1
|
Hsu CY, Altalbawy FMA, Oghenemaro EF, Uthirapathy S, Chandra M, Nathiya D, Kaur P, Ravi Kumar M, Kadhim AJ, Kariem M. Exosomal lncRNAs in the Tumor Angiogenesis: As Therapeutic Targets in Cancer Treatment. Arch Pharm (Weinheim) 2025; 358:e202400940. [PMID: 40165644 DOI: 10.1002/ardp.202400940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/12/2025] [Accepted: 03/05/2025] [Indexed: 04/02/2025]
Abstract
Exosomes, as mediators of intercellular communication, can be released from different types of cells and regulate the function of the target cell by transferring cargo, such as proteins, DNA, and RNA. Recent investigations have revealed a preponderance of long noncoding RNAs (lncRNAs), a subclass of noncoding RNAs, within exosomes, where they exhibit notable stability and are implicated in the development and progression of neoplastic processes, such as tumor angiogenesis. Angiogenesis, as a hallmark of cancer, provides diffusible nutrients and oxygen to the distant cells and guarantees tumorigenesis and metastasis. Exosomal lncRNAs, including MALAT1, OIP5-AS1, PART1, SNHG family, FAM225A, ATB, RAMP2-AS1, UCA1, TRPM2-AS, FGD5-AS1, and LINC0016, could modulate tumor angiogenesis by activating signaling cascades and mediators within the target cells, such as microRNAs (miRNAs). Regulation of tumor angiogenesis through modulation of exosomal lncRNAs could be a reliable strategy for cancer therapy. In this review, we discuss the characteristics and biogenesis of exosomes and lncRNAs and how exosomal lncRNAs are involved in various processes of tumorigenesis. Our primary focus is on exosomal lncRNAs, their impact on tumor angiogenesis, and their potential as novel diagnostic markers and therapeutic targets for various cancers.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona, USA
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
- National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza, Egypt
| | - Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Delta State University, Abraka, Delta State, Nigeria
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Muktesh Chandra
- Marwadi University Research Center, Department of Bioinformatics, Faculty of Engineering and Technology, Marwadi University, Rajkot, Gujarat, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, Institute of Pharmacy, NIMS University, Jaipur, India
| | - Parjinder Kaur
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, India
| | - M Ravi Kumar
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Abed J Kadhim
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq
| | - Muthena Kariem
- Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University, Najaf, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
2
|
Pérez-Navarro Y, Salinas-Vera YM, López-Camarillo C, Figueroa-Angulo EE, Alvarez-Sánchez ME. The role of long non-coding RNA NORAD in digestive system tumors. Noncoding RNA Res 2025; 10:55-62. [PMID: 39296642 PMCID: PMC11406672 DOI: 10.1016/j.ncrna.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
In recent years, it has been discovered that the expression of long non-coding RNAs is highly deregulated in several types of cancer and contributes to its progression and development. Recently, it has been described that in tumors of the digestive system, such as colorectal cancer, pancreatic cancer, and gastric cancer, DNA damage-activated lncRNA (NORAD) was frequently up-regulated. The purpose of this review is to elucidate the functions of NORAD in tumors of the digestive system, emphasizing its involvement in important cellular processes such as invasion, metastasis, proliferation, and apoptosis. NORAD acts as a ceRNA (competitive endogenous RNA) that sponges microRNAs and regulates the expression of target genes involved in tumorigenesis. Thus, the mechanisms underlying the effects of NORAD are complex and involve multiple signaling pathways. This review consolidates current knowledge on the role of NORAD in digestive cancers and highlights the need for further research to explore its potential as a therapeutic target. Understanding the intricate functions of NORAD could elucidate the way for innovative approaches to cancer treatment.
Collapse
Affiliation(s)
- Yussel Pérez-Navarro
- Posgrado en Ciencias Genómicas, Laboratorio de Patogénesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de México, Ciudad de México, CDMX, Mexico
| | - Yarely M Salinas-Vera
- Centro Nacional de Identificación Humana, Comisión Nacional de Búsqueda, Secretaría de Gobernación, Camino a Santa Teresa No 1679, Jardines del Pedregal, Ciudad de México, Mexico
| | - Cesar López-Camarillo
- Posgrado en Ciencias Genómicas, Laboratorio de Oncogenómica y Proteómica del cáncer, Universidad Autónoma de la Ciudad de México, Ciudad de México, Mexico
| | - Elisa Elvira Figueroa-Angulo
- Licenciatura en Ciencias Genómicas, Laboratorio de Patogénesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de México, Mexico
| | - María Elizbeth Alvarez-Sánchez
- Posgrado en Ciencias Genómicas, Laboratorio de Patogénesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de México, Ciudad de México, CDMX, Mexico
| |
Collapse
|
3
|
Kiełbowski K, Jędrasiak A, Bakinowska E, Pawlik A. The Role of Long Non-Coding RNA in the Pathogenesis of Psoriasis. Noncoding RNA 2025; 11:7. [PMID: 39846685 PMCID: PMC11755624 DOI: 10.3390/ncrna11010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/04/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025] Open
Abstract
Psoriasis is a chronic immune-mediated disease with complex pathogenesis. The altered proliferation and differentiation of keratinocytes, together with the activity of dendritic cells and T cells, are crucial drivers of psoriasis progression. Long non-coding RNAs (lncRNAs) are composed of over 200 nucleotides and exert a large variety of functions, including the regulation of gene expression. Under pathological conditions, the expression of lncRNAs is frequently dysregulated. Recent studies demonstrated that lncRNAs significantly affect major cellular processes, and their aberrant expression is likely involved in the pathogenesis of various disorders. In this review, we will discuss the role of lncRNAs in the pathophysiology of psoriasis. We will summarize recent studies that investigated the relationships between lncRNAs and keratinocyte proliferation and pro-inflammatory responses.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (A.J.); (E.B.)
| | | | | | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (A.J.); (E.B.)
| |
Collapse
|
4
|
Wang C, Yao S, Zhang T, Sun X, Bai C, Zhou P. RNA N6-Methyladenosine Modification in DNA Damage Response and Cancer Radiotherapy. Int J Mol Sci 2024; 25:2597. [PMID: 38473842 DOI: 10.3390/ijms25052597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The N6-methyladenosine (M6A) modification is the most common internal chemical modification of RNA molecules in eukaryotes. This modification can affect mRNA metabolism, regulate RNA transcription, nuclear export, splicing, degradation, and translation, and significantly impact various aspects of physiology and pathobiology. Radiotherapy is the most common method of tumor treatment. Different intrinsic cellular mechanisms affect the response of cells to ionizing radiation (IR) and the effectiveness of cancer radiotherapy. In this review, we summarize and discuss recent advances in understanding the roles and mechanisms of RNA M6A methylation in cellular responses to radiation-induced DNA damage and in determining the outcomes of cancer radiotherapy. Insights into RNA M6A methylation in radiation biology may facilitate the improvement of therapeutic strategies for cancer radiotherapy and radioprotection of normal tissues.
Collapse
Affiliation(s)
- Cui Wang
- College of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Shibo Yao
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Tinghui Zhang
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiaoya Sun
- College of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Chenjun Bai
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Pingkun Zhou
- College of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|