1
|
Wang S, Zheng N, An Q, Li X, Ji Y, Li Y, Chen C, Xiu Z. The effect of tris (1,3-dichloro-2-propyl) phosphate on the early embryonic heart development of Oryzias melastigma. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177313. [PMID: 39486542 DOI: 10.1016/j.scitotenv.2024.177313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
The flame retardant tri (1, 3-dichloro-2-propyl) phosphate (TDCIPP) is widely present in environmental media and organisms. People have paid much attention to the growth and developmental toxicity of TDCIPP, but there is little information about its cardiotoxicity and potential mechanisms. In this study, marine medaka (Oryzias melastigma) embryos were exposed to TDCIPP solutions (0, 0.05, 0.5, 5, and 50 μg/L) for 21 days to investigate the adverse effects of TDCIPP on cardiac development. The results showed that TDCIPP exposure altered the heart rate at different stages of embryonic development. In addition, 50 μg/L TDCIPP resulted in increased sinus venosus (SV)-bulbus arteriosus (BA) distance, pericardial cysts, and cardiac linearization in newly hatched fish. During embryonic development, the expression level of key genes regulating cardiac development is disturbed. The early stage of cardiac development is the sensitive window period for the toxic effects of TDCIPP. Oxidative stress was observed in newly hatched juveniles, but no significant lipid peroxidation damage was observed. In addition, vitellogenin (VTG) levels in juvenile fish were significantly reduced. Our results show that TDCIPP exposure induces cardiotoxicity in marine medaka embryos, which is induced in the early stages and promotes heart defects by amplifying inflammatory responses at a later stage.
Collapse
Affiliation(s)
- Sujing Wang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China.
| | - Qirui An
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Xiaoqian Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Yining Ji
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Yunyang Li
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Changcheng Chen
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Zhifei Xiu
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| |
Collapse
|
2
|
Mariz CF, Nascimento JVG, Morais BS, Alves MKM, Rojas LAV, Zanardi-Lamardo E, Carvalho PSM. Toxicity of the oil spilled on the Brazilian coast at different degrees of natural weathering to early life stages of the zebrafish Danio rerio. MARINE POLLUTION BULLETIN 2024; 207:116819. [PMID: 39182410 DOI: 10.1016/j.marpolbul.2024.116819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/07/2024] [Accepted: 08/03/2024] [Indexed: 08/27/2024]
Abstract
Toxicity of water accommodated fractions (WAF) from the oil spilled on the Brazilian coast at different stages of weathering were investigated using Danio rerio. Weathering stages included emulsified oil that reached the coast (OM) and oil collected 50 days later deposited on beach sand (OS) or adhered to shore rocks (OR). Parent and alkylated naphthalenes decreased whereas phenanthrenes increased from less weathered WAF-OM to more weathered WAF-OS and WAF-OR. More weathered WAF-OS and WAF-OR were more potent inducers of zebrafish developmental delay, suggesting that parent and alkylated phenanthrenes are involved. However, less weathered WAF-OM was a more potent inducer of failure in swim-bladder inflation than more weathered WAF-OS and WAF-OR, suggesting that parent and alkylated naphthalenes are involved. Decreases in heart rates and increased heart and skeletal deformities were observed in exposed larvae. Lowest observed effect concentrations for different developmental toxicity endpoints are within environmentally relevant polycyclic aromatic hydrocarbon concentrations.
Collapse
Affiliation(s)
- Célio Freire Mariz
- Departamento de Zoologia, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Brazil.
| | - João V Gomes Nascimento
- Departamento de Zoologia, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Brazil
| | - Bruna Santana Morais
- Departamento de Zoologia, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Brazil
| | - Maria K Melo Alves
- Departamento de Zoologia, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Brazil
| | - Lino Angel Valcarcel Rojas
- Departamento de Oceanografia, Universidade Federal de Pernambuco, Av. Arquitetura s/n, Cidade Universitária, Recife 50740-550, Brazil
| | - Eliete Zanardi-Lamardo
- Departamento de Oceanografia, Universidade Federal de Pernambuco, Av. Arquitetura s/n, Cidade Universitária, Recife 50740-550, Brazil
| | - Paulo S M Carvalho
- Departamento de Zoologia, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Brazil
| |
Collapse
|
3
|
Lee H, An G, Lim W, Song G. Flusilazole induced developmental toxicity, neurotoxicity, and cardiovascular toxicity via apoptosis and oxidative stress in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2024; 284:109993. [PMID: 39106914 DOI: 10.1016/j.cbpc.2024.109993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/14/2024] [Accepted: 08/01/2024] [Indexed: 08/09/2024]
Abstract
Flusilazole is a well-known triazole fungicide applied to various crops and fruits worldwide. Flusilazole residues are frequently detected in the environment, and many researchers have reported the hazardous effects of flusilazole on non-target organisms; however, the developmental toxicity of flusilazole has not been fully elucidated. In this study, we investigated flusilazole-induced developmental defects in zebrafish, which are used in toxicology studies to assess the toxic effects of chemicals on aquatic species or vertebrates. We confirmed that flusilazole exposure affected the viability and hatching rate of zebrafish larvae, and resulted in morphological defects, reduced body length, diminished eye and head sizes, and inflated pericardial edema. Apoptosis, oxidative stress, and inflammation were also observed. These factors interrupted the normal organ formation during early developmental stages, and transgenic models were used to identify organ defects. We confirmed the effects of flusilazole on the nervous system using olig2:dsRed transgenic zebrafish, and on the cardiovascular system using cmlc2:dsRed and fli1:eGFP transgenic zebrafish. Our results demonstrate the developmental toxicity of flusilazole and its mechanisms in zebrafish as well as the detrimental effects of flusilazole.
Collapse
Affiliation(s)
- Hojun Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, USA
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
4
|
Wang F, Chen F, Song W, Li Y, Wu H, Tian T, Tian M, Tang D, Liu Y. Sodium Fluoride Exposure Induces Developmental Toxicity and Cardiotoxicity in Zebrafish Embryos. Biol Trace Elem Res 2024:10.1007/s12011-024-04381-4. [PMID: 39287768 DOI: 10.1007/s12011-024-04381-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/14/2024] [Indexed: 09/19/2024]
Abstract
Fluorosis is a worldwide public health problem, in which the heart is an important target organ. However, studies on its toxicological mechanism in embryonic development are limited. This study assessed the toxicity of sodium fluoride (NaF) toward zebrafish embryos. We determined the mortality, hatching rate, phenotypic malformation, heart function, and morphology of zebrafish embryos after exposure to NaF. Subsequently, the molecular mechanism was revealed using high-throughput RNA sequencing analysis. The expression levels of key genes for heart development were detected using quantitative real-time reverse transcription PCR. The 50% lethal concentration (LC50) value of NaF toward zebrafish embryos at 96 h post-fertilization was 335.75 mg/L. When the concentration of NaF was higher than 200 mg/L, severe deformities, such as pericardial edema, yolk sac edema, spine curvature, shortened body length, reduced head area, and eye area, were observed. The heart rate of the embryos exposed to NaF decreased in a dose-dependent fashion. The distance between the sinus venosus and bulbus arteriosus was significantly increased in the NaF-exposed group compared with that in the control group. The stroke volume and cardiac output decreased significantly in the NaF groups. Compared with the control group, the expression levels of Gata4, Tbx5a, Hand2, Tnnt2c, Nppa, and Myh6 were significantly increased in the NaF-treated group. Through transcriptome sequencing, 1354 differentially expressed genes (DEGs) were detected in the NaF (200 mg/L) treated groups, including 1253 upregulated genes and 101 downregulated genes. Gene ontology functional analysis and Kyoto Encyclopedia of Genes and Genomes pathway analyses of the DEGs showed that cardiac-related pathways, such as actin cytoskeleton regulation, Jak-Stat, PI3k-Akt, and Ras, were activated in the NaF-exposed group. This study revealed the underlying mechanism of fluoride-induced cardiac morphological and functional abnormalities and provides clues for the clinical prevention and treatment of fluorosis.
Collapse
Affiliation(s)
- Feiqing Wang
- Clinical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou Province, China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin City, 300072, China
| | - Fa Chen
- Clinical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou Province, China
| | - Wen Song
- Clinical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou Province, China
| | - Yanju Li
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, China
| | - Haiyan Wu
- Clinical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou Province, China
| | - Tingting Tian
- Clinical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou Province, China
| | - Mengxian Tian
- Clinical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou Province, China
| | - Dongxin Tang
- Clinical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou Province, China.
| | - Yang Liu
- Clinical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou Province, China.
| |
Collapse
|
5
|
Yi X, Qin H, Li G, Kong R, Liu C. Isomer-specific cardiotoxicity induced by tricresyl phosphate in zebrafish embryos/larvae. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134753. [PMID: 38823104 DOI: 10.1016/j.jhazmat.2024.134753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Tricresyl phosphate (TCP) has received extensive attentions due to its potential adverse effects, while the toxicological information of TCP isomers is limited. In this study, 2 h post-fertilization zebrafish embryos were exposed to tri-o-cresyl phosphate (ToCP), tri-m-cresyl phosphate (TmCP) or tri-p-cresyl phosphate (TpCP) at concentrations of 0, 100, 300 and 600 μg/L until 120 hpf, and the cardiotoxicity and mechanism of TCP isomers in zebrafish embryos/larvae were evaluated. The results showed that ToCP or TmCP exposure induced cardiac morphological defects and dysfunction in zebrafish, characterized by increased distance between sinus venosus and bulbus arteriosis, increased atrium and pericardial sac area, trabecular defects, and decreased heart rate and blood flow velocity, while no adverse effects of TpCP on zebrafish heart were found. Transcriptomic results revealed that extracellular matrix (ECM) and motor proteins, as well as PPAR signaling pathways, were included in the cardiac morphological defects and dysfunction induced by ToCP and TmCP. Co-exposure test with D-mannitol indicated that the inhibition of energy metabolism by ToCP and TmCP affected cardiac morphology and function by decreasing osmoregulation. This study is the first to report the cardiotoxicity induced by TCP in zebrafish from an isomer perspective, providing a new insight into the toxicity of TCP isomers and highlighting the importance of evaluating the toxicity of different isomers.
Collapse
Affiliation(s)
- Xun'e Yi
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Haiyu Qin
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Ren Kong
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| | - Chunsheng Liu
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
6
|
Sun H, Liu Y, Wu C, Ma LQ, Guan D, Hong H, Yu H, Lin H, Huang X, Gao P. Dihalogenated nitrophenols in drinking water: Prevalence, resistance to household treatment, and cardiotoxic impact on zebrafish embryo. ECO-ENVIRONMENT & HEALTH 2024; 3:183-191. [PMID: 38646095 PMCID: PMC11031730 DOI: 10.1016/j.eehl.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/27/2024] [Accepted: 02/03/2024] [Indexed: 04/23/2024]
Abstract
Dihalogenated nitrophenols (2,6-DHNPs), an emerging group of aromatic disinfection byproducts (DBPs) detected in drinking water, have limited available information regarding their persistence and toxicological risks. The present study found that 2,6-DHNPs are resistant to major drinking water treatment processes (sedimentation and filtration) and households methods (boiling, filtration, microwave irradiation, and ultrasonic cleaning). To further assess their health risks, we conducted a series of toxicology studies using zebrafish embryos as the model organism. Our findings reveal that these emerging 2,6-DHNPs showed lethal toxicity 248 times greater than that of the regulated DBP, dichloroacetic acid. Specifically, at sublethal concentrations, exposure to 2,6-DHNPs generated reactive oxygen species (ROS), caused apoptosis, inhibited cardiac looping, and induced cardiac failure in zebrafish. Remarkably, the use of a ROS scavenger, N-acetyl-l-cysteine, considerably mitigated these adverse effects, emphasizing the essential role of ROS in 2,6-DHNP-induced cardiotoxicity. Our findings highlight the cardiotoxic potential of 2,6-DHNPs in drinking water even at low concentrations of 19 μg/L and the beneficial effect of N-acetyl-l-cysteine in alleviating the 2,6-DHNP-induced cardiotoxicity. This study underscores the urgent need for increased scrutiny of these emerging compounds in public health discussions.
Collapse
Affiliation(s)
- Hongjie Sun
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Yingying Liu
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Chunxiu Wu
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Lena Q. Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dongxing Guan
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huachang Hong
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Haiying Yu
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Hongjun Lin
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Xianfeng Huang
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Peng Gao
- Department of Environmental and Occupational Health, and Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, United States
| |
Collapse
|
7
|
Yang D, Jian Z, Tang C, Chen Z, Zhou Z, Zheng L, Peng X. Zebrafish Congenital Heart Disease Models: Opportunities and Challenges. Int J Mol Sci 2024; 25:5943. [PMID: 38892128 PMCID: PMC11172925 DOI: 10.3390/ijms25115943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Congenital heart defects (CHDs) are common human birth defects. Genetic mutations potentially cause the exhibition of various pathological phenotypes associated with CHDs, occurring alone or as part of certain syndromes. Zebrafish, a model organism with a strong molecular conservation similar to humans, is commonly used in studies on cardiovascular diseases owing to its advantageous features, such as a similarity to human electrophysiology, transparent embryos and larvae for observation, and suitability for forward and reverse genetics technology, to create various economical and easily controlled zebrafish CHD models. In this review, we outline the pros and cons of zebrafish CHD models created by genetic mutations associated with single defects and syndromes and the underlying pathogenic mechanism of CHDs discovered in these models. The challenges of zebrafish CHD models generated through gene editing are also discussed, since the cardiac phenotypes resulting from a single-candidate pathological gene mutation in zebrafish might not mirror the corresponding human phenotypes. The comprehensive review of these zebrafish CHD models will facilitate the understanding of the pathogenic mechanisms of CHDs and offer new opportunities for their treatments and intervention strategies.
Collapse
|
8
|
Yang Q, Tian L, Wang W, Chen X, Tao J. Post-fertilization 2-ethylhexyl-4-methoxycinnamate (EHMC) exposure affects axonal growth, muscle fiber length, and motor behavior in zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116053. [PMID: 38306815 DOI: 10.1016/j.ecoenv.2024.116053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/04/2024]
Abstract
Organic UV filters, which are often found in the environment, have been the focus of much public health concern. 2-ethylhexyl-4-methoxycinnamate (EHMC) is one of the most common organic UV filters present in the environment. However, few studies have investigated its developmental neurotoxic (DNT) effects and the underlying molecular mechanisms. In the present study, zebrafish embryos were exposed to low concentration of EHMC (0, 0.01, 0.1, 1 mg/L) in static water starting from 6 h post-fertilization (hpf). Results showed that EHMC exposure caused a reduction in somite count at 13 hpf, a diminishment in head-trunk angle at 30 hpf, a delay in hatching at 48 hpf, and a decrease in head depth and head length at both 30 and 48 hpf. Additionally, EHMC led to abnormal motor behaviors at various developmental stages including altered spontaneous movement at both 23 and 24 hpf, and decreased touch response at 30 hpf. Consistent with these morphological changes and motor behavior deficits, EHMC inhibited axonal growth of primary motor neurons at 30 and 48 hpf, and yielded subtle changes in muscle fiber length at 48 hpf, suggesting the functional relevance of structural changes. Moreover, EHMC exposure induced excessive cell apoptosis in the head and spinal cord regions, increased the production of reactive oxygen species (ROS) and malondialdehyde (MDA), and reduced the level of glutathione (GSH). Defects of lateral line system neuromasts were also observed, but no structural deformity of blood vessels was seen in developing zebrafish. Abnormal expression of axonal growth-related genes (gap43, mbp, shha, and α1-tubulin) and apoptosis-related genes (bax/bcl-2 and caspase-3) revealed potential molecular mechanisms regarding the defective motor behaviors and aberrant phenotype. In summary, our findings indicate that EHMC induced developmental neurotoxicity in zebrafish, making it essential to assess its risks and provide warnings regarding EHMC exposure.
Collapse
Affiliation(s)
- Qinyuan Yang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China
| | - Linxuan Tian
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China
| | - Weiwei Wang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China
| | - Xiong Chen
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China
| | - Junyan Tao
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China.
| |
Collapse
|
9
|
Wang C, Lei W, Jiang C, Du L, Huang X, Cui X, Gao D, Wang H. Exposure to tris (1,3-dichloro-2-propyl) phosphate affects the embryonic cardiac development of Oryzias melastigma. Heliyon 2024; 10:e25554. [PMID: 38327441 PMCID: PMC10847999 DOI: 10.1016/j.heliyon.2024.e25554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
Tris (1,3-dichloro-2-propyl) phosphate (TDCPP) is a growing concern and may be a potential risk to marine environmental health due to its widespread usage and distribution. However, the toxic effects of TDCPP on cardiac development in marine fish have not been reported. In this study, Oryzias melastigma embryos were exposed to TDCPP at doses of 0, 0.04, 0.4, 4 and 40 μg/L from early embryogenesis to 10 days postfertilization (dpf). Then, the heart rate and sinus venosus-bulbus arteriosus (SV-BA) distance of the exposed embryos were measured at 5, 6, 8 and 10 dpf. Furthermore, alterations in the mRNA levels of the genes encoding cyclooxygenase-2 (COX-2), bone morphogenetic protein 4 (BMP4), fibroblast growth factor 8 (FGF8), and GATA-binding protein 4 (GATA4) were evaluated at 5, 6, 8 and 10 dpf. We found that the heart rate significantly increased in all TDCPP exposure groups at 10 dpf. The SV-BA distance significantly decreased in all TDCPP exposure groups at all developmental stages (except for the 0.4 μg/L group at 5 dpf and the 4 μg/L group at 10 dpf). The mRNA expression of COX-2 was downregulated at 5 dpf, BMP4 was downregulated at 5 and 6 dpf, FGF8 was downregulated at 5, 6 and 8 dpf, GATA4 was downregulated at 8 dpf, and GATA4 was upregulated at 10 dpf. These results indicate that the changes in heart rate and SV-BA distance might be accompanied by disturbances in the four genes involved in cardiac development. Our findings will help to illustrate the possible cardiac toxic effects of marine fish exposed to TDCPP.
Collapse
Affiliation(s)
- Chenshi Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Wei Lei
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian, China
- Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Xiamen, China
| | - Chengchen Jiang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Lichao Du
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Xindi Huang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Xiaoyu Cui
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Dongxu Gao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Hua Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| |
Collapse
|
10
|
Yang Y, Tao Y, Yi X, Zhong G, Gu Y, Cui Y, Zhang Y. Crosstalk between aryl hydrocarbon receptor and Wnt/β-catenin signaling pathway: Possible culprit of di (2-ethylhexyl) phthalate-mediated cardiotoxicity in zebrafish larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167907. [PMID: 37866606 DOI: 10.1016/j.scitotenv.2023.167907] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Typical plasticizer di (2-ethylhexyl) phthalate (DEHP) has been demonstrated to induce cardiotoxicity in zebrafish, but the potential molecular mechanisms involved have not been fully elucidated. Aryl hydrocarbon receptor (AhR), an essential protein for inducing developmental abnormalities, has been demonstrated to be activated by DEHP in other species, but whether the AhR signaling pathway also contributes to DEHP-mediated cardiac developmental toxicity in zebrafish remains unclear. Firstly, molecular docking simulations initially confirmed the possibility that DEHP has AhR agonistic activity. To further confirm this conjecture, this work analyzed the changes of cardiac-related indexes in zebrafish stressed by DEHP at individual, protein, and gene levels. The results showed that DEHP mediated cardiac phenotypic developmental defects, increased CYP1A1 activity, and oxidative stress as well as significant changes in the expression levels of key proteins and genes of AhR, Wnt/β-catenin, and Nrf2-Keap1 signaling pathways. Notably, the addition of AhR inhibitors effectively alleviated the above negative effects, indicating that the AhR signaling pathway and its crosstalk with the Wnt/β-catenin signaling pathway is an essential pathway for DEHP-mediated cardiac developmental toxicity. Overall, this work enriches the molecular mechanism of DEHP-mