1
|
Oliveira ICCS, Marinsek GP, Gonçalves ARN, Lopes BS, Correia LVB, Da Silva RCB, Castro IB, Mari RB. Investigating tributyltin's toxic effects: Intestinal barrier and neuroenteric disruption in rat's jejunum. Neurotoxicology 2024; 105:208-215. [PMID: 39396746 DOI: 10.1016/j.neuro.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
The expansion of economic activities in coastal areas has significantly increased chemical contamination, leading to major environmental challenges. Contaminants enter the human body through the food chain, particularly via seafood and water consumption, triggering biomagnification and bioaccumulation processes. The gastrointestinal tract (GIT) acts as a selective barrier, protecting against chemical pollutants and maintaining homeostasis through a complex network of cells and immune responses. This study assessed impact of tributyltin (TBT), a highly toxic organometallic compound used in antifouling coatings for ships, on the GIT and myenteric neural plasticity in young rats. TBT exposure leads to histopathological changes, including epithelial detachment and inflammatory foci, especially at lower environmental doses. The study found that TBT causes significant reductions in villi height, increases in goblet cells and intraepithelial lymphocytes, and disrupts the myenteric plexus, with higher densities of extraganglionic neurons in exposed animals.
Collapse
Affiliation(s)
- I C C S Oliveira
- UNESP, São Paulo State University, Institute of Biosciences, Paulista Coast Campus (CLP), São Vicente, SP, Brazil.
| | - G P Marinsek
- UNESP, São Paulo State University, Institute of Biosciences, Paulista Coast Campus (CLP), São Vicente, SP, Brazil
| | - A R N Gonçalves
- UNESP, São Paulo State University, Institute of Biosciences, Paulista Coast Campus (CLP), São Vicente, SP, Brazil
| | - B S Lopes
- UNESP, São Paulo State University, Institute of Biosciences, Paulista Coast Campus (CLP), São Vicente, SP, Brazil
| | - L V B Correia
- UNIFESP, Federal University of São Paulo, Institute of Health and Society, Baixada Santista Campus, Santos, SP, Brazil
| | - R C B Da Silva
- UNIFESP, Federal University of São Paulo, Institute of Health and Society, Baixada Santista Campus, Santos, SP, Brazil
| | - I B Castro
- UNIFESP, Federal University of São Paulo, Institute of Marine Science, Baixada Santista Campus, Santos, SP, Brazil
| | - R B Mari
- UNESP, São Paulo State University, Institute of Biosciences, Paulista Coast Campus (CLP), São Vicente, SP, Brazil
| |
Collapse
|
2
|
Januario CDF, Da Costa CS, Dos Santos FCF, Miranda-Alves L, Correa BS, Carneiro MTWD, Graceli JB. Subacute exposure to a mixture of tributyltin plus mercury impairs reproductive axis function, exacerbating premature ovarian insufficiency features and reducing fertility in female rats. Reprod Toxicol 2024; 129:108670. [PMID: 39032759 DOI: 10.1016/j.reprotox.2024.108670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Tributyltin (TBT) and mercury (Hg) are endocrine-disrupting chemicals that individually cause reproductive complications. However, the reproductive consequences of exposure to a mixture of TBT plus Hg are not well known. We hypothesized that exposure to a mixture of TBT plus Hg would alter hypothalamic-pituitary-gonadal (HPG) axis function. Female rats were exposed to this mixture daily for 15 days, after which chemical accumulation in the tissues, morphology, hormone levels, inflammation, fibrosis, and protein expression in the reproductive organs were assessed. Increases in tin (Sn) and Hg levels were detected in the serum, HPG axis, and uterus of TBT-Hg rats. TBT-Hg rats exhibited irregular estrous cycles. TBT-Hg rats showed an increase in gonadotropin-releasing hormone (GnRH) protein expression and follicle-stimulating hormone (FSH) levels and a reduction in luteinizing hormone (LH) levels. Reduced ovarian reserve, antral follicles, corpora lutea (CL) number, and estrogen levels and increased atretic and cystic follicles were found, suggesting that TBT-Hg exposure exacerbated premature ovarian insufficiency (POI) features. Furthermore, TBT-Hg rats exhibited increased ovarian mast cell numbers, expression of the inflammatory markers IL-6 and collagen deposition. Apoptosis and reduced gland number were observed in the uteri of TBT-Hg rats. A reduction in the number of pups/litter for 90 days was found in TBT-Hg rats, suggesting impaired fertility. Strong negative correlations were found between serum and ovarian Sn levels and ovarian Hg levels and ovarian reserve and CL number. Collectively, these data suggest that TBT plus Hg exposure leads to abnormalities in the HPG axis, exacerbating POI features and reducing fertility in female rats.
Collapse
Affiliation(s)
- Cidalia de F Januario
- Department of Morphology, Federal University of Espírito Santo, Vitória 290440-090, Brazil; Faculty of Health Sciences, Zambeze University, Tete RHXG+J2G, Mozambique
| | - Charles S Da Costa
- Department of Morphology, Federal University of Espírito Santo, Vitória 290440-090, Brazil
| | - Flavia C F Dos Santos
- Department of Morphology, Federal University of Espírito Santo, Vitória 290440-090, Brazil
| | - Leandro Miranda-Alves
- Experimental Endocrinology Research, Development and Innovation Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Ilha do Governador 21941-904, Brazil
| | - Bruna S Correa
- Dept of Chemistry, Federal University of Espirito Santo, Vitória 29075-910, Brazil
| | - Maria T W D Carneiro
- Dept of Chemistry, Federal University of Espirito Santo, Vitória 29075-910, Brazil
| | - Jones B Graceli
- Department of Morphology, Federal University of Espírito Santo, Vitória 290440-090, Brazil.
| |
Collapse
|
3
|
Zeng B, Wu Y, Huang Y, Colucci M, Bancaro N, Maddalena M, Valdata A, Xiong X, Su X, Zhou X, Zhang Z, Jin Y, Huang W, Bai J, Zeng Y, Zou X, Zhan Y, Deng L, Wei Q, Yang L, Alimonti A, Qi F, Qiu S. Carcinogenic health outcomes associated with endocrine disrupting chemicals exposure in humans: A wide-scope analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135067. [PMID: 38964039 DOI: 10.1016/j.jhazmat.2024.135067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
Endocrine-disrupting chemicals (EDCs) are persistent and pervasive compounds that pose serious risks. Numerous studies have explored the effects of EDCs on human health, among which tumors have been the primary focus. However, because of study design flaws, lack of effective exposure levels of EDCs, and inconsistent population data and findings, it is challenging to draw clear conclusions on the effect of these compounds on tumor-related outcomes. Our study is the first to systematically integrate observational studies and randomized controlled trials from over 20 years and summarize over 300 subgroup associations. We found that most EDCs promote tumor development, and that exposure to residential environmental pollutants may be a major source of pesticide exposure. Furthermore, we found that phytoestrogens exhibit antitumor effects. The findings of this study can aid in the development of global EDCs regulatory health policies and alleviate the severe risks associated with EDCs exposure.
