1
|
Baine Q, White B, Martinson VG, Martinson EO. Discovery of a new gall-inducing species, Aciurinaluminaria (Insecta, Diptera, Tephritidae) via multi-trait integrative taxonomy. Zookeys 2024; 1214:217-236. [PMID: 39434781 PMCID: PMC11491733 DOI: 10.3897/zookeys.1214.130171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/27/2024] [Indexed: 10/23/2024] Open
Abstract
Integrative taxonomic practices that combine multiple lines of evidence for species delimitation greatly improve our understanding of intra- and inter-species variation and biodiversity. However, extended phenotypes remain underutilized despite their potential as a species-specific set of extracorporeal morphological and life history traits. Primarily relying on variations in wing patterns has caused taxonomic confusion in the genus Aciurina, which are gall-inducing flies on Asteraceae plants in western North America. However, species display distinct gall morphologies that can be crucial for species identification. Here we investigate a unique gall morphotype in New Mexico and Colorado that was previously described as a variant of that induced by Aciurinabigeloviae (Cockerell, 1890). Our analysis has discovered several consistent features that distinguish it from galls of A.bigeloviae. A comprehensive description of Aciurinaluminaria Baine, sp. nov. and its gall is provided through integrative taxonomic study of gall morphology, host plant ecology, wing morphometrics, and reduced-representation genome sequencing.
Collapse
Affiliation(s)
- Quinlyn Baine
- Department of Biology, University of New Mexico, 219 Yale Blvd, Albuquerque, NM 87131, USAUniversity of New MexicoAlbuquerqueUnited States of America
| | - Branden White
- Department of Biology, University of New Mexico, 219 Yale Blvd, Albuquerque, NM 87131, USAUniversity of New MexicoAlbuquerqueUnited States of America
| | - Vincent G. Martinson
- Department of Biology, University of New Mexico, 219 Yale Blvd, Albuquerque, NM 87131, USAUniversity of New MexicoAlbuquerqueUnited States of America
| | - Ellen O. Martinson
- Department of Biology, University of New Mexico, 219 Yale Blvd, Albuquerque, NM 87131, USAUniversity of New MexicoAlbuquerqueUnited States of America
| |
Collapse
|
2
|
Lo YY, Cheng RC, Lin CP. Integrative species delimitation and five new species of lynx spiders (Araneae, Oxyopidae) in Taiwan. PLoS One 2024; 19:e0301776. [PMID: 38722906 PMCID: PMC11081396 DOI: 10.1371/journal.pone.0301776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/21/2024] [Indexed: 05/13/2024] Open
Abstract
An accurate assessment of species diversity is a cornerstone of biology and conservation. The lynx spiders (Araneae: Oxyopidae) represent one of the most diverse and widespread cursorial spider groups, however their species richness in Asia is highly underestimated. In this study, we revised species diversity with extensive taxon sampling in Taiwan and explored species boundaries based on morphological traits and genetic data using a two-step approach of molecular species delimitation. Firstly, we employed a single COI dataset and applied two genetic distance-based methods: ABGD and ASAP, and two topology-based methods: GMYC and bPTP. Secondly, we further analyzed the lineages that were not consistently delimited, and incorporated H3 to the dataset for a coalescent-based analysis using BPP. A total of eight morphological species were recognized, including five new species, Hamataliwa cordivulva sp. nov., Hamat. leporauris sp. nov., Tapponia auriola sp. nov., T. parva sp. nov. and T. rarobulbus sp. nov., and three newly recorded species, Hamadruas hieroglyphica (Thorell, 1887), Hamat. foveata Tang & Li, 2012 and Peucetia latikae Tikader, 1970. All eight morphological species exhibited reciprocally monophyletic lineages. The results of molecular-based delimitation analyses suggested a variety of species hypotheses that did not fully correspond to the eight morphological species. We found that Hamat. cordivulva sp. nov. and Hamat. foveata showed shallow genetic differentiation in the COI, but they were unequivocally distinguishable according to their genitalia. In contrast, T. parva sp. nov. represented a deep divergent lineage, while differences of genitalia were not detected. This study highlights the need to comprehensively employ multiple evidence and methods to delineate species boundaries and the values of diagnostic morphological characters for taxonomic studies in lynx spiders.
Collapse
Affiliation(s)
- Ying-Yuan Lo
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
- Wild Animals Division, Biodiversity Research Institute, Nantou, Taiwan
| | - Ren-Chung Cheng
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Research Center for Global Change Biology, National Chung Hsing University, Taichung, Taiwan
| | - Chung-Ping Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
3
|
Newton LG, Starrett J, Jochim EE, Bond JE. Phylogeography and cohesion species delimitation of California endemic trapdoor spiders within the Aptostichus icenoglei sibling species complex (Araneae: Mygalomorphae: Euctenizidae). Ecol Evol 2023; 13:e10025. [PMID: 37122769 PMCID: PMC10133383 DOI: 10.1002/ece3.10025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 05/02/2023] Open
Abstract
Species delimitation is an imperative first step toward understanding Earth's biodiversity, yet what constitutes a species and the relative importance of the various processes by which new species arise continue to be debatable. Species delimitation in spiders has traditionally used morphological characters; however, certain mygalomorph spiders exhibit morphological homogeneity despite long periods of population-level isolation, absence of gene flow, and consequent high degrees of molecular divergence. Studies have shown strong geographic structuring and significant genetic divergence among several species complexes within the trapdoor spider genus Aptostichus, most of which are restricted to the California Floristic Province (CAFP) biodiversity hotspot. Specifically, the Aptostichus icenoglei complex, which comprises the three sibling species, A. barackobamai, A. isabella, and A. icenoglei, exhibits evidence of cryptic mitochondrial DNA diversity throughout their ranges in Northern, Central, and Southern California. Our study aimed to explicitly test species hypotheses within this assemblage by implementing a cohesion species-based approach. We used genomic-scale data (ultraconserved elements, UCEs) to first evaluate genetic exchangeability and then assessed ecological interchangeability of genetic lineages. Biogeographical analysis was used to assess the likelihood of dispersal versus vicariance events that may have influenced speciation pattern and process across the CAFP's complex geologic and topographic landscape. Considering the lack of congruence across data types and analyses, we take a more conservative approach by retaining species boundaries within A. icenoglei.
