1
|
Su ZH, Sasaki A, Minami H, Ozaki K. Arthropod Phylotranscriptomics With a Special Focus on the Basal Phylogeny of the Myriapoda. Genome Biol Evol 2024; 16:evae189. [PMID: 39219333 PMCID: PMC11436689 DOI: 10.1093/gbe/evae189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/08/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Arthropoda represents the most diverse animal phylum, but clarifying the phylogenetic relationships among arthropod taxa remains challenging given the numerous arthropod lineages that diverged over a short period of time. In order to resolve the most controversial aspects of deep arthropod phylogeny, focusing on the Myriapoda, we conducted phylogenetic analyses based on ten super-matrices comprised of 751 to 1,233 orthologous genes across 64 representative arthropod species, including 28 transcriptomes that were newly generated in this study. Our findings provide unambiguous support for the monophyly of the higher arthropod taxa, Chelicerata, Mandibulata, Myriapoda, Pancrustacea, and Hexapoda, while the Crustacea are paraphyletic, with the class Remipedia supported as the lineage most closely related to hexapods. Within the Hexapoda, our results largely affirm previously proposed phylogenetic relationships among deep hexapod lineages, except that the Paraneoptera (Hemiptera, Thysanoptera, and Psocodea) was recovered as a monophyletic lineage in some analyses. The results corroborated the recently proposed phylogenetic framework of the four myriapod classes, wherein Symphyla and Pauropoda, as well as Chilopoda and Diplopoda, are each proposed to be sister taxa. The findings provide important insights into understanding the phylogeny and evolution of arthropods.
Collapse
Affiliation(s)
- Zhi-Hui Su
- JT Biohistory Research Hall, Takatsuki, Osaka 569-1125, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Ayako Sasaki
- JT Biohistory Research Hall, Takatsuki, Osaka 569-1125, Japan
| | - Hiroaki Minami
- JT Biohistory Research Hall, Takatsuki, Osaka 569-1125, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Katsuhisa Ozaki
- JT Biohistory Research Hall, Takatsuki, Osaka 569-1125, Japan
| |
Collapse
|
2
|
Noll NW, Scherber C, Schäffler L. taxalogue: a toolkit to create comprehensive CO1 reference databases. PeerJ 2023; 11:e16253. [PMID: 38077427 PMCID: PMC10702336 DOI: 10.7717/peerj.16253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/18/2023] [Indexed: 12/18/2023] Open
Abstract
Background Taxonomic identification through DNA barcodes gained considerable traction through the invention of next-generation sequencing and DNA metabarcoding. Metabarcoding allows for the simultaneous identification of thousands of organisms from bulk samples with high taxonomic resolution. However, reliable identifications can only be achieved with comprehensive and curated reference databases. Therefore, custom reference databases are often created to meet the needs of specific research questions. Due to taxonomic inconsistencies, formatting issues, and technical difficulties, building a custom reference database requires tremendous effort. Here, we present taxalogue, an easy-to-use software for creating comprehensive and customized reference databases that provide clean and taxonomically harmonized records. In combination with extensive geographical filtering options, taxalogue opens up new possibilities for generating and testing evolutionary hypotheses. Methods taxalogue collects DNA sequences from several online sources and combines them into a reference database. Taxonomic incongruencies between the different data sources can be harmonized according to available taxonomies. Dereplication and various filtering options are available regarding sequence quality or metadata information. taxalogue is implemented in the open-source Ruby programming language, and the source code is available at https://github.com/nwnoll/taxalogue. We benchmark four reference databases by sequence identity against eight queries from different localities and trapping devices. Subsamples from each reference database were used to compare how well another one is covered. Results taxalogue produces reference databases with the best coverage at high identities for most tested queries, enabling more accurate, reliable predictions with higher certainty than the other benchmarked reference databases. Additionally, the performance of taxalogue is more consistent while providing good coverage for a variety of habitats, regions, and sampling methods. taxalogue simplifies the creation of reference databases and makes the process reproducible and transparent. Multiple available output formats for commonly used downstream applications facilitate the easy adoption of taxalogue in many different software pipelines. The resulting reference databases improve the taxonomic classification accuracy through high coverage of the query sequences at high identities.
Collapse
Affiliation(s)
- Niklas W. Noll
- Centre for Biodiversity Monitoring and Conservation Science, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, North Rhine-Westphalia, Germany
| | - Christoph Scherber
- Centre for Biodiversity Monitoring and Conservation Science, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, North Rhine-Westphalia, Germany
| | - Livia Schäffler
- Centre for Biodiversity Monitoring and Conservation Science, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, North Rhine-Westphalia, Germany
| |
Collapse
|
3
|
Vancaester E, Blaxter M. Phylogenomic analysis of Wolbachia genomes from the Darwin Tree of Life biodiversity genomics project. PLoS Biol 2023; 21:e3001972. [PMID: 36689552 PMCID: PMC9894559 DOI: 10.1371/journal.pbio.3001972] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/02/2023] [Accepted: 12/19/2022] [Indexed: 01/24/2023] Open
Abstract
The Darwin Tree of Life (DToL) project aims to sequence all described terrestrial and aquatic eukaryotic species found in Britain and Ireland. Reference genome sequences are generated from single individuals for each target species. In addition to the target genome, sequenced samples often contain genetic material from microbiomes, endosymbionts, parasites, and other cobionts. Wolbachia endosymbiotic bacteria are found in a diversity of terrestrial arthropods and nematodes, with supergroups A and B the most common in insects. We identified and assembled 110 complete Wolbachia genomes from 93 host species spanning 92 families by filtering data from 368 insect species generated by the DToL project. From 15 infected species, we assembled more than one Wolbachia genome, including cases where individuals carried simultaneous supergroup A and B infections. Different insect orders had distinct patterns of infection, with Lepidopteran hosts mostly infected with supergroup B, while infections in Diptera and Hymenoptera were dominated by A-type Wolbachia. Other than these large-scale order-level associations, host and Wolbachia phylogenies revealed no (or very limited) cophylogeny. This points to the occurrence of frequent host switching events, including between insect orders, in the evolutionary history of the Wolbachia pandemic. While supergroup A and B genomes had distinct GC% and GC skew, and B genomes had a larger core gene set and tended to be longer, it was the abundance of copies of bacteriophage WO who was a strong determinant of Wolbachia genome size. Mining raw genome data generated for reference genome assemblies is a robust way of identifying and analysing cobiont genomes and giving greater ecological context for their hosts.
Collapse
Affiliation(s)
| | - Mark Blaxter
- Tree of Life, Wellcome Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
4
|
David KT. Global gradients in the distribution of animal polyploids. Proc Natl Acad Sci U S A 2022; 119:e2214070119. [PMID: 36409908 PMCID: PMC9860298 DOI: 10.1073/pnas.2214070119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/17/2022] [Indexed: 11/22/2022] Open
Abstract
Whole genome duplications (WGDs) are one of the most dramatic mutations that can be found in nature. The effects of WGD vary dramatically but can have profound impacts on an organism's expression, cytotype, and phenotype, altering their evolutionary trajectory as a result. Despite the growing appreciation for the contribution of WGDs in animal evolution, the significant factors influencing how polyploid animal lineages are established and maintained are still not well understood. Many hypotheses have been proposed which predict how climate and environment may influence polyploid incidence and evolution. To test and distinguish between these hypotheses, I assembled a global dataset of polyploid occurrences in three animal clades (Amphibia, Actinopterygii, and Insecta). The dataset encompasses chromosomal, phylogenetic, environmental, and climatic data across 57,905 species in 2,223 terrestrial, freshwater, and marine ecoregions. My analysis reveals a strong latitudinal gradient in all three clades, with the tendency for polyploid taxa to occur more frequently at higher latitudes. Many variables were significant (phylogenetic ANOVA P < 0.05 after Bonferroni correction) between polyploids and diploids across taxa, notably those pertaining to temperature dynamics and glaciation. Glaciation in particular appears to be the most significant driver of polyploidy in animals, as these models had the highest relative likelihoods consistently across clades. These results contribute to a model of evolution wherein the broader genomic toolkit of polyploids facilitates adaptation and ecological resilience, enabling polyploids to colonize new or rapidly changing environments.
Collapse
Affiliation(s)
- Kyle T. David
- Department of Biological Sciences, Auburn University, Auburn, AL36849
| |
Collapse
|
5
|
Bian X, Garner BH, Liu H, Vogler AP. The SITE-100 Project: Site-Based Biodiversity Genomics for Species Discovery, Community Ecology, and a Global Tree-of-Life. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.787560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Most insect communities are composed of evolutionarily diverse lineages, but detailed phylogenetic analyses of whole communities are lacking, in particular in species-rich tropical faunas. Likewise, our knowledge of the Tree-of-Life to document evolutionary diversity of organisms remains highly incomplete and especially requires the inclusion of unstudied lineages from species-rich ecosystems. Here we present the SITE-100 program, which is an attempt at building the Tree-of-Life from whole-community sampling of high-biodiversity sites around the globe. Combining the local site-based sets into a global tree produces an increasingly comprehensive estimate of organismal phylogeny, while also re-tracing evolutionary history of lineages constituting the local community. Local sets are collected in bulk in standardized passive traps and imaged with large-scale high-resolution cameras, which is followed by a parataxonomy step for the preliminary separation of morphospecies and selection of specimens for phylogenetic analysis. Selected specimens are used for individual DNA extraction and sequencing, usually to sequence mitochondrial genomes. All remaining specimens are bulk extracted and subjected to metabarcoding. Phylogenetic analysis on the mitogenomes produces a reference tree to which short barcode sequences are added in a secondary analysis using phylogenetic placement methods or backbone constrained tree searches. However, the approach may be hampered because (1) mitogenomes are limited in phylogenetic informativeness, and (2) site-based sampling may produce poor taxon coverage which causes challenges for phylogenetic inference. To mitigate these problems, we first assemble nuclear shotgun data from taxonomically chosen lineages to resolve the base of the tree, and add site-based mitogenome and DNA barcode data in three hierarchical steps. We posit that site-based sampling, though not meeting the criterion of “taxon-completeness,” has great merits given preliminary studies showing representativeness and evenness of taxa sampled. We therefore argue in favor of site-based sampling as an unorthodox but logistically efficient way to construct large phylogenetic trees.
Collapse
|
6
|
Motyka M, Kusy D, Bocek M, Bilkova R, Bocak L. Phylogenomic and mitogenomic data can accelerate inventorying of tropical beetles during the current biodiversity crisis. eLife 2021; 10:e71895. [PMID: 34927586 PMCID: PMC8798050 DOI: 10.7554/elife.71895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/18/2021] [Indexed: 11/13/2022] Open
Abstract
Conservation efforts must be evidence-based, so rapid and economically feasible methods should be used to quantify diversity and distribution patterns. We have attempted to overcome current impediments to the gathering of biodiversity data by using integrative phylogenomic and three mtDNA fragment analyses. As a model, we sequenced the Metriorrhynchini beetle fauna, sampled from ~700 localities in three continents. The species-rich dataset included ~6500 terminals, ~ 1850 putative species delimited at 5% uncorrected pairwise threshold, possibly ~1000 of them unknown to science. Neither type of data could alone answer our questions on biodiversity and phylogeny. The phylogenomic backbone enabled the integrative delimitation of robustly defined natural genus-group units that will inform future research. Using constrained mtDNA analysis, we identified the spatial structure of species diversity, very high species-level endemism, and a biodiversity hotspot in New Guinea. We suggest that focused field research and subsequent laboratory and bioinformatic workflow steps would substantially accelerate the inventorying of any hyperdiverse tropical group with several thousand species. The outcome would be a scaffold for the incorporation of further data from environmental sequencing and ecological studies. The database of sequences could set a benchmark for the spatiotemporal evaluation of biodiversity, would support evidence-based conservation planning, and would provide a robust framework for systematic, biogeographic, and evolutionary studies.
Collapse
Affiliation(s)
- Michal Motyka
- Laboratory of Biodiversity and Molecular Evolution, Czech Advanced Technology Research Institute, Centre of Region HanaOlomoucCzech Republic
| | - Dominik Kusy
- Laboratory of Biodiversity and Molecular Evolution, Czech Advanced Technology Research Institute, Centre of Region HanaOlomoucCzech Republic
| | - Matej Bocek
- Laboratory of Biodiversity and Molecular Evolution, Czech Advanced Technology Research Institute, Centre of Region HanaOlomoucCzech Republic
| | - Renata Bilkova
- Laboratory of Biodiversity and Molecular Evolution, Czech Advanced Technology Research Institute, Centre of Region HanaOlomoucCzech Republic
| | - Ladislav Bocak
- Laboratory of Biodiversity and Molecular Evolution, Czech Advanced Technology Research Institute, Centre of Region HanaOlomoucCzech Republic
| |
Collapse
|
7
|
Cullen N, Xia J, Wei N, Kaczorowski R, Arceo-Gómez G, O'Neill E, Hayes R, Ashman TL. Diversity and composition of pollen loads carried by pollinators are primarily driven by insect traits, not floral community characteristics. Oecologia 2021; 196:131-143. [PMID: 33839922 DOI: 10.1007/s00442-021-04911-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/29/2021] [Indexed: 11/26/2022]
Abstract
Flowering plants require conspecific pollen to reproduce but they often also receive heterospecific pollen, suggesting that pollinators carry mixed pollen loads. However, little is known about drivers of abundance, diversity or composition of pollen carried by pollinators. Are insect-carried pollen loads shaped by pollinator traits, or do they reflect available floral resources? We quantified pollen on 251 individual bees and 95 flies in a florally diverse community. We scored taxonomic order, sex, body size, hairiness and ecological specialization of pollinators, and recorded composition of available flowers. We used phylogenetically controlled model selection to compare relative influences of pollinator traits and floral resources on abundance, diversity and composition of insect-carried pollen. We tested congruence between composition of pollen loads and available flowers. Pollinator size, specialization and type (female bee, male bee, or fly) described pollen abundance, diversity and composition better than floral diversity. Pollen loads varied widely among insects (10-80,000,000 grains, 1-16 species). Pollen loads of male bees were smaller, but vastly more diverse than those of female bees, and equivalent in size but modestly more diverse than those of flies. Pollen load size and diversity were positively correlated with body size but negatively correlated with insect ecological specialization. These traits also drove variation in taxonomic and phylogenetic composition of insect-carried pollen loads, but composition was only weakly congruent with available floral resources. Qualities of pollinators best predict abundance and diversity of carried pollen indicating that functional composition of pollinator communities may be important to structuring heterospecific pollen transfer among plants.
Collapse
Affiliation(s)
- Nevin Cullen
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Jing Xia
- College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Na Wei
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- The Holden Arboretum, Kirtland, OH, 44094, USA
| | - Rainee Kaczorowski
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Gerardo Arceo-Gómez
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- Department of Biological Sciences, East Tennessee State University, Johnson, TN, 37614, USA
| | - Elizabeth O'Neill
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Rebecca Hayes
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
8
|
Yang CQ, Lv Q, Zhang AB. Sixteen Years of DNA Barcoding in China: What Has Been Done? What Can Be Done? Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|