Collapse
Affiliation(s)
- Bin Zeng
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Yuwei Wu
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Yin Huang
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Manuel Colucci
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), CH6500 Bellinzona, Switzerland; Università della Svizzera Italiana, CH6900 Lugano, Switzerland
| | - Nicolò Bancaro
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), CH6500 Bellinzona, Switzerland; Università della Svizzera Italiana, CH6900 Lugano, Switzerland
| | - Martino Maddalena
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), CH6500 Bellinzona, Switzerland; Università della Svizzera Italiana, CH6900 Lugano, Switzerland
| | - Aurora Valdata
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), CH6500 Bellinzona, Switzerland; Università della Svizzera Italiana, CH6900 Lugano, Switzerland
| | - Xingyu Xiong
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Xingyang Su
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Xianghong Zhou
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Zilong Zhang
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Yuming Jin
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Weichao Huang
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Jincheng Bai
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Yuxiao Zeng
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Xiaoli Zou
- Department of Sanitary Technology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yu Zhan
- Department of Environmental Science and Engineering, Sichuan University, Chengdu, China
| | - Linghui Deng
- National Clinical Research Center of Geriatrics, The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China; Neurodegenerative Disorders Lab, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Qiang Wei
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Lu Yang
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Andrea Alimonti
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), CH6500 Bellinzona, Switzerland; Università della Svizzera Italiana, CH6900 Lugano, Switzerland; Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Fang Qi
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Shi Qiu
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China; West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China; Università della Svizzera Italiana, CH6900 Lugano, Switzerland; Department of Sanitary Technology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Silva NP, da Costa CS, Barbosa KL, Januario CDF, Gama-de-Souza LN, Breves C, Fortunato RS, Miranda-Alves L, de Oliveira M, Nogueira CR, Graceli JB. Subacute tributyltin exposure alters the development and morphology of mammary glands in association with CYP19A1 expression in female rats. Reprod Toxicol 2024; 128:108635. [PMID: 38936095 DOI: 10.1016/j.reprotox.2024.108635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024]
Abstract
Tributyltin (TBT) is an endocrine-disrupting chemical (EDC) related to reproductive dysfunctions. However, few studies have investigated the effects of TBT exposure on mammary gland development. Thus, we assessed whether subacute TBT exposure causes irregularities in mammary gland development. We administered TBT (100 and 1,000 ng/kg/day for 30 days) to female rats from postnatal day (PND) 25 to PND 55, and mammary gland development, morphology, inflammation, collagen deposition, and protein expression were evaluated. Abnormal mammary gland development was observed in both TBT groups. Specifically, TBT exposure reduced the number of terminal end buds (TEBs), type 1 (AB1) alveolar buds, and type 2 (AB2) alveolar buds. An increase in the lobule and differentiation (DF) 2 score was found in the mammary glands of TBT rats. TBT exposure increased mammary gland blood vessels, mast cell numbers, and collagen deposition. Additionally, both TBT rats exhibited intraductal hyperplasia and TEB-like structures. An increase in estrogen receptor alpha (ERα), progesterone receptor (PR), and cytochrome P450 family 19 subfamily A member 1 (CYP19A1) - positive cells was observed in the mammary glands of TBT rats. A strong negative correlation was observed between CYP19A1- positive cells and TEB number. In addition, CYP19A1 - positive cells were positively correlated with mammary gland TEB-like structure, ductal hyperplasia, inflammation, and collagen deposition. Thus, these data suggest that TBT exposure impairs mammary gland development through the modulation of CYP19A1 signaling pathways in female rats.
Collapse
Affiliation(s)
- Natalia P Silva
- Department of Morphology, Federal University of Espírito Santo, Vitória 290440-090, Brazil
| | - Charles S da Costa
- Department of Morphology, Federal University of Espírito Santo, Vitória 290440-090, Brazil
| | - Kayke L Barbosa
- Department of Morphology, Federal University of Espírito Santo, Vitória 290440-090, Brazil
| | - Cidália de F Januario
- Department of Morphology, Federal University of Espírito Santo, Vitória 290440-090, Brazil
| | | | - Cinthia Breves
- Health Science Center, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941590, Brazil
| | - Rodrigo S Fortunato
- Health Science Center, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941590, Brazil
| | - Leandro Miranda-Alves
- Experimental Endocrinology Research, Development and Innovation Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, 21941902, Brazil
| | - Miriane de Oliveira
- Department of Internal Clinic, Botucatu Medicine School, São Paulo State University (UNESP), Botucatu, São Paulo 18618687, Brazil
| | - Celia R Nogueira
- Department of Internal Clinic, Botucatu Medicine School, São Paulo State University (UNESP), Botucatu, São Paulo 18618687, Brazil
| | - Jones B Graceli
- Department of Morphology, Federal University of Espírito Santo, Vitória 290440-090, Brazil.
| |
Collapse
|
5
|
Neff AM, Inman Z, Mourikes VE, Santacruz-Márquez R, Gonsioroski A, Laws MJ, Flaws JA. The role of the aryl hydrocarbon receptor in mediating the effects of mono(2-ethylhexyl) phthalate in mouse ovarian antral follicles†. Biol Reprod 2024; 110:632-641. [PMID: 38134965 PMCID: PMC10993471 DOI: 10.1093/biolre/ioad178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/21/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a pervasive environmental toxicant used in the manufacturing of numerous consumer products, medical supplies, and building materials. DEHP is metabolized to mono(2-ethylhexyl) phthalate (MEHP). MEHP is an endocrine disruptor that adversely affects folliculogenesis and steroidogenesis in the ovary, but its mechanism of action is not fully understood. Thus, we tested the hypothesis that the aryl hydrocarbon receptor (AHR) plays a functional role in MEHP-mediated disruption of folliculogenesis and steroidogenesis. CD-1 mouse antral follicles were isolated and cultured with MEHP (0-400 μM) in the presence or absence of the AHR antagonist CH223191 (1 μM). MEHP treatment reduced follicle growth over a 96-h period, and this effect was partially rescued by co-culture with CH223191. MEHP exposure alone increased expression of known AHR targets, cytochrome P450 (CYP) enzymes Cyp1a1 and Cyp1b1, and this induction was blocked by CH223191. MEHP reduced media concentrations of estrone and estradiol compared to control. This effect was mitigated by co-culture with CH223191. Moreover, MEHP reduced the expression of the estrogen-sensitive genes progesterone receptor (Pgr) and luteinizing hormone/choriogonadotropin receptor (Lhcgr) and co-treatment with CH223191 blocked this effect. Collectively, these data indicate that MEHP activates the AHR to impair follicle growth and reduce estrogen production and signaling in ovarian antral follicles.
Collapse
Affiliation(s)
- Alison M Neff
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Zane Inman
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Vasiliki E Mourikes
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Ramsés Santacruz-Márquez
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Andressa Gonsioroski
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Mary J Laws
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
6
|
Pan J, Liu P, Yu X, Zhang Z, Liu J. The adverse role of endocrine disrupting chemicals in the reproductive system. Front Endocrinol (Lausanne) 2024; 14:1324993. [PMID: 38303976 PMCID: PMC10832042 DOI: 10.3389/fendo.2023.1324993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/26/2023] [Indexed: 02/03/2024] Open
Abstract
Reproductive system diseases pose prominent threats to human physical and mental well-being. Besides being influenced by genetic material regulation and changes in lifestyle, the occurrence of these diseases is closely connected to exposure to harmful substances in the environment. Endocrine disrupting chemicals (EDCs), characterized by hormone-like effects, have a wide range of influences on the reproductive system. EDCs are ubiquitous in the natural environment and are present in a wide range of industrial and everyday products. Currently, thousands of chemicals have been reported to exhibit endocrine effects, and this number is likely to increase as the testing for potential EDCs has not been consistently required, and obtaining data has been limited, partly due to the long latency of many diseases. The ability to avoid exposure to EDCs, especially those of artificially synthesized origin, is increasingly challenging. While EDCs can be divided into persistent and non-persistent depending on their degree of degradation, due to the recent uptick in research studies in this area, we have chosen to focus on the research pertaining to the detrimental effects on reproductive health of exposure to several EDCs that are widely encountered in daily life over the past six years, specifically bisphenol A (BPA), phthalates (PAEs), polychlorinated biphenyls (PCBs), parabens, pesticides, heavy metals, and so on. By focusing on the impact of EDCs on the hypothalamic-pituitary-gonadal (HPG) axis, which leads to the occurrence and development of reproductive system diseases, this review aims to provide new insights into the molecular mechanisms of EDCs' damage to human health and to encourage further in-depth research to clarify the potentially harmful effects of EDC exposure through various other mechanisms. Ultimately, it offers a scientific basis to enhance EDCs risk management, an endeavor of significant scientific and societal importance for safeguarding reproductive health.