Collapse
Affiliation(s)
- Lacie G. Newton
- Department of Entomology & NematologyUniversity of CaliforniaDavisCaliforniaUSA
| | - James Starrett
- Department of Entomology & NematologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Emma E. Jochim
- Department of Entomology & NematologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Jason E. Bond
- Department of Entomology & NematologyUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
4
|
Barrett CF, Santee MV, Fama NM, Freudenstein JV, Simon SJ, Sinn BT. Lineage and role in integrative taxonomy of a heterotrophic orchid complex. Mol Ecol 2022; 31:4762-4781. [PMID: 35837745 PMCID: PMC9452484 DOI: 10.1111/mec.16617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
Abstract
Lineage-based species definitions applying coalescent approaches to species delimitation have become increasingly popular. Yet, the application of these methods and the recognition of lineage-only definitions have recently been questioned. Species delimitation criteria that explicitly consider both lineages and evidence for ecological role shifts provide an opportunity to incorporate ecologically meaningful data from multiple sources in studies of species boundaries. Here, such criteria were applied to a problematic group of mycoheterotrophic orchids, the Corallorhiza striata complex, analysing genomic, morphological, phenological, reproductive-mode, niche, and fungal host data. A recently developed method for generating genomic polymorphism data-ISSRseq-demonstrates evidence for four distinct lineages, including a previously unidentified lineage in the Coast Ranges and Cascades of California and Oregon, USA. There is divergence in morphology, phenology, reproductive mode, and fungal associates among the four lineages. Integrative analyses, conducted in population assignment and redundancy analysis frameworks, provide evidence of distinct genomic lineages and a similar pattern of divergence in the extended data, albeit with weaker signal. However, none of the extended data sets fully satisfy the condition of a significant role shift, which requires evidence of fixed differences. The four lineages identified in the current study are recognized at the level of variety, short of comprising different species. This study represents the most comprehensive application of lineage + role to date and illustrates the advantages of such an approach.
Collapse
Affiliation(s)
- Craig F. Barrett
- Department of Biology, West Virginia University, 53 Campus Drive, Morgantown, West Virginia, USA 26506
| | - Mathilda V. Santee
- Department of Biology, West Virginia University, 53 Campus Drive, Morgantown, West Virginia, USA 26506
| | - Nicole M. Fama
- Department of Biology, West Virginia University, 53 Campus Drive, Morgantown, West Virginia, USA 26506
| | - John V. Freudenstein
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, 1315 Kinnear Rd., Columbus, Ohio, USA 43212
| | - Sandra J. Simon
- Department of Biology, West Virginia University Institute of Technology, Beckley, WV, USA
| | - Brandon T. Sinn
- Department of Biology and Earth Science, Otterbein University, Westerville, OH, USA
- Department of Botany and Ecology, University of Latvia, Jelgavas iela 1, Riga, LV-1004, Latvia
| |
Collapse
|
5
|
Doyle JJ. Cell types as species: Exploring a metaphor. FRONTIERS IN PLANT SCIENCE 2022; 13:868565. [PMID: 36072310 PMCID: PMC9444152 DOI: 10.3389/fpls.2022.868565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/29/2022] [Indexed: 06/05/2023]
Abstract
The concept of "cell type," though fundamental to cell biology, is controversial. Cells have historically been classified into types based on morphology, physiology, or location. More recently, single cell transcriptomic studies have revealed fine-scale differences among cells with similar gross phenotypes. Transcriptomic snapshots of cells at various stages of differentiation, and of cells under different physiological conditions, have shown that in many cases variation is more continuous than discrete, raising questions about the relationship between cell type and cell state. Some researchers have rejected the notion of fixed types altogether. Throughout the history of discussions on cell type, cell biologists have compared the problem of defining cell type with the interminable and often contentious debate over the definition of arguably the most important concept in systematics and evolutionary biology, "species." In the last decades, systematics, like cell biology, has been transformed by the increasing availability of molecular data, and the fine-grained resolution of genetic relationships have generated new ideas about how that variation should be classified. There are numerous parallels between the two fields that make exploration of the "cell types as species" metaphor timely. These parallels begin with philosophy, with discussion of both cell types and species as being either individuals, groups, or something in between (e.g., homeostatic property clusters). In each field there are various different types of lineages that form trees or networks that can (and in some cases do) provide criteria for grouping. Developing and refining models for evolutionary divergence of species and for cell type differentiation are parallel goals of the two fields. The goal of this essay is to highlight such parallels with the hope of inspiring biologists in both fields to look for new solutions to similar problems outside of their own field.
Collapse
Affiliation(s)
- Jeff J. Doyle
- Section of Plant Biology and Section of Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
6
|
Yu XQ, Jiang YZ, Folk RA, Zhao JL, Fu CN, Fang L, Peng H, Yang JB, Yang SX. Species discrimination in Schima (Theaceae): Next-generation super-barcodes meet evolutionary complexity. Mol Ecol Resour 2022; 22:3161-3175. [PMID: 35789203 DOI: 10.1111/1755-0998.13683] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 11/26/2022]
Abstract
Plastid genome and nrDNA arrays, proposed recently as "super barcodes", might provide additional discriminatory power and overcome the limitations of traditional barcoding loci, yet super barcodes need to be tested for their effectiveness in more plant groups. Morphological homoplasy among Schima species makes the genus a model for testing the efficacy of super barcodes. In this study, we generated multiple datasets comprising standard DNA barcodes (matK, rbcL, trnH-psbA, nrITS) and super-barcodes (plastid genome, nrDNA arrays) across 58 individuals from 12 out of 13 species of Schima from China. No samples were correctly assigned to species using standard DNA barcodes and nrDNA arrays, while only 27.27% of species with multiple accessions were distinguished using the plastid genome and its partitioned datasets-the lowest estimated rate of super barcode success in the literature so far. For Schima and other taxa with similarly recently divergence and low levels of genetic variation, incomplete lineage sorting, hybridization, or taxonomic oversplitting are all possible causes of the failure. Taken together, our study suggests that by no means are super barcodes immune to the challenges imposed by evolutionary complexity. We therefore call for developing multi-locus nuclear markers for species discrimination in plant groups.
Collapse
Affiliation(s)
- Xiang-Qin Yu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences
| | - Yin-Zi Jiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences.,College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ryan A Folk
- Department of Biological Sciences, Mississippi State University, 39762, MS, United States
| | - Jian-Li Zhao
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, China, China
| | - Chao-Nan Fu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences
| | - Liang Fang
- College of Life Sciences, Jiujiang University, 332000, Jiujiang, Jiangxi, China
| | - Hua Peng
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China
| | - Shi-Xiong Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences
| |
Collapse
|
7
|
Smith LT, Magdalena C, Przelomska NAS, Pérez-Escobar OA, Melgar-Gómez DG, Beck S, Negrão R, Mian S, Leitch IJ, Dodsworth S, Maurin O, Ribero-Guardia G, Salazar CD, Gutierrez-Sibauty G, Antonelli A, Monro AK. Revised Species Delimitation in the Giant Water Lily Genus Victoria (Nymphaeaceae) Confirms a New Species and Has Implications for Its Conservation. FRONTIERS IN PLANT SCIENCE 2022; 13:883151. [PMID: 35860537 PMCID: PMC9289450 DOI: 10.3389/fpls.2022.883151] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Reliably documenting plant diversity is necessary to protect and sustainably benefit from it. At the heart of this documentation lie species concepts and the practical methods used to delimit taxa. Here, we apply a total-evidence, iterative methodology to delimit and document species in the South American genus Victoria (Nymphaeaceae). The systematics of Victoria has thus far been poorly characterized due to difficulty in attributing species identities to biological collections. This research gap stems from an absence of type material and biological collections, also the confused diagnosis of V. cruziana. With the goal of improving systematic knowledge of the genus, we compiled information from historical records, horticulture and geography and assembled a morphological dataset using citizen science and specimens from herbaria and living collections. Finally, we generated genomic data from a subset of these specimens. Morphological and geographical observations suggest four putative species, three of which are supported by nuclear population genomic and plastid phylogenomic inferences. We propose these three confirmed entities as robust species, where two correspond to the currently recognized V. amazonica and V. cruziana, the third being new to science, which we describe, diagnose and name here as V. boliviana Magdalena and L. T. Sm. Importantly, we identify new morphological and molecular characters which serve to distinguish the species and underpin their delimitations. Our study demonstrates how combining different types of character data into a heuristic, total-evidence approach can enhance the reliability with which biological diversity of morphologically challenging groups can be identified, documented and further studied.
Collapse
Affiliation(s)
- Lucy T. Smith
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | | | - Natalia A. S. Przelomska
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | | | - Darío G. Melgar-Gómez
- Herbario German Coimbra Sanz, Jardín Botánico Municipal de Santa Cruz de la Sierra, Santa Cruz de la Sierra, Bolivia
| | - Stephan Beck
- Herbario Nacional de Bolivia, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Raquel Negrão
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Sahr Mian
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | | | - Steven Dodsworth
- School of Biological Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | | | | | | | - Gloria Gutierrez-Sibauty
- Herbario German Coimbra Sanz, Jardín Botánico Municipal de Santa Cruz de la Sierra, Santa Cruz de la Sierra, Bolivia
| | - Alexandre Antonelli
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
8
|
Martynov A, Lundin K, Korshunova T. Ontogeny, Phylotypic Periods, Paedomorphosis, and Ontogenetic Systematics. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.806414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The key terms linking ontogeny and evolution are briefly reviewed. It is shown that their application and usage in the modern biology are often inconsistent and incorrectly understood even within the “evo-devo” field. For instance, the core modern reformulation that ontogeny not merely recapitulates, but produces phylogeny implies that ontogeny and phylogeny are closely interconnected. However, the vast modern phylogenetic and taxonomic fields largely omit ontogeny as a central concept. Instead, the common “clade-” and “tree-thinking” prevail, despite on the all achievements of the evo-devo. This is because the main conceptual basis of the modern biology is fundamentally ontogeny-free. In another words, in the Haeckel’s pair of “ontogeny and phylogeny,” ontogeny is still just a subsidiary for the evolutionary process (and hence, phylogeny), instead as in reality, its main driving force. The phylotypic periods is another important term of the evo-devo and represent a modern reformulation of Haeckel’s recapitulations and biogenetic law. However, surprisingly, this one of the most important biological evidence, based on the natural ontogenetic grounds, in the phylogenetic field that can be alleged as a “non-evolutionary concept.” All these observations clearly imply that a major revision of the main terms which are associated with the “ontogeny and phylogeny/evolution” field is urgently necessarily. Thus, “ontogenetic” is not just an endless addition to the term “systematics,” but instead a crucial term, without it neither systematics, nor biology have sense. To consistently employ the modern ontogenetic and epigenetic achievements, the concept of ontogenetic systematics is hereby refined. Ontogenetic systematics is not merely a “research program” but a key biological discipline which consistently links the enormous biological diversity with underlying fundamental process of ontogeny at both molecular and morphological levels. The paedomorphosis is another widespread ontogenetic-and-evolutionary process that is significantly underestimated or misinterpreted by the current phylogenetics and taxonomy. The term paedomorphosis is refined, as initially proposed to link ontogeny with evolution, whereas “neoteny” and “progenesis” are originally specific, narrow terms without evolutionary context, and should not be used as synonyms of paedomorphosis. Examples of application of the principles of ontogenetic systematics represented by such disparate animal groups as nudibranch molluscs and ophiuroid echinoderms clearly demonstrate that perseverance of the phylotypic periods is based not only on the classic examples in vertebrates, but it is a universal phenomenon in all organisms, including disparate animal phyla.
Collapse
|
9
|
Chang JT, Chao CT, Nakamura K, Liu HL, Luo MX, Liao PC. Divergence With Gene Flow and Contrasting Population Size Blur the Species Boundary in Cycas Sect. Asiorientales, as Inferred From Morphology and RAD-Seq Data. FRONTIERS IN PLANT SCIENCE 2022; 13:824158. [PMID: 35615129 PMCID: PMC9125193 DOI: 10.3389/fpls.2022.824158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/15/2022] [Indexed: 06/15/2023]
Abstract
The divergence process of incipient species is fascinating but elusive by incomplete lineage sorting or gene flow. Species delimitation is also challenging among those morphologically similar allopatric species, especially when lacking comprehensive data. Cycas sect. Asiorientales, comprised of C. taitungensis and C. revoluta in the Ryukyu Archipelago and Taiwan, diverged recently with continuous gene flow, resulting in a reciprocal paraphyletic relationship. Their previous evolutionary inferences are questioned from few genetic markers, incomplete sampling, and incomprehensive morphological comparison by a long-term taxonomic misconception. By whole range sampling, this study tests the geographic mode of speciation in the two species of Asiorientales by approximate Bayesian computation (ABC) using genome-wide single nucleotide polymorphisms (SNPs). The individual tree was reconstructed to delimit the species and track the gene-flow trajectory. With the comparison of diagnostic morphological traits and genetic data, the allopatric speciation was rejected. Alternatively, continuous but spatially heterogeneous gene flow driven by transoceanic vegetative dispersal and pollen flow with contrasting population sizes blurred their species boundary. On the basis of morphological, genetic, and evolutionary evidence, we synonymized these two Cycas species. This study highlights not only the importance of the Kuroshio Current to species evolution but also the disadvantage of using species with geographically structured genealogies as conservation units.
Collapse
Affiliation(s)
- Jui-Tse Chang
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chien-Ti Chao
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Koh Nakamura
- Botanic Garden, Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, Japan
| | - Hsiao-Lei Liu
- Department of Anthropology, Smithsonian Institution, National Museum of Natural History, Washington, DC, United States
| | - Min-Xin Luo
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Pei-Chun Liao
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
10
|
Hörandl E. Novel Approaches for Species Concepts and Delimitation in Polyploids and Hybrids. PLANTS (BASEL, SWITZERLAND) 2022; 11:204. [PMID: 35050093 PMCID: PMC8781807 DOI: 10.3390/plants11020204] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 05/08/2023]
Abstract
Hybridization and polyploidization are important processes for plant evolution. However, classification of hybrid or polyploid species has been notoriously difficult because of the complexity of processes and different evolutionary scenarios that do not fit with classical species concepts. Polyploid complexes are formed via combinations of allopolyploidy, autopolyploidy and homoploid hybridization with persisting sexual reproduction, resulting in many discrete lineages that have been classified as species. Polyploid complexes with facultative apomixis result in complicated net-work like clusters, or rarely in agamospecies. Various case studies illustrate the problems that apply to traditional species concepts to hybrids and polyploids. Conceptual progress can be made if lineage formation is accepted as an inevitable consequence of meiotic sex, which is established already in the first eukaryotes as a DNA restoration tool. The turnaround of the viewpoint that sex forms species as lineages helps to overcome traditional thinking of species as "units". Lineage formation and self-sustainability is the prerequisite for speciation and can also be applied to hybrids and polyploids. Species delimitation is aided by the improved recognition of lineages via various novel -omics methods, by understanding meiosis functions, and by recognizing functional phenotypes by considering morphological-physiological-ecological adaptations.
Collapse
Affiliation(s)
- Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, 37073 Göttingen, Germany
| |
Collapse
|
11
|
Korshunova TA, Driessen FMF, Picton BE, Martynov AV. The multilevel organismal diversity approach deciphers difficult to distinguish nudibranch species complex. Sci Rep 2021; 11:18323. [PMID: 34526521 PMCID: PMC8443629 DOI: 10.1038/s41598-021-94863-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/30/2021] [Indexed: 11/09/2022] Open
Abstract
Species identification is a key procedure for broad-scoped ecological, phylogeographic and evolutionary studies. However, to perform a taxonomic study in the molecular era is a complicated task that has many pitfalls. In the present study we use particular examples of common but difficult to distinguish European species within the genus of Polycera (Nudibranchia, Mollusca) to discuss the general issues of the "cryptic species" problem that has broad biological and interdisciplinary importance and can significantly impede ecological, evolutionary, and other biodiversity-related research. The largest dataset of molecular and morphological information for European nudibranchs ever applied encompasses a wide geographical area and shapes a robust framework in this study. Four species are recognized in the species complex, including a new one. It is shown that a lack of appropriate taxonomic analysis led recently to considerable errors in species identity assessment of this complex. Chromatic polymorphism for each species is mapped in a periodic-like framework and combined with statistical analysis of the diagnostic features that considerably facilitates identification of particular species in the complex for biologists and practitioners. The present study evidently shows that "cryptic" and "non-cryptic" components are present within the same species. Therefore, this species complex is well suited for the exploring and testing of general biological problems. One of the main conclusions of this study is that division of biological diversity into "cryptic" and "non-cryptic" components is counterproductive. We propose that the central biological phenomenon of a species can instead be universally designated as multilevel organismal diversity thereby provide a practical set of methods for its investigation.
Collapse
Affiliation(s)
- Tatiana A Korshunova
- Koltzov Institute of Developmental Biology RAS, 26 Vavilova Str., 119334, Moscow, Russia
| | - Floor M F Driessen
- Bureau Waardenburg BV, Aquatic Ecology, Varkensmarkt 9, 4101 CK, Culemborg, The Netherlands.,Royal Netherlands Institute for Sea Research (NIOZ), PO Box 59, 1790 AB, Den Burg, The Netherlands
| | - Bernard E Picton
- National Museums Northern Ireland, Holywood, Northern Ireland, BT18 0EU, UK.,Queen's University, Belfast, Northern Ireland, UK
| | - Alexander V Martynov
- Zoological Museum, Moscow State University, Bolshaya Nikitskaya Str. 6, 125009, Moscow, Russia.
| |
Collapse
|
12
|
Species Delimitation and Conservation in Taxonomically Challenging Lineages: The Case of Two Clades of Capurodendron (Sapotaceae) in Madagascar. PLANTS 2021; 10:plants10081702. [PMID: 34451747 PMCID: PMC8400537 DOI: 10.3390/plants10081702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 01/23/2023]
Abstract
Capurodendron is the largest endemic genus of plants from Madagascar, with around 76% of its species threatened by deforestation and illegal logging. However, some species are not well circumscribed and many of them remain undescribed, impeding a confident evaluation of their conservation status. Here we focus on taxa delimitation and conservation of two species complexes within Capurodendron: the Arid and Western complexes, each containing undescribed morphologies as well as intermediate specimens alongside well-delimited taxa. To solve these taxonomic issues, we studied 381 specimens morphologically and selected 85 of them to obtain intergenic, intronic, and exonic protein-coding sequences of 794 nuclear genes and 227 microsatellite loci. These data were used to test species limits and putative hybrid patterns using different approaches such as phylogenies, PCA, structure analyses, heterozygosity level, FST, and ABBA-BABA tests. The potential distributions were furthermore estimated for each inferred species. The results show that the Capurodendron Western Complex contains three well-delimited species, C. oblongifolium, C. perrieri, and C. pervillei, the first two hybridizing sporadically with the last and producing morphologies similar to, but genetically distinct from C. pervillei. The Arid Complex shows a more intricate situation, as it contains three species morphologically well-delimited but genetically intermixed. Capurodendron mikeorum nom. prov. is shown to be an undescribed species with a restricted distribution, while C. androyense and C. mandrarense have wider and mostly sympatric distributions. Each of the latter two species contains two major genetic pools, one showing interspecific admixture in areas where both taxa coexist, and the other being less admixed and comprising allopatric populations having fewer contacts with the other species. Only two specimens out of 172 showed clear genetic and morphological signals of recent hybridization, while all the others were morphologically well-delimited, independent of their degree of genetic admixture. Hybridization between Capurodendron androyense and C. microphyllum, the sister species of the Arid Complex, was additionally detected in areas where both species coexist, producing intermediate morphologies. Among the two complexes, species are well-defined morphologically with the exception of seven specimens (1.8%) displaying intermediate patterns and genetic signals compatible with a F1 hybridization. A provisional conservation assessment for each species is provided.
Collapse
|
13
|
Fahmi, Tibbetts IR, Bennett MB, Dudgeon CL. Delimiting cryptic species within the brown-banded bamboo shark, Chiloscyllium punctatum in the Indo-Australian region with mitochondrial DNA and genome-wide SNP approaches. BMC Ecol Evol 2021; 21:121. [PMID: 34134613 PMCID: PMC8207608 DOI: 10.1186/s12862-021-01852-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 06/04/2021] [Indexed: 11/26/2022] Open
Abstract
Background Delimiting cryptic species in elasmobranchs is a major challenge in modern taxonomy due the lack of available phenotypic features. Employing stand-alone genetics in splitting a cryptic species may prove problematic for further studies and for implementing conservation management. In this study, we examined mitochondrial DNA and genome-wide nuclear single nucleotide polymorphisms (SNPs) in the brown-banded bambooshark, Chiloscyllium punctatum to evaluate potential cryptic species and the species-population boundary in the group. Results Both mtDNA and SNP analyses showed potential delimitation within C. punctatum from the Indo-Australian region and consisted of four operational taxonomic units (OTUs), i.e. those from Indo-Malay region, the west coast of Sumatra, Lesser Sunda region, and the Australian region. Each OTU can be interpreted differently depending on available supporting information, either based on biological, ecological or geographical data. We found that SNP data provided more robust results than mtDNA data in determining the boundary between population and cryptic species. Conclusion To split a cryptic species complex and erect new species based purely on the results of genetic analyses is not recommended. The designation of new species needs supportive diagnostic morphological characters that allow for species recognition, as an inability to recognise individuals in the field creates difficulties for future research, management for conservation and fisheries purposes. Moreover, we recommend that future studies use a comprehensive sampling regime that encompasses the full range of a species complex. This approach would increase the likelihood of identification of operational taxonomic units rather than resulting in an incorrect designation of new species. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01852-3.
Collapse
Affiliation(s)
- Fahmi
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia. .,Research Center for Oceanography, Indonesian Institute of Sciences, Jalan Pasir Putih I No. 1 Ancol, Jakarta, 14430, Indonesia.
| | - Ian R Tibbetts
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Michael B Bennett
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Christine L Dudgeon
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
14
|
Palmer A, Sommer V, Msindai JN. Hybrid apes in the Anthropocene: Burden or asset for conservation? PEOPLE AND NATURE 2021; 3:573-586. [PMID: 34805779 PMCID: PMC8581989 DOI: 10.1002/pan3.10214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/01/2021] [Indexed: 11/08/2022] Open
Abstract
Conservationists often view hybrid animals as problematic, at least if anthropogenic influence caused the intermixing to occur. However, critics propose that humans should respect non-human autonomy, reject and accept the creatures they have helped to create.Based on two case studies of our own ethological, genetic and ethnographic research about chimpanzee and orangutan subspecies hybrids, we assess what, if anything, should be done about such animals. We consider problems posed by cross-bred apes relating to: (a) Breeding-Do hybrids really experience reduced reproductive success? How are population-level concerns and welfare of individual animals balanced in conservation breeding? (b) Essentialism-Are anti-hybrid arguments based on essentialist or purist thinking? Does essentialism vary by conservation context? (c) Pragmatism-How do socio-economic circumstances influence whether hybrids are embraced or ignored? Does the erosion of 'untouched nature' render hybrids more important?We show that answers to these questions are complex and context-specific, and that therefore decisions should be made on a case-by-case basis. For example, we find that anti-hybrid arguments are essentialist in some cases (e.g. ape management in zoos) but not in others (e.g. ape reintroduction). Thus, rather than present recommendations, we conclude by posing nine questions that conservationists should ask themselves when making decisions about taxonomic hybrids. A free Plain Language Summary can be found within the Supporting Information of this article.
Collapse
Affiliation(s)
- Alexandra Palmer
- School of Geography and the EnvironmentUniversity of OxfordOxfordUK
| | | | | |
Collapse
|
15
|
Mussmann SM, Douglas MR, Oakey DD, Douglas ME. Defining relictual biodiversity: Conservation units in speckled dace (Leuciscidae: Rhinichthys osculus) of the Greater Death Valley ecosystem. Ecol Evol 2020; 10:10798-10817. [PMID: 33072297 PMCID: PMC7548178 DOI: 10.1002/ece3.6736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/19/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
The tips in the tree of life serve as foci for conservation and management, yet clear delimitations are masked by inherent variance at the species-population interface. Analyses using thousands of nuclear loci can potentially sort inconsistencies, yet standard categories applied to this parsing are themselves potentially conflicting and/or subjective [e.g., DPS (distinct population segments); DUs (Diagnosable Units-Canada); MUs (management units); SSP (subspecies); ESUs (Evolutionarily Significant Units); and UIEUs (uniquely identified evolutionary units)]. One potential solution for consistent categorization is to create a comparative framework by accumulating statistical results from independent studies and evaluating congruence among data sets. Our study illustrates this approach in speckled dace (Leuciscidae: Rhinichthys osculus) endemic to two basins (Owens and Amargosa) in the Death Valley ecosystem. These fish persist in the Mojave Desert as isolated Plio-Pleistocene relicts and are of conservation concern, but lack formal taxonomic descriptions/designations. Double digest RAD (ddRAD) methods identified 14,355 SNP loci across 10 populations (N = 140). Species delimitation analyses [multispecies coalescent (MSC) and unsupervised machine learning (UML)] delineated four putative ESUs. F ST outlier loci (N = 106) were juxtaposed to uncover the potential for localized adaptations. We detected one hybrid population that resulted from upstream reconnection of habitat following contemporary pluvial periods, whereas remaining populations represent relics of ancient tectonism within geographically isolated springs and groundwater-fed streams. Our study offers three salient conclusions: a blueprint for a multifaceted delimitation of conservation units; a proposed mechanism by which criteria for intraspecific biodiversity can be potentially standardized; and a strong argument for the proactive management of critically endangered Death Valley ecosystem fishes.
Collapse
Affiliation(s)
- Steven M. Mussmann
- Department of Biological SciencesUniversity of ArkansasFayettevilleARUSA
| | - Marlis R. Douglas
- Department of Biological SciencesUniversity of ArkansasFayettevilleARUSA
| | - David D. Oakey
- School of Life SciencesArizona State UniversityTempeAZUSA
- Present address:
Arizona State Veteran HomePhoenixAZUSA
| | - Michael E. Douglas
- Department of Biological SciencesUniversity of ArkansasFayettevilleARUSA
| |
Collapse
|
16
|
|
17
|
Huang J. Is population subdivision different from speciation? From phylogeography to species delimitation. Ecol Evol 2020; 10:6890-6896. [PMID: 32760499 PMCID: PMC7391551 DOI: 10.1002/ece3.6524] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 12/31/2022] Open
Abstract
Species-level diversity and the underlying mechanisms that lead to the formation of new species, that is, speciation, have often been confounded with intraspecific diversity and population subdivision. The delineation between intraspecific and interspecific divergence processes has received much less attention than species delimitation. The ramifications of confounding speciation and population subdivision are that the term speciation has been used to describe many different biological divergence processes, rendering the results, or inferences, between studies incomparable. Phylogeographic studies have advanced our understanding of how spatial variation in the pattern of biodiversity can begin, become structured, and persist through time. Studies of species delimitation have further provided statistical and model-based approaches to determine the phylogeographic entities that merit species status. However, without a proper understanding and delineation between the processes that generate and maintain intraspecific and interspecific diversity in a study system, the delimitation of species may still not be biologically and evolutionarily relevant. I argue that variation in the continuity of the divergence process among biological systems could be a key factor leading to the enduring contention in delineating divergence patterns, or species delimitation, meriting future comparative studies to help us better understand the nature of biological species.
Collapse
Affiliation(s)
- Jen‐Pan Huang
- Biodiversity Research CenterAcademia SinicaTaipeiTaiwan
| |
Collapse
|
18
|
Newton LG, Starrett J, Hendrixson BE, Derkarabetian S, Bond JE. Integrative species delimitation reveals cryptic diversity in the southern Appalachian Antrodiaetus unicolor (Araneae: Antrodiaetidae) species complex. Mol Ecol 2020; 29:2269-2287. [PMID: 32452095 DOI: 10.1111/mec.15483] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 12/26/2022]
Abstract
Although species delimitation can be highly contentious, the development of reliable methods to accurately ascertain species boundaries is an imperative step in cataloguing and describing Earth's quickly disappearing biodiversity. Spider species delimitation remains largely based on morphological characters; however, many mygalomorph spider populations are morphologically indistinguishable from each other yet have considerable molecular divergence. The focus of our study, the Antrodiaetus unicolor species complex containing two sympatric species, exhibits this pattern of relative morphological stasis with considerable genetic divergence across its distribution. A past study using two molecular markers, COI and 28S, revealed that A. unicolor is paraphyletic with respect to A. microunicolor. To better investigate species boundaries in the complex, we implement the cohesion species concept and use multiple lines of evidence for testing genetic exchangeability and ecological interchangeability. Our integrative approach includes extensively sampling homologous loci across the genome using a RADseq approach (3RAD), assessing population structure across their geographic range using multiple genetic clustering analyses that include structure, principal components analysis and a recently developed unsupervised machine learning approach (Variational Autoencoder). We evaluate ecological similarity by using large-scale ecological data for niche-based distribution modelling. Based on our analyses, we conclude that this complex has at least one additional species as well as confirm species delimitations based on previous less comprehensive approaches. Our study demonstrates the efficacy of genomic-scale data for recognizing cryptic species, suggesting that species delimitation with one data type, whether one mitochondrial gene or morphology, may underestimate true species diversity in morphologically homogenous taxa with low vagility.
Collapse
Affiliation(s)
- Lacie G Newton
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - James Starrett
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | | | - Shahan Derkarabetian
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Jason E Bond
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| |
Collapse
|
19
|
Molecular profiling of single neurons of known identity in two ganglia from the crab Cancer borealis. Proc Natl Acad Sci U S A 2019; 116:26980-26990. [PMID: 31806754 PMCID: PMC6936480 DOI: 10.1073/pnas.1911413116] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Single-cell transcriptional profiling has become a widespread tool in cell identification, particularly in the nervous system, based on the notion that genomic information determines cell identity. However, many cell-type classification studies are unconstrained by other cellular attributes (e.g., morphology, physiology). Here, we systematically test how accurately transcriptional profiling can assign cell identity to well-studied anatomically and functionally identified neurons in 2 small neuronal networks. While these neurons clearly possess distinct patterns of gene expression across cell types, their expression profiles are not sufficient to unambiguously confirm their identity. We suggest that true cell identity can only be determined by combining gene expression data with other cellular attributes such as innervation pattern, morphology, or physiology. Understanding circuit organization depends on identification of cell types. Recent advances in transcriptional profiling methods have enabled classification of cell types by their gene expression. While exceptionally powerful and high throughput, the ground-truth validation of these methods is difficult: If cell type is unknown, how does one assess whether a given analysis accurately captures neuronal identity? To shed light on the capabilities and limitations of solely using transcriptional profiling for cell-type classification, we performed 2 forms of transcriptional profiling—RNA-seq and quantitative RT-PCR, in single, unambiguously identified neurons from 2 small crustacean neuronal networks: The stomatogastric and cardiac ganglia. We then combined our knowledge of cell type with unbiased clustering analyses and supervised machine learning to determine how accurately functionally defined neuron types can be classified by expression profile alone. The results demonstrate that expression profile is able to capture neuronal identity most accurately when combined with multimodal information that allows for post hoc grouping, so analysis can proceed from a supervised perspective. Solely unsupervised clustering can lead to misidentification and an inability to distinguish between 2 or more cell types. Therefore, this study supports the general utility of cell identification by transcriptional profiling, but adds a caution: It is difficult or impossible to know under what conditions transcriptional profiling alone is capable of assigning cell identity. Only by combining multiple modalities of information such as physiology, morphology, or innervation target can neuronal identity be unambiguously determined.
Collapse
|
20
|
Population Structure and Genetic Diversity among Isolates of Coccidioides posadasii in Venezuela and Surrounding Regions. mBio 2019; 10:mBio.01976-19. [PMID: 31772050 PMCID: PMC6879716 DOI: 10.1128/mbio.01976-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Coccidioides posadasii is a pathogenic fungus that causes coccidioidomycosis in many arid regions of the Americas. One of these regions is bordered by the Caribbean Sea, and the surrounding landscape may play an important role in the dispersion of C. posadasii across South America through southeastern Mexico, Honduras, Guatemala, and Venezuela. Comparative phylogenomic analyses of C. posadasii reveal that clinical strains from Venezuela are genetically distinct from the North American populations found in (i) Arizona and (ii) Texas, Mexico, and the rest of South America (TX/MX/SA). We find evidence for admixture between the Venezuela and the North American populations of C. posadasii in Central America. Additionally, the proportion of Venezuelan alleles in the admixed population decreases as latitude (and distance from Venezuela) increases. Our results indicate that the population in Venezuela may have been subjected to a recent bottleneck and shows a strong population structure. This analysis provides insight into potential for Coccidioides spp. to invade new regions.IMPORTANCE Valley Fever is a fungal disease caused by two species of fungi: Coccidioides immitis and C. posadasii These fungi are found throughout the arid regions of North and South America; however, our understanding of genetic diversity and disease in South America is limited. In this report, we analyze 10 new genomes of Coccidioides posadasii from regions bordering the Caribbean Sea. We show that these populations are distinct and that isolates from Venezuela are likely a result of a recent bottleneck. These data point to patterns that might be observed when investigating recently established populations.
Collapse
|
21
|
Zachos FE, Christidis L, Garnett ST. Mammalian species and the twofold nature of taxonomy: a comment on Taylor et al. 2019. MAMMALIA 2019. [DOI: 10.1515/mammalia-2019-0009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
In a recently published paper, Taylor and colleagues discussed different approaches and interpretations of mammalian taxonomy and their bearing on more general issues such as conservation and evolutionary biology. We fully endorse the fundamental importance of taxonomy and its being grounded on scientific principles. However, we also deplore a lack of awareness in the literature of the fact that taxonomy is a twofold enterprise that encompasses not only (i) the scientific description and quantitative analysis of biodiversity but also (ii) an executive decision as to how the results of (i) are translated into names. This has serious ramifications for the conservation of our planet’s dwindling biodiversity and when taxonomic names are used as raw data for ecological and evolutionary analyses.
Collapse
Affiliation(s)
- Frank E. Zachos
- Natural History Museum Vienna , Mammal Collection , Burgring 7 , 1010 Vienna , Austria
- Department of Genetics , University of the Free State , PO Box 339 , Bloemfontein , South Africa
- Department of Integrative Zoology , University of Vienna , Althanstraße 14 , 1090 Vienna , Austria
| | - Les Christidis
- School of Environment, Science and Engineering , Southern Cross University , Coffs Harbour , NSW 2450 , Australia
| | - Stephen T. Garnett
- Research Institute for the Environment and Livelihoods , Charles Darwin University , Darwin , NT 0909 , Australia
| |
Collapse
|
22
|
Loiseau O, Olivares I, Paris M, de La Harpe M, Weigand A, Koubínová D, Rolland J, Bacon CD, Balslev H, Borchsenius F, Cano A, Couvreur TLP, Delnatte C, Fardin F, Gayot M, Mejía F, Mota-Machado T, Perret M, Roncal J, Sanin MJ, Stauffer F, Lexer C, Kessler M, Salamin N. Targeted Capture of Hundreds of Nuclear Genes Unravels Phylogenetic Relationships of the Diverse Neotropical Palm Tribe Geonomateae. FRONTIERS IN PLANT SCIENCE 2019; 10:864. [PMID: 31396244 PMCID: PMC6640726 DOI: 10.3389/fpls.2019.00864] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/17/2019] [Indexed: 05/11/2023]
Abstract
The tribe Geonomateae is a widely distributed group of 103 species of Neotropical palms which contains six ecologically important understory or subcanopy genera. Although it has been the focus of many studies, our understanding of the evolutionary history of this group, and in particular of the taxonomically complex genus Geonoma, is far from complete due to a lack of molecular data. Specifically, the previous Sanger sequencing-based studies used a few informative characters and partial sampling. To overcome these limitations, we used a recently developed Arecaceae-specific target capture bait set to undertake a phylogenomic analysis of the tribe Geonomateae. We sequenced 3,988 genomic regions for 85% of the species of the tribe, including 84% of the species of the largest genus, Geonoma. Phylogenetic relationships were inferred using both concatenation and coalescent methods. Overall, our phylogenetic tree is highly supported and congruent with taxonomic delimitations although several morphological taxa were revealed to be non-monophyletic. It is the first time that such a large genomic dataset is provided for an entire tribe within the Arecaceae. Our study lays the groundwork not only for detailed macro- and micro-evolutionary studies within the group, but also sets a workflow for understanding other species complexes across the tree of life.
Collapse
Affiliation(s)
- Oriane Loiseau
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Ingrid Olivares
- Department for Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Centre for Biodiversity and Environment Research, University College London, London, United Kingdom
| | - Margot Paris
- Department of Biology, Unit Ecology and Evolution, University of Fribourg, Fribourg, Switzerland
| | - Marylaure de La Harpe
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Anna Weigand
- Department for Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Darina Koubínová
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Natural History Museum of Geneva, Geneva, Switzerland
| | - Jonathan Rolland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Christine D. Bacon
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Henrik Balslev
- Department of Bioscience, Biodiversity and Ecoinformatics, Aarhus University, Aarhus, Denmark
| | | | - Angela Cano
- Cambridge University Botanic Garden, Cambridge, United Kingdom
| | | | | | | | - Marc Gayot
- National Forestry Office, Guadeloupe, France
| | - Fabian Mejía
- Facultad de Ciencias y Biotecnología, Universidad CES, Medellin, Colombia
| | - Talita Mota-Machado
- Programa de Pós-Graduação em Biologia Vegetal, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mathieu Perret
- Department of Botany and Plant Biology, Conservatory and Botanical Garden of the City of Geneva, University of Geneva, Geneva, Switzerland
| | - Julissa Roncal
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Maria José Sanin
- Facultad de Ciencias y Biotecnología, Universidad CES, Medellin, Colombia
| | - Fred Stauffer
- Department of Botany and Plant Biology, Conservatory and Botanical Garden of the City of Geneva, University of Geneva, Geneva, Switzerland
| | - Christian Lexer
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Michael Kessler
- Department for Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Nicolas Salamin
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
23
|
Jacobs SJ, Herzog S, Tank DC. Quantifying morphological variation in the Castilleja pilosa species complex (Orobanchaceae). PeerJ 2019; 7:e7090. [PMID: 31259097 PMCID: PMC6589334 DOI: 10.7717/peerj.7090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 05/06/2019] [Indexed: 11/20/2022] Open
Abstract
Robustly delimited species are of paramount importance, the identification of which relies on our ability to discern boundaries between one species and the next. This is not difficult to do when species are very distinct from one another. However, in recently evolved lineages where putative species may have relatively few diagnostic features (e.g., species complexes composed of very similar species, the boundaries between which are often unclear), defining species boundaries can be more challenging. Hence, the field of species delimitation has widely advocated the use of multiple lines of evidence to delimit species, particularly in species complexes. Excessive taxonomic confusion, often the result of species descriptions that shift through time (e.g., during revisionary work and regional treatments), can further complicate the search for diagnostic features in species complexes. Here, as a first step in robustly delimiting species boundaries, we quantify and describe morphological variation in the Castilleja pilosa species complex. We first infer the morphospace of the species complex and use fuzzy-clustering techniques to explore the morphological variation in the system. Next, we hypothesize the position of type specimens within that morphospace. In so doing, we aim to visualize the impact that regional treatments have had on the conceptualization of taxa through time. We find that there is limited morphological variation among members of this complex, and we determine that the morphological concept of these species have shifted through time and are no longer accurately represented by species descriptions.
Collapse
Affiliation(s)
- Sarah J Jacobs
- Stillinger Herbarium, University of Idaho, Moscow, ID, USA.,Biological Sciences, University of Idaho, Moscow, ID, USA.,Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID, USA
| | - Sarah Herzog
- Stillinger Herbarium, University of Idaho, Moscow, ID, USA.,Biological Sciences, University of Idaho, Moscow, ID, USA
| | - David C Tank
- Stillinger Herbarium, University of Idaho, Moscow, ID, USA.,Biological Sciences, University of Idaho, Moscow, ID, USA.,Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID, USA
| |
Collapse
|
24
|
Gao YD, Gao XF, Harris A. Species Boundaries and Parapatric Speciation in the Complex of Alpine Shrubs, Rosa sericea (Rosaceae), Based on Population Genetics and Ecological Tolerances. FRONTIERS IN PLANT SCIENCE 2019; 10:321. [PMID: 30936888 PMCID: PMC6432857 DOI: 10.3389/fpls.2019.00321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 02/27/2019] [Indexed: 06/01/2023]
Abstract
Discerning species boundaries among closely related taxa is fundamental to studying evolution and biodiversity. However, species boundaries can be difficult to access in plants because ongoing divergence and speciation may leave an evolutionary footprint similar to introgression, which occurs frequently among species and genera. In this study, we sought to determine species boundaries between two closely related alpine shrubs, Rosa sericea and Rosa omeiensis, using population genetics, environmental data and ecological niche modeling, and morphological traits. We analyzed populations of R. sericea and R. omeiensis using genetic markers comprising a fragment of the single-copy nuclear gene, LEAFY, micro-satellites (EST-SSR), and plastid DNA sequences. The DNA sequence data suggested clusters of populations consistent with geography but not with previously proposed species boundaries based on morphology. Nevertheless, we found that the ecological niches of the previously proposed species only partially overlap. Thus, we suspect that these species are in the process of parapatric speciation; that is, differentiating along an ecological gradient, so that they exhibit differing morphology. Morphology has previously been the basis of recognizing the species R. sericea and R. omeiensis, which are the most widely distributed species within a broader R. sericea complex that includes several other narrow endemics. Here, we recognize R. sericea and R. omeiensis as independent species based on morphological and ecological data under the unified species concept, which emphasizes that these data types are of equal value to DNA for determining species boundaries and refining taxonomic treatments. While the DNA data did not delimit species within the R. sericea complex, we expect to develop and utilize new, robust DNA tools for understanding speciation within this group in future studies.
Collapse
Affiliation(s)
- Yun-Dong Gao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xin-Fen Gao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Aj Harris
- Oberlin College and Conservatory, Department of Biology, Oberlin, OH, United States
| |
Collapse
|
25
|
Juste J, Ruedi M, Puechmaille SJ, Salicini I, Ibáñez C. Two New Cryptic Bat Species within the Myotis nattereri Species Complex (Vespertilionidae, Chiroptera) from the Western Palaearctic. ACTA CHIROPTEROLOGICA 2019. [DOI: 10.3161/15081109acc2018.20.2.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Javier Juste
- Estación Biológica de Doñana (CSIC), Avda. Américo Vespucio 26, 41092 Sevilla, Spain
| | - Manuel Ruedi
- Natural History Museum of Geneva, P.O. Box, 6334, 1211 Genève 6, Switzerland
| | | | - Irene Salicini
- Estación Biológica de Doñana (CSIC), Avda. Américo Vespucio 26, 41092 Sevilla, Spain
| | - Carlos Ibáñez
- Estación Biológica de Doñana (CSIC), Avda. Américo Vespucio 26, 41092 Sevilla, Spain
| |
Collapse
|
26
|
Silvestro D, Warnock RCM, Gavryushkina A, Stadler T. Closing the gap between palaeontological and neontological speciation and extinction rate estimates. Nat Commun 2018; 9:5237. [PMID: 30532040 PMCID: PMC6286320 DOI: 10.1038/s41467-018-07622-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 11/13/2018] [Indexed: 11/09/2022] Open
Abstract
Measuring the pace at which speciation and extinction occur is fundamental to understanding the origin and evolution of biodiversity. Both the fossil record and molecular phylogenies of living species can provide independent estimates of speciation and extinction rates, but often produce strikingly divergent results. Despite its implications, the theoretical reasons for this discrepancy remain unknown. Here, we reveal a conceptual and methodological basis able to reconcile palaeontological and molecular evidence: discrepancies are driven by different implicit assumptions about the processes of speciation and species evolution in palaeontological and neontological analyses. We present the "birth-death chronospecies" model that clarifies the definition of speciation and extinction processes allowing for a coherent joint analysis of fossil and phylogenetic data. Using simulations and empirical analyses we demonstrate not only that this model explains much of the apparent incongruence between fossils and phylogenies, but that differences in rate estimates are actually informative about the prevalence of different speciation modes.
Collapse
Affiliation(s)
- Daniele Silvestro
- Department of Biological and Environmental Sciences, University of Gothenburg, 41319, Gothenburg, Sweden.
- Global Gothenburg Biodiversity Centre, 41319, Gothenburg, Sweden.
- Department of Computational Biology, University of Lausanne, Lausanne, 1015, Switzerland.
- Swiss Institute of Bioinformatics (SIB), 1015, Lausanne, Switzerland.
| | - Rachel C M Warnock
- Swiss Institute of Bioinformatics (SIB), 1015, Lausanne, Switzerland
- Department of Biosystems Science & Engineering, Eidgenössische Technische Hochschule Zürich, 4058, Basel, Switzerland
| | | | - Tanja Stadler
- Swiss Institute of Bioinformatics (SIB), 1015, Lausanne, Switzerland
- Department of Biosystems Science & Engineering, Eidgenössische Technische Hochschule Zürich, 4058, Basel, Switzerland
| |
Collapse
|
27
|
Johnson NA, Smith CH, Pfeiffer JM, Randklev CR, Williams JD, Austin JD. Integrative taxonomy resolves taxonomic uncertainty for freshwater mussels being considered for protection under the U.S. Endangered Species Act. Sci Rep 2018; 8:15892. [PMID: 30367102 PMCID: PMC6203750 DOI: 10.1038/s41598-018-33806-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/07/2018] [Indexed: 11/30/2022] Open
Abstract
Objectively delimiting species boundaries remains an important challenge in systematics and becomes urgent when unresolved taxonomy complicates conservation and recovery efforts. We examined species boundaries in the imperiled freshwater mussel genus Cyclonaias (Bivalvia: Unionidae) using morphometrics, molecular phylogenetics, and multispecies coalescent models to help guide pending conservation assessments and legislative decisions. Congruence across multiple lines of evidence indicated that current taxonomy overestimates diversity in the C. pustulosa species complex. The only genetically and morphologically diagnosable species in the C. pustulosa species complex were C. pustulosa and C. succissa and we consider C. aurea, C. houstonensis, C. mortoni, and C. refulgens to be synonyms of C. pustulosa. In contrast, all three species in the C. nodulata complex (C. necki, C. nodulata, and C. petrina) were genetically, geographically, and morphologically diagnosable. Our findings have important conservation and management implications, as three nominal species (C. aurea, C. houstonensis, and C. petrina) are being considered for protection under the Endangered Species Act.
Collapse
Affiliation(s)
- Nathan A Johnson
- U.S. Geological Survey, Wetland and Aquatic Research Center, Gainesville, FL, 32653, USA.
| | - Chase H Smith
- U.S. Geological Survey, Wetland and Aquatic Research Center, Gainesville, FL, 32653, USA.,Baylor University, Biology Department, Waco, TX, 76798, USA
| | - John M Pfeiffer
- University of Florida, Florida Museum, Gainesville, FL, 32611, USA
| | - Charles R Randklev
- Texas A&M Natural Resources Institute and AgriLife Research Center, Dallas, TX, 75252, USA
| | - James D Williams
- University of Florida, Florida Museum, Gainesville, FL, 32611, USA
| | - James D Austin
- Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, 32601, USA
| |
Collapse
|