the only extant species of the order Ceratodontiformes, which retained most of the primitive features of ancient lobe finned-fishes. Lungfishes are the closest living relatives of land vertebrates and their study is important for deducing the neural traits that were conserved, modified, or lost with the transition from fishes to land vertebrates. We have investigated the nitrergic system with neural nitric oxide synthase (NOS) immunohistochemistry and NADPH-diaphorase (NADPH-d) histochemistry, which yielded almost identical results except for the primary olfactory projections and the terminal and preoptic nerve fibers labeled only for NADPH-d. Combined immunohistochemistry was used for simultaneous detection of NOS with catecholaminergic, cholinergic, and serotonergic structures, aiming to establish accurately the localization of the nitrergic elements and to assess possible interactions between these neurotransmitter systems. The results demonstrated abundant nitrergic cells in the basal ganglia, amygdaloid complex, preoptic area, basal hypothalamus, mesencephalic tectum and tegmentum, laterodorsal tegmental nucleus, reticular formation, spinal cord, and retina. In addition, low numbers of nitrergic cells were observed in the olfactory bulb, all pallial divisions, lateral septum, suprachiasmatic nucleus, prethalamic and thalamic areas, posterior tubercle, pretectum, torus semicircularis, cerebellar nucleus, interpeduncular nucleus, the medial octavolateral nucleus, nucleus of the solitary tract, and the dorsal column nucleus. Colocalization of NOS and tyrosine hydroxylase was observed in numerous cells of the ventral tegmental area/substantia nigra complex. Comparison with other vertebrates, using a neuromeric analysis, reveals that the nitrergic system of Neoceratodus shares many neuroanatomical features with tetrapods and particularly with amphibians.
Collapse
Affiliation(s)
- Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| |
Collapse
|
17
|
López JM, Morona R, Moreno N, Lozano D, Jiménez S, González A. Pax6 expression highlights regional organization in the adult brain of lungfishes, the closest living relatives of land vertebrates. J Comp Neurol 2019; 528:135-159. [PMID: 31299095 DOI: 10.1002/cne.24744] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/27/2019] [Accepted: 07/05/2019] [Indexed: 12/15/2022]
Abstract
The Pax6 gene encodes a regulatory transcription factor that is key in brain development. The molecular structure of Pax6, the roles it plays and its patterns of expression in the brain have been highly conserved during vertebrate evolution. As neurodevelopment proceeds, the Pax6 expression changes from the mitotic germinal zone in the ventricular zone to become distributed in cell groups in the adult brain. Studies in various vertebrates, from fish to mammals, found that the Pax6 expression is maintained in adults in most regions that express it during development. Specifically, in amphibians, Pax6 is widely expressed in the adult brain and its distribution pattern serves to highlight regional organization of the brain. In the present study, we analyzed the detailed distribution of Pax6 cells in the adult central nervous system of lungfishes, the closest living relatives of all tetrapods. Immunohistochemistry performed using double labeling techniques with several neuronal markers of known distribution patterns served to evaluate the actual location of Pax6 cells. Our results show that the Pax6 expression is maintained in the adult brain of lungfishes, in distinct regions of the telencephalon (pallium and subpallium), diencephalon, mesencephalon, hindbrain, spinal cord, and retina. The pattern of Pax6 expression is largely shared with amphibians and helps to understand the primitive condition that would have characterized the common ancestors to all sarcopterygians (lobe-finned fishes and tetrapods), in which Pax6 would be needed to maintain specific entities of subpopulations of neurons.
Collapse
Affiliation(s)
- Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Nerea Moreno
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Daniel Lozano
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Sara Jiménez
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| |
Collapse
|
18
|
Wielstra B, McCartney-Melstad E, Arntzen J, Butlin R, Shaffer H. Phylogenomics of the adaptive radiation of Triturus newts supports gradual ecological niche expansion towards an incrementally aquatic lifestyle. Mol Phylogenet Evol 2019; 133:120-127. [DOI: 10.1016/j.ympev.2018.12.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/30/2018] [Accepted: 12/30/2018] [Indexed: 11/29/2022]
|
19
|
Lüdemann J, Verissimo KM, Dreger K, Fago A, Schneider I, Burmester T. Globin E is a myoglobin-related, respiratory protein highly expressed in lungfish oocytes. Sci Rep 2019; 9:280. [PMID: 30670817 PMCID: PMC6343008 DOI: 10.1038/s41598-018-36592-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/23/2018] [Indexed: 11/23/2022] Open
Abstract
Globins are a classical model system for the studies of protein evolution and function. Recent studies have shown that – besides the well-known haemoglobin and myoglobin – additional globin-types occur in vertebrates that serve different functions. Globin E (GbE) was originally identified as an eye-specific protein of birds that is distantly related to myoglobin. GbE is also present in turtles and the coelacanth but appeared to have been lost in other vertebrates. Here, we show that GbE additionally occurs in lungfish, the closest living relatives of the tetrapods. Each lungfish species harbours multiple (≥5) GbE gene copies. Surprisingly, GbE is exclusively and highly expressed in oocytes, with mRNA levels that exceed that of myoglobin in the heart. Thus, GbE is the first known oocyte-specific globin in vertebrates. No GbE transcripts were found in the ovary or egg transcriptomes of other vertebrates, suggesting a lungfish-specific function. Spectroscopic analysis and kinetic studies of recombinant GbE1 of the South American lungfish Lepidosiren paradoxa revealed a typical pentacoordinate globin with myoglobin-like O2-binding kinetics, indicating similar functions. Our findings suggest that the multiple copies of GbE evolved to enhance O2-supply in the developing embryo of lungfish, analogous to the embryonic and fetal haemoglobins of other vertebrates. In evolution, GbE must have changed its expression site from oocytes to eyes, or vice versa.
Collapse
Affiliation(s)
- Julia Lüdemann
- Institute of Zoology, University of Hamburg, D-20146, Hamburg, Germany
| | | | - Kimberley Dreger
- Institute of Zoology, University of Hamburg, D-20146, Hamburg, Germany
| | - Angela Fago
- Department of Bioscience, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Igor Schneider
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | | |
Collapse
|
20
|
New patellogastropod mitogenomes help counteracting long-branch attraction in the deep phylogeny of gastropod mollusks. Mol Phylogenet Evol 2018; 133:12-23. [PMID: 30572020 DOI: 10.1016/j.ympev.2018.12.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/13/2018] [Accepted: 12/13/2018] [Indexed: 01/04/2023]
Abstract
Long-branch attraction (LBA) is a well-known artifact in phylogenetic reconstruction. Sparse taxon sampling and extreme heterogeneity of evolutionary rates among lineages generate propitious situations for LBA, even defying probabilistic methods of phylogenetic inference. A clear example illustrating LBA challenges is the difficulty of reconstructing the deep gastropod phylogeny, particularly using mitochondrial (mt) genomes. Previous studies consistently obtained unorthodox phylogenetic relationships due to the LBA between the mitogenomes of patellogastropods (true limpets, represented only by Lottia digitalis), heterobranchs, and outgroup taxa. Here, we use the reconstruction of the gastropod mitogenomic phylogeny as a case exercise to test the effect of key methodological approaches proposed to counteract LBA, including the selection of slow-evolving representatives, the use of different outgroups, the application of site-heterogeneous evolutionary models, and the removal of fast-evolving sites. In this regard, we sequenced three new patellogastropod mt genomes, which displayed shorter branches than the one of Lottia as well as gene organizations more similar to that of the hypothetical gastropod ancestor. Phylogenetic analyses incorporating the mt genomes of Patella ferruginea, Patella vulgata, and Cellana radiata allowed eliminating the artificial clustering of Patellogastropoda and Heterobranchia that had prevailed in previous studies. Furthermore, the use of site-heterogeneous models with certain combinations of lineages within the outgroup allowed eliminating also the LBA between Heterobranchia and the outgroup, and recovering Apogastropoda (i.e., Caenogastropoda + Heterobranchia). Hence, for the first time, we were able to obtain a mitogenomic phylogeny of gastropods that is congruent with both morphological and nuclear datasets.
Collapse
|
21
|
Renart J, San Mauro D, Agorreta A, Rutherford K, Gemmell NJ, Quintanilla M. Evolutionary history of the podoplanin gene. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
Abstract
This study investigated long-term substitution rate differences using three calibration points, divergences between lobe-finned vertebrates and ray-finned fish, between mammals and sauropsids, and between holosteans (gar and bowfin) and teleost fish with amino acid sequence data of 625 genes for 25 bony vertebrates. The result showed that the substitution rate was two to three times higher in the stem branches of lobe-finned vertebrates before the mammal-sauropsid divergence than in amniotes. The rate in the stem branch of ray-finned fish before the holostean-teleost fish divergence was also a few times higher than the holostean rate, whereas it was similar to or somewhat slower than the teleost fish rate. The phylogenetic relationship of coelacanth and lungfish with tetrapod was difficult to determine because of the short interval of the divergences. Considering the high rate in the stem branches, the divergences of coelacanth and lungfish from the stem branch were estimated as 408–427 Ma and 399–414 Ma, respectively, with the interval of 9–13 Myr. With the external calibration of the mammal-sauropsid split, the estimated times for ordinal divergences within eutherian mammals tend to be smaller than those in previous studies that used the calibration points within the lineage, with deeper divergences before the Cretaceous–Paleogene boundary and shallower ones after the boundary. In contrast the estimated times within birds were larger than those of previous studies, with the divergence between Galliformes and Anseriformes ∼80 Ma and that between Galloanserae and Neoaves 110 Ma.
Collapse
Affiliation(s)
- Naoko Takezaki
- Life Science Research Center, Kagawa University, Kitagun, Kagawa, Japan
| |
Collapse
|
23
|
Biscotti MA, Adolfi MC, Barucca M, Forconi M, Pallavicini A, Gerdol M, Canapa A, Schartl M. A Comparative View on Sex Differentiation and Gametogenesis Genes in Lungfish and Coelacanths. Genome Biol Evol 2018; 10:1430-1444. [PMID: 29850809 PMCID: PMC6007259 DOI: 10.1093/gbe/evy101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2018] [Indexed: 12/30/2022] Open
Abstract
Gonadal sex differentiation and reproduction are the keys to the perpetuation of favorable gene combinations and positively selected traits. In vertebrates, several gonad development features that differentiate tetrapods and fishes are likely to be, at least in part, related to the water-to-land transition. The collection of information from basal sarcopterygians, coelacanths, and lungfishes, is crucial to improve our understanding of the molecular evolution of pathways involved in reproductive functions, since these organisms are generally regarded as “living fossils” and as the direct ancestors of tetrapods. Here, we report for the first time the characterization of >50 genes related to sex differentiation and gametogenesis in Latimeria menadoensis and Protopterus annectens. Although the expression profiles of most genes is consistent with the intermediate position of basal sarcopterygians between actinopterygian fish and tetrapods, their phylogenetic placement and presence/absence patterns often reveal a closer affinity to the tetrapod orthologs. On the other hand, particular genes, for example, the male gonad factor gsdf (Gonadal Soma-Derived Factor), provide examples of ancestral traits shared with actinopterygians, which disappeared in the tetrapod lineage.
Collapse
Affiliation(s)
- Maria Assunta Biscotti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | | | - Marco Barucca
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Mariko Forconi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | | | - Marco Gerdol
- Dipartimento di Scienze della Vita, Università di Trieste, Italy
| | - Adriana Canapa
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Manfred Schartl
- Physiological Chemistry, Biocenter, University of Wuerzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Clinic Wuerzburg, Germany.,Hagler Institute of Advanced Study and Department of Biology,Texa A&M University, USA
| |
Collapse
|
24
|
Eitel M, Francis WR, Varoqueaux F, Daraspe J, Osigus HJ, Krebs S, Vargas S, Blum H, Williams GA, Schierwater B, Wörheide G. Comparative genomics and the nature of placozoan species. PLoS Biol 2018; 16:e2005359. [PMID: 30063702 PMCID: PMC6067683 DOI: 10.1371/journal.pbio.2005359] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 06/28/2018] [Indexed: 12/30/2022] Open
Abstract
Placozoans are a phylum of nonbilaterian marine animals currently represented by a single described species, Trichoplax adhaerens, Schulze 1883. Placozoans arguably show the simplest animal morphology, which is identical among isolates collected worldwide, despite an apparently sizeable genetic diversity within the phylum. Here, we use a comparative genomics approach for a deeper appreciation of the structure and causes of the deeply diverging lineages in the Placozoa. We generated a high-quality draft genome of the genetic lineage H13 isolated from Hong Kong and compared it to the distantly related T. adhaerens. We uncovered substantial structural differences between the two genomes that point to a deep genomic separation and provide support that adaptation by gene duplication is likely a crucial mechanism in placozoan speciation. We further provide genetic evidence for reproductively isolated species and suggest a genus-level difference of H13 to T. adhaerens, justifying the designation of H13 as a new species, Hoilungia hongkongensis nov. gen., nov. spec., now the second described placozoan species and the first in a new genus. Our multilevel comparative genomics approach is, therefore, likely to prove valuable for species distinctions in other cryptic microscopic animal groups that lack diagnostic morphological characters, such as some nematodes, copepods, rotifers, or mites.
Collapse
Affiliation(s)
- Michael Eitel
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
- Stiftung Tierärztliche Hochschule Hannover, Institut für Tierökologie und Zellbiologie, Ecology and Evolution, Hannover, Germany
| | - Warren R. Francis
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Frédérique Varoqueaux
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Jean Daraspe
- Electron Microscopy Facility, University of Lausanne, Lausanne, Switzerland
| | - Hans-Jürgen Osigus
- Stiftung Tierärztliche Hochschule Hannover, Institut für Tierökologie und Zellbiologie, Ecology and Evolution, Hannover, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sergio Vargas
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gray A. Williams
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong
| | - Bernd Schierwater
- Stiftung Tierärztliche Hochschule Hannover, Institut für Tierökologie und Zellbiologie, Ecology and Evolution, Hannover, Germany
- Sackler Institute for Comparative Genomics and Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, United States of America
- Department of Ecology & Evolution, Yale University, New Haven, Connecticut, United States of America
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany
- Staatliche Naturwissenschaftliche Sammlungen Bayerns (SNSB)–Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Germany
| |
Collapse
|
25
|
Morona R, López JM, Northcutt RG, González A. Regional chemoarchitecture of the brain of lungfishes based on calbindin D-28K and calretinin immunohistochemistry. J Comp Neurol 2018. [PMID: 29520817 DOI: 10.1002/cne.24422] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lungfishes are the closest living relatives of land vertebrates, and their neuroanatomical organization is particularly relevant for deducing the neural traits that have been conserved, modified, or lost with the transition from fishes to land vertebrates. The immunohistochemical localization of calbindin (CB) and calretinin (CR) provides a powerful method for discerning segregated neuronal populations, fiber tracts, and neuropils and is here applied to the brains of Neoceratodus and Protopterus, representing the two extant orders of lungfishes. The results showed abundant cells containing these proteins in pallial and subpallial telencephalic regions, with particular distinct distribution in the basal ganglia, amygdaloid complex, and septum. Similarly, the distribution of CB and CR containing cells supports the division of the hypothalamus of lungfishes into neuromeric regions, as in tetrapods. The dense concentrations of CB and CR positive cells and fibers highlight the extent of the thalamus. As in other vertebrates, the optic tectum is characterized by numerous CB positive cells and fibers and smaller numbers of CR cells. The so-called cerebellar nucleus contains abundant CB and CR cells with long ascending axons, which raises the possibility that it could be homologized to the secondary gustatory nucleus of other vertebrates. The corpus of the cerebellum is devoid of CB and CR and cells positive for both proteins are found in the cerebellar auricles and the octavolateralis nuclei. Comparison with other vertebrates reveals that lungfishes share most of their features of calcium binding protein distribution with amphibians, particularly with salamanders.
Collapse
Affiliation(s)
- Ruth Morona
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Spain
| | - Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Spain
| | - R Glenn Northcutt
- Laboratory of Comparative Neurobiology, Scripps Institution of Oceanography and Department of Neurosciences, School of Medicine, , University of California, San Diego, California, USA
| | - Agustín González
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Spain
| |
Collapse
|
26
|
Rivera-Rivera CJ, Montoya-Burgos JI. Back to the roots: Reducing evolutionary rate heterogeneity among sequences gives support for the early morphological hypothesis of the root of Siluriformes (Teleostei: Ostariophysi). Mol Phylogenet Evol 2018; 127:272-279. [PMID: 29885935 DOI: 10.1016/j.ympev.2018.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 11/15/2022]
Abstract
Catfishes (Teleostei: Siluriformes) are a highly diverse order within Ostariophysi that is distributed worldwide. At the base of this clade emerge three lineages with well-defined monophylies: Diplomystidae, Loricarioidei, and Siluroidei. Morphological phylogeny studies place the Diplomystidae as the earliest branching of these three lineages, but studies based on molecular phylogenetics consistently find the fast-evolving Loricarioidei instead. The high lineage evolutionary rate heterogeneity in this order and the fact that the lineage placed closest to the root in the molecular phylogenies is fast evolving, including many long branches, raises the possibility that the discrepancy between morphological and molecular phylogenies may be the result of a long branch attraction inference artifact. We test this hypothesis by using a 10-gene dataset to evaluate the arrangement of the three main siluriform lineages, and apply the LS3 and LS4 taxon sequence subsampling methods to reduce evolutionary rate heterogeneity among lineages. The initial and complete dataset supports the basal branching of Loricarioidei as in all previous molecular phylogenies, but once lineage rate heterogeneity is reduced with LS3 or LS4 through the removal of sequences disrupting homogeneity, the phylogeny shows Diplomystidae as the earliest branching group, with high supports, as proposed by morphological phylogeny. The result obtained with LS3, however, introduces the misplacement of one of the species with the highest amount of missing data, Scoloplax sp. Because the sequence sub-selection criterion of LS4 has been optimized to reduce data removal, the phylogeny resulting from the LS4-processed data is in agreement with the known intra-lineage relationships in addition to supporting the morphologically-based rooting hypothesis. Our results are the first instance in which a consensus between molecular and morphological phylogeny is reached concerning the root of this order.
Collapse
Affiliation(s)
- Carlos J Rivera-Rivera
- Department of Genetics and Evolution, University of Geneva, Switzerland; Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Switzerland
| | - Juan I Montoya-Burgos
- Department of Genetics and Evolution, University of Geneva, Switzerland; Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Switzerland.
| |
Collapse
|
27
|
Abstract
The ductus arteriosus is typically viewed as a mammalian fetal blood vessel providing a right-to-left shunt of right ventricular outflow away from the lungs and to the systemic circuit, that must close at birth. This review provides a wider comparative examination of the ductus arteriosus in lungfish, reptiles, birds, and mammals. The ductus arteriosus evolved with the lung in the ancestors of the lungfish as a connection between the pulmonary arteries and dorsal aorta. During embryonic development, reptiles, birds, and mammals all possess either one or two paired ductus arteriosi that provide a fetal shunt of blood away from the lungs. Differences in the fetal circulatory arrangement are seen between these groups and this influences the importance of the ductus arteriosus as an embryonic shunt. The ductus arteriosus from lungfish and tetrapod vertebrates is an oxygen sensitive blood vessel, with shared conserved pathways involved in oxygen sensing. By expanding studies into more comparative models such as lungfish or developing birds a better understanding of the physiology of the ductus arteriosus can be developed.
Collapse
Affiliation(s)
- Edward M Dzialowski
- Developmental Integrative Biology Research Group, Department of Biological Science, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203.
| |
Collapse
|
28
|
Moreno N, López JM, Morona R, Lozano D, Jiménez S, González A. Comparative Analysis of Nkx2.1 and Islet-1 Expression in Urodele Amphibians and Lungfishes Highlights the Pattern of Forebrain Organization in Early Tetrapods. Front Neuroanat 2018; 12:42. [PMID: 29867380 PMCID: PMC5968111 DOI: 10.3389/fnana.2018.00042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/02/2018] [Indexed: 11/13/2022] Open
Abstract
Expression patterns of Nkx2.1 and Islet-1 (Isl1), which encode transcription factors that are key in the regionalization of the forebrain, were analyzed by combined immunohistochemical methods in young adult specimens of two lungfishes (Neoceratodus forsteri and Protopterus dolloi) and a urodele amphibian (Pleurodeles waltl). We aimed to get insights into the possible organization of the forebrain in the common ancestor of all tetrapods because of the pivotal phylogenetic significance of these two groups, being lungfishes the closest living relatives of tetrapods, and representing urodeles a model of simple brain organization with most shared features with amniotes. These transcription factors display regionally restricted expression domains in adult (juvenile) brains that are best interpreted according to the current prosomeric model. The regional patterns observed serve to identify regions and compare between the three species studied, and with previous data reported mainly for amniotes. We corroborate that Nkx2.1 and Isl1 expressions have very similar topologies in the forebrain. Common features in all sarcopterygians (lungfishes and tetrapods) have been observed, such as the Isl1 expression in most striatal neurons, whereas Nkx2.1 is restricted to migrated interneurons that reach the ventral pallium (VP). In the pallidal derivatives, the combination of both markers allows the identification of the boundaries between the ventral septum, the bed nucleus of the stria terminalis (BST) and the preoptic commissural region. In addition, the high Isl1 expression in the central amygdala (CeA), its boundary with the lateral amygdala (LA), and the scattered Nkx2.1 expression in the medial amygdala (MeA) are also shared features. The alar and basal hypothalamic territories, and the prethalamus and posterior tubercle (TP) in the diencephalon, have maintained a common pattern of expression. This regional distribution of Isl1 and Nkx2.1 observed in the forebrain of urodeles and lungfishes contributes further to our understanding of the first terrestrial vertebrates and their ancestors.
Collapse
Affiliation(s)
- Nerea Moreno
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Jesús M López
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Daniel Lozano
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Sara Jiménez
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
29
|
Chen MY, Liang D, Zhang P. Phylogenomic Resolution of the Phylogeny of Laurasiatherian Mammals: Exploring Phylogenetic Signals within Coding and Noncoding Sequences. Genome Biol Evol 2018; 9:1998-2012. [PMID: 28830116 PMCID: PMC5737624 DOI: 10.1093/gbe/evx147] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2017] [Indexed: 12/12/2022] Open
Abstract
The interordinal relationships of Laurasiatherian mammals are currently one of the most controversial questions in mammalian phylogenetics. Previous studies mainly relied on coding sequences (CDS) and seldom used noncoding sequences. Here, by data mining public genome data, we compiled an intron data set of 3,638 genes (all introns from a protein-coding gene are considered as a gene) (19,055,073 bp) and a CDS data set of 10,259 genes (20,994,285 bp), covering all major lineages of Laurasiatheria (except Pholidota). We found that the intron data contained stronger and more congruent phylogenetic signals than the CDS data. In agreement with this observation, concatenation and species-tree analyses of the intron data set yielded well-resolved and identical phylogenies, whereas the CDS data set produced weakly supported and incongruent results. Further analyses showed that the phylogeny inferred from the intron data is highly robust to data subsampling and change in outgroup, but the CDS data produced unstable results under the same conditions. Interestingly, gene tree statistical results showed that the most frequently observed gene tree topologies for the CDS and intron data are identical, suggesting that the major phylogenetic signal within the CDS data is actually congruent with that within the intron data. Our final result of Laurasiatheria phylogeny is (Eulipotyphla,((Chiroptera, Perissodactyla),(Carnivora, Cetartiodactyla))), favoring a close relationship between Chiroptera and Perissodactyla. Our study 1) provides a well-supported phylogenetic framework for Laurasiatheria, representing a step towards ending the long-standing "hard" polytomy and 2) argues that intron within genome data is a promising data resource for resolving rapid radiation events across the tree of life.
Collapse
Affiliation(s)
- Meng-Yun Chen
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Dan Liang
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Peng Zhang
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
30
|
Dong W, Xu C, Wu P, Cheng T, Yu J, Zhou S, Hong DY. Resolving the systematic positions of enigmatic taxa: Manipulating the chloroplast genome data of Saxifragales. Mol Phylogenet Evol 2018; 126:321-330. [PMID: 29702217 DOI: 10.1016/j.ympev.2018.04.033] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 01/30/2023]
Abstract
Accurately resolving the phylogeny of enigmatic taxa is always a challenge in phylogenetic inference. Such uncertainties could be due to systematic errors or model violations. Here, we provide an example demonstrating how these factors affect the positioning of Paeoniaceae within Saxifragales based on chloroplast genome data. We newly assembled 14 chloroplast genomes from Saxifragales, and by combining these genomes with those of 63 other angiosperms, three datasets were assembled to test different hypotheses proposed by recent studies. These datasets were subjected to maximum parsimony, maximum likelihood and Bayesian analyses with site-homogeneous/heterogeneous models, different data partitioning strategies, and the inclusion/exclusion of weak phylogenetic signals. Three datasets exhibited remarkable heterogeneity among sites and among taxa of Saxifragales. Phylogenetic analyses under homogeneous models or maximum parsimony showed a closer relationship of Paeoniaceae with herbaceous families in the order. Data partitioning strategies did not change the general tree topology. However, PhyloBayes analysis under the CAT+GTR model resulted in a relationship closer to woody families. We conclude that although genomic data significantly increase the phylogenetic resolution of enigmatic taxa with high support, the phylogenetic results inferred from such data might be analysis or signal dependent. The analytical pipeline outlined here combines phylogenomic inference methods with evaluation of lineage-specific rates of substitution, model selection, and assessment of systematic error. These methods would be applicable to resolve similar difficult questions in the tree of life.
Collapse
Affiliation(s)
- Wenpan Dong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Wu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Cheng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jing Yu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shiliang Zhou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - De-Yuan Hong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
31
|
Wang YH, Wu HY, Rédei D, Xie Q, Chen Y, Chen PP, Dong ZE, Dang K, Damgaard J, Štys P, Wu YZ, Luo JY, Sun XY, Hartung V, Kuechler SM, Liu Y, Liu HX, Bu WJ. When did the ancestor of true bugs become stinky? Disentangling the phylogenomics of Hemiptera-Heteroptera. Cladistics 2017; 35:42-66. [DOI: 10.1111/cla.12232] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2017] [Indexed: 01/27/2023] Open
Affiliation(s)
- Yan-Hui Wang
- Department of Ecology and Evolution; College of Life Sciences; Sun Yat-sen University; 135 Xingangxi Road Guangzhou 510275 Guangdong China
- State Key Laboratory of Biocontrol; Sun Yat-sen University; 135 Xingangxi Road Guangzhou 510275 Guangdong China
- Institute of Entomology; College of Life Sciences; Nankai University; 94 Weijin Road 300071 Tianjin China
| | - Hao-Yang Wu
- Department of Ecology and Evolution; College of Life Sciences; Sun Yat-sen University; 135 Xingangxi Road Guangzhou 510275 Guangdong China
- State Key Laboratory of Biocontrol; Sun Yat-sen University; 135 Xingangxi Road Guangzhou 510275 Guangdong China
- Institute of Entomology; College of Life Sciences; Nankai University; 94 Weijin Road 300071 Tianjin China
| | - Dávid Rédei
- Institute of Entomology; College of Life Sciences; Nankai University; 94 Weijin Road 300071 Tianjin China
| | - Qiang Xie
- Department of Ecology and Evolution; College of Life Sciences; Sun Yat-sen University; 135 Xingangxi Road Guangzhou 510275 Guangdong China
- State Key Laboratory of Biocontrol; Sun Yat-sen University; 135 Xingangxi Road Guangzhou 510275 Guangdong China
- Institute of Entomology; College of Life Sciences; Nankai University; 94 Weijin Road 300071 Tianjin China
| | - Yan Chen
- Chinese Academy of Inspection and Quarantine; No. A3, Gaobeidian Bei Lu Chaoyang District Beijing 100123 China
| | - Ping-Ping Chen
- Netherlands Centre of Biodiversity Naturalis; 2300 RA Leiden Netherlands
| | - Zhuo-Er Dong
- Institute of Entomology; College of Life Sciences; Nankai University; 94 Weijin Road 300071 Tianjin China
| | - Kai Dang
- Institute of Entomology; College of Life Sciences; Nankai University; 94 Weijin Road 300071 Tianjin China
| | - Jakob Damgaard
- Natural History Museum of Denmark; Universitetsparken 15 2100 Copenhagen Ø Denmark
| | - Pavel Štys
- Department of Zoology; Faculty of Science; Charles University in Prague; Viničná 7 CZ-128 44 Praha 2 Czech Republic
| | - Yan-Zhuo Wu
- Institute of Entomology; College of Life Sciences; Nankai University; 94 Weijin Road 300071 Tianjin China
| | - Jiu-Yang Luo
- Institute of Entomology; College of Life Sciences; Nankai University; 94 Weijin Road 300071 Tianjin China
| | - Xiao-Ya Sun
- Institute of Entomology; College of Life Sciences; Nankai University; 94 Weijin Road 300071 Tianjin China
| | - Viktor Hartung
- Staatliches Museum für Naturkunde Karslruhe; Erbprinzenstrasse 13 76133 Karlsruhe Germany
- Museum für Naturkunde - Leibniz-Institute for Research on Evolution and Biodiversity; Invalidenstrasse 43 10115 Berlin Germany
| | - Stefan M. Kuechler
- Department of Animal Ecology II; University of Bayreuth; Universitaetsstrasse 30 95440 Bayreuth Germany
| | - Yang Liu
- Institute of Entomology; College of Life Sciences; Nankai University; 94 Weijin Road 300071 Tianjin China
| | - Hua-Xi Liu
- Institute of Entomology; College of Life Sciences; Nankai University; 94 Weijin Road 300071 Tianjin China
| | - Wen-Jun Bu
- Institute of Entomology; College of Life Sciences; Nankai University; 94 Weijin Road 300071 Tianjin China
| |
Collapse
|
32
|
Inferring the shallow phylogeny of true salamanders (Salamandra) by multiple phylogenomic approaches. Mol Phylogenet Evol 2017; 115:16-26. [DOI: 10.1016/j.ympev.2017.07.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/31/2017] [Accepted: 07/13/2017] [Indexed: 01/31/2023]
|
33
|
Irisarri I, Baurain D, Brinkmann H, Delsuc F, Sire JY, Kupfer A, Petersen J, Jarek M, Meyer A, Vences M, Philippe H. Phylotranscriptomic consolidation of the jawed vertebrate timetree. Nat Ecol Evol 2017; 1:1370-1378. [PMID: 28890940 PMCID: PMC5584656 DOI: 10.1038/s41559-017-0240-5] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phylogenomics is extremely powerful but introduces new challenges as no agreement exists on "standards" for data selection, curation and tree inference. We use jawed vertebrates (Gnathostomata) as model to address these issues. Despite considerable efforts in resolving their evolutionary history and macroevolution, few studies have included a full phylogenetic diversity of gnathostomes and some relationships remain controversial. We tested a novel bioinformatic pipeline to assemble large and accurate phylogenomic datasets from RNA sequencing and find this phylotranscriptomic approach successful and highly cost-effective. Increased sequencing effort up to ca. 10Gbp allows recovering more genes, but shallower sequencing (1.5Gbp) is sufficient to obtain thousands of full-length orthologous transcripts. We reconstruct a robust and strongly supported timetree of jawed vertebrates using 7,189 nuclear genes from 100 taxa, including 23 new transcriptomes from previously unsampled key species. Gene jackknifing of genomic data corroborates the robustness of our tree and allows calculating genome-wide divergence times by overcoming gene sampling bias. Mitochondrial genomes prove insufficient to resolve the deepest relationships because of limited signal and among-lineage rate heterogeneity. Our analyses emphasize the importance of large curated nuclear datasets to increase the accuracy of phylogenomics and provide a reference framework for the evolutionary history of jawed vertebrates.
Collapse
Affiliation(s)
- Iker Irisarri
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz, 78464, Germany. .,Systematic Biology Program, Department of Organismal Biology, Univeristy of Uppsala, Norbyvägen 18D, Uppsala, 75236, Sweden.
| | - Denis Baurain
- InBioS-Eukaryotic Phylogenomics, Department of Life Sciences and PhytoSYSTEMS, University of Liège, Liège, 4000, Belgium
| | - Henner Brinkmann
- Leibniz-Institut DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, 38124, Germany
| | - Frédéric Delsuc
- Institut des Sciences de l'Evolution, UMR 5554, CNRS, IRD, EPHE, Université de Montpellier, Montpellier, 34095, France
| | - Jean-Yves Sire
- Institut de Biologie Paris-Seine, UMR7138, Sorbonne Universities, Paris, 75005, France
| | - Alexander Kupfer
- Department of Zoology, Stuttgart State Museum of Natural History, Stuttgart, 70191, Germany
| | - Jörn Petersen
- Leibniz-Institut DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, 38124, Germany
| | - Michael Jarek
- Department of Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, 38124, Germany
| | - Axel Meyer
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz, 78464, Germany
| | - Miguel Vences
- Zoological Institute, Braunschweig University of Technology, Braunschweig, 38106, Germany
| | - Hervé Philippe
- Centre for Biodiversity Theory and Modelling, UMR CNRS 5321, Station of Theoretical and Experimental Ecology, Moulis, 09200, France. .,Departement de Biochimie, Université de Montréal, Montréal, QC, H3C3J7, Canada.
| |
Collapse
|
34
|
Betancur-R R, Wiley EO, Arratia G, Acero A, Bailly N, Miya M, Lecointre G, Ortí G. Phylogenetic classification of bony fishes. BMC Evol Biol 2017; 17:162. [PMID: 28683774 PMCID: PMC5501477 DOI: 10.1186/s12862-017-0958-3] [Citation(s) in RCA: 426] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/26/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Fish classifications, as those of most other taxonomic groups, are being transformed drastically as new molecular phylogenies provide support for natural groups that were unanticipated by previous studies. A brief review of the main criteria used by ichthyologists to define their classifications during the last 50 years, however, reveals slow progress towards using an explicit phylogenetic framework. Instead, the trend has been to rely, in varying degrees, on deep-rooted anatomical concepts and authority, often mixing taxa with explicit phylogenetic support with arbitrary groupings. Two leading sources in ichthyology frequently used for fish classifications (JS Nelson's volumes of Fishes of the World and W. Eschmeyer's Catalog of Fishes) fail to adopt a global phylogenetic framework despite much recent progress made towards the resolution of the fish Tree of Life. The first explicit phylogenetic classification of bony fishes was published in 2013, based on a comprehensive molecular phylogeny ( www.deepfin.org ). We here update the first version of that classification by incorporating the most recent phylogenetic results. RESULTS The updated classification presented here is based on phylogenies inferred using molecular and genomic data for nearly 2000 fishes. A total of 72 orders (and 79 suborders) are recognized in this version, compared with 66 orders in version 1. The phylogeny resolves placement of 410 families, or ~80% of the total of 514 families of bony fishes currently recognized. The ordinal status of 30 percomorph families included in this study, however, remains uncertain (incertae sedis in the series Carangaria, Ovalentaria, or Eupercaria). Comments to support taxonomic decisions and comparisons with conflicting taxonomic groups proposed by others are presented. We also highlight cases were morphological support exist for the groups being classified. CONCLUSIONS This version of the phylogenetic classification of bony fishes is substantially improved, providing resolution for more taxa than previous versions, based on more densely sampled phylogenetic trees. The classification presented in this study represents, unlike any other, the most up-to-date hypothesis of the Tree of Life of fishes.
Collapse
Affiliation(s)
- Ricardo Betancur-R
- Department of Biology, University of Puerto Rico, Río Piedras, P.O. Box 23360, San Juan, PR 00931 USA
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC USA
| | - Edward O. Wiley
- Biodiversity Institute and Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS USA
- Sam Houston State Natural History Collections, Sam Houston State University, Huntsville, Texas USA
| | - Gloria Arratia
- Biodiversity Institute and Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS USA
| | - Arturo Acero
- Universidad Nacional de Colombia sede Caribe, Cecimar, El Rodadero, Santa Marta, Magdalena Colombia
| | - Nicolas Bailly
- FishBase Information and Research Group, Los Baños, Philippines
| | - Masaki Miya
- Department Ecology and Environmental Sciences, Natural History Museum and Institute, Chiba, Japan
| | - Guillaume Lecointre
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, Paris, France
| | - Guillermo Ortí
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC USA
- Department of Biology, The George Washington University, Washington, DC USA
| |
Collapse
|