Collapse
Affiliation(s)
- Jing Pan
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Pengfei Liu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| | - Xiao Yu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| | - Zhongming Zhang
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Jinxing Liu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| |
Collapse
|
7
|
Duh-Leong C, Maffini MV, Kassotis CD, Vandenberg LN, Trasande L. The regulation of endocrine-disrupting chemicals to minimize their impact on health. Nat Rev Endocrinol 2023; 19:600-614. [PMID: 37553404 DOI: 10.1038/s41574-023-00872-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2023] [Indexed: 08/10/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) are substances generated by human industrial activities that are detrimental to human health through their effects on the endocrine system. The global societal and economic burden posed by EDCs is substantial. Poorly defined or unenforced policies can increase human exposure to EDCs, thereby contributing to human disease, disability and economic damage. Researchers have shown that policies and interventions implemented at both individual and government levels have the potential to reduce exposure to EDCs. This Review describes a set of evidence-based policy actions to manage, minimize or even eliminate the widespread use of these chemicals and better protect human health and society. A number of specific challenges exist: defining, identifying and prioritizing EDCs; considering the non-linear or non-monotonic properties of EDCs; accounting for EDC exposure effects that are latent and do not appear until later in life; and updating testing paradigms to reflect 'real-world' mixtures of chemicals and cumulative exposure. A sound strategy also requires partnering with health-care providers to integrate strategies to prevent EDC exposure in clinical care. Critical next steps include addressing EDCs within global policy frameworks by integrating EDC exposure prevention into emerging climate policy.
Collapse
Affiliation(s)
- Carol Duh-Leong
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | | | - Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI, USA
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, University of Massachusetts - Amherst, Amherst, MA, USA
| | - Leonardo Trasande
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA.
- New York University Wagner Graduate School of Public Service, New York, NY, USA.
| |
Collapse
|
8
|
Shaban SF, Khattab MA, Abd El Hameed SH, Abdelrahman SA. Evaluating the histomorphological and biochemical changes induced by Tributyltin Chloride on pituitary-testicular axis of adult albino rats and the possible ameliorative role of hesperidin. Ultrastruct Pathol 2023; 47:304-323. [PMID: 36988127 DOI: 10.1080/01913123.2023.2195489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
This study was performed to explore in detail the toxic effects of Tributyltin Chloride (TBT) on the pituitary-testicular axis and the possible amelioration with Hesperidin. Seventy-two adult male albino rats were divided into four groups: Control group (I), TBT-treated group (II), TBT+Hesperidin group (III), and Recovery group (IV). Body and testicular weights were measured. Blood samples were taken to estimate serum levels of testosterone, FSH and LH hormones by enzyme-linked immunosorbent assay (ELISA). Malondialdehyde (MDA) level was measured in testes homogenates. Tissue samples from the pituitary glands and testes were processed for light, electron microscope examination, and immunohistochemical detection of anti-FSH, and Ki67 proteins. Results showed a statistically significant decrease in testicular weight, serum testosterone, FSH and LH levels and a significant increase in tissue MDA in the TBT group when compared to the control group. TBT treatment caused severe histopathological changes with decreased area percent of PAS-stained basophils, and anti FSH immuno-stained gonadotrophs in the pituitary gland. The testes of group II also showed marked tissue damage, cell loss with decreased epithelial height and decreased number of proliferating spermatogenic cells. Hesperidin supplementation with TBT proved significant amelioration of the previously mentioned parameters in both glands which could improve male fertility. In conclusion: The flavonoid Hesperidin has the potential to protect against the reproductive damage induced by TBT in susceptible individuals.
Collapse
Affiliation(s)
- Sahar F Shaban
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Maha A Khattab
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samar H Abd El Hameed
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Shaimaa A Abdelrahman
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
9
|
Merlo E, Zimerman J, Dos Santos FCF, Zanol JF, da Costa CS, Carneiro PH, Miranda-Alves L, Warner GR, Graceli JB. Subacute and low dose of tributyltin exposure leads to brown adipose abnormalities in male rats. Toxicol Lett 2023; 376:26-38. [PMID: 36638932 PMCID: PMC9928871 DOI: 10.1016/j.toxlet.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Tributyltin (TBT) is an obesogenic endocrine disrupting chemical (EDC) linked with several metabolic complications. Brown adipose tissue (BAT) is the principal site for thermogenesis, making it a potential target for obesity management and metabolic disease. However, few studies have evaluated TBT effect on BAT function. In this investigation, we assessed whether subacute (15 days) and low dose of TBT exposure (100 ng/kg/day) results in abnormal BAT morphophysiology in adult male rats. Body temperature, BAT morphology, inflammation, oxidative stress, collagen deposition and BAT metabolic gene expression markers were assessed in room temperature (Room, ∼24 ºC) and after cold tolerance test (Cold, ∼4 ºC) conditions. A reduction in body temperature was observed in both Room and Cold conditions in TBT rats, suggesting abnormal BAT thermogenic function. Changes in BAT morphology were observed in TBT rats, with an increase in BAT lipid accumulation, an increase in BAT unilocular adipocyte number and a decrease in BAT multilocular adipocyte number in Room condition. All these parameters were opposite in Cold condition TBT rats, leading to a borderline increase in BAT UCP1 protein expression. An increase in BAT mast cell number was observed in TBT rats in Room condition. An increase in ED1 protein expression (macrophage marker) was observed in TBT rats in Cold condition. Oxidative stress and collagen deposition increased in both Room and Cold conditions in TBT rats. TBT exposure caused a borderline increase in BAT COL1A1 protein expression in Cold condition. Further, strong negative correlations were observed between body temperature and BAT lipid accumulation, and BAT lipid accumulation and multilocular adipocyte number. Thus, these data suggest that TBT exposure impaired BAT morphophysiology through impacts on lipid accumulation, inflammation, fibrosis and oxidative stress in male rats.
Collapse
Affiliation(s)
- Eduardo Merlo
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Jeanini Zimerman
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | | | - Jordana F Zanol
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Charles S da Costa
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Pedro H Carneiro
- Experimental Endocrinology Research, Development and Innovation Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Postgraduate Program in Endocrinology, School of Medicine, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, Ilha do Governador, Cidade Universitária, UFRJ, RJ, Brazil
| | - Leandro Miranda-Alves
- Experimental Endocrinology Research, Development and Innovation Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Postgraduate Program in Endocrinology, School of Medicine, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, Ilha do Governador, Cidade Universitária, UFRJ, RJ, Brazil
| | - Genoa R Warner
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, USA
| | - Jones B Graceli
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil.
| |
Collapse
|
10
|
Beg MA, Beg MA, Zargar UR, Sheikh IA, Bajouh OS, Abuzenadah AM, Rehan M. Organotin Antifouling Compounds and Sex-Steroid Nuclear Receptor Perturbation: Some Structural Insights. TOXICS 2022; 11:toxics11010025. [PMID: 36668751 PMCID: PMC9864748 DOI: 10.3390/toxics11010025] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/21/2022] [Indexed: 06/12/2023]
Abstract
Organotin compounds (OTCs) are a commercially important group of organometallic compounds of tin used globally as polyvinyl chloride stabilizers and marine antifouling biocides. Worldwide use of OTCs has resulted in their ubiquitous presence in ecosystems across all the continents. OTCs have metabolic and endocrine disrupting effects in marine and terrestrial organisms. Thus, harmful OTCs (tributyltin) have been banned by the International Convention on the Control of Harmful Antifouling Systems since 2008. However, continued manufacturing by non-member countries poses a substantial risk for animal and human health. In this study, structural binding of common commercial OTCs, tributyltin (TBT), dibutyltin (DBT), monobutyltin (MBT), triphenyltin (TPT), diphenyltin (DPT), monophenyltin (MPT), and azocyclotin (ACT) against sex-steroid nuclear receptors, androgen receptor (AR), and estrogen receptors (ERα, ERβ) was performed using molecular docking and MD simulation. TBT, DBT, DPT, and MPT bound deep within the binding sites of AR, ERα, and Erβ, showing good dock score, binding energy and dissociation constants that were comparable to bound native ligands, testosterone and estradiol. The stability of docking complex was shown by MD simulation of organotin/receptor complex with RMSD, RMSF, Rg, and SASA plots showing stable interaction, low deviation, and compactness of the complex. A high commonality (50-100%) of interacting residues of ERα and ERβ for the docked ligands and bound native ligand (estradiol) indicated that the organotin compounds bound in the same binding site of the receptor as the native ligand. The results suggested that organotins may interfere with the natural steroid/receptor binding and perturb steroid signaling.
Collapse
Affiliation(s)
- Mohd A. Beg
- Reproductive Biology Laboratory, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Md A. Beg
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia University, New Delhi 110025, India
| | - Ummer R. Zargar
- Department of Zoology, Government Degree College, Anantnag 192101, India
| | - Ishfaq A. Sheikh
- Reproductive Biology Laboratory, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Osama S. Bajouh
- Department of Obstetrics and Gynecology, Faculty of Medicine, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Adel M. Abuzenadah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohd Rehan
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
11
|
Ullah S, Ahmad S, Guo X, Ullah S, Ullah S, Nabi G, Wanghe K. A review of the endocrine disrupting effects of micro and nano plastic and their associated chemicals in mammals. Front Endocrinol (Lausanne) 2022; 13:1084236. [PMID: 36726457 PMCID: PMC9885170 DOI: 10.3389/fendo.2022.1084236] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/05/2022] [Indexed: 01/18/2023] Open
Abstract
Over the years, the vaste expansion of plastic manufacturing has dramatically increased the environmental impact of microplastics [MPs] and nanoplastics [NPs], making them a threat to marine and terrestrial biota because they contain endocrine disrupting chemicals [EDCs] and other harmful compounds. MPs and NPs have deleteriouse impacts on mammalian endocrine components such as hypothalamus, pituitary, thyroid, adrenal, testes, and ovaries. MPs and NPs absorb and act as a transport medium for harmful chemicals such as bisphenols, phthalates, polybrominated diphenyl ether, polychlorinated biphenyl ether, organotin, perfluorinated compounds, dioxins, polycyclic aromatic hydrocarbons, organic contaminants, and heavy metals, which are commonly used as additives in plastic production. As the EDCs are not covalently bonded to plastics, they can easily leach into milk, water, and other liquids affecting the endocrine system of mammals upon exposure. The toxicity induced by MPs and NPs is size-dependent, as smaller particles have better absorption capacity and larger surface area, releasing more EDC and toxic chemicals. Various EDCs contained or carried by MPs and NPs share structural similarities with specific hormone receptors; hence they interfere with normal hormone receptors, altering the hormonal action of the endocrine glands. This review demonstrates size-dependent MPs' bioaccumulation, distribution, and translocation with potential hazards to the endocrine gland. We reviewed that MPs and NPs disrupt hypothalamic-pituitary axes, including the hypothalamic-pituitary-thyroid/adrenal/testicular/ovarian axis leading to oxidative stress, reproductive toxicity, neurotoxicity, cytotoxicity, developmental abnormalities, decreased sperm quality, and immunotoxicity. The direct consequences of MPs and NPs on the thyroid, testis, and ovaries are documented. Still, studies need to be carried out to identify the direct effects of MPs and NPs on the hypothalamus, pituitary, and adrenal glands.
Collapse
Affiliation(s)
- Sana Ullah
- Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Shahid Ahmad
- School of Ecology and Environment, Hainan University, Haikou, Hainan, China
| | - Xinle Guo
- Academy of Plateau Science and Sustainability, College of Life Sciences, Qinghai Normal University, Xining, China
| | - Saleem Ullah
- Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Sana Ullah
- Department of Zoology, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Ghulam Nabi
- Institute of Nature Conservation, Polish Academy of Sciences, Krakow, Poland
- *Correspondence: Ghulam Nabi, ; Kunyuan Wanghe,
| | - Kunyuan Wanghe
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Laboratory of Plateau Fish Evolutionary and Functional Genomics, Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, China
- *Correspondence: Ghulam Nabi, ; Kunyuan Wanghe,
| |
Collapse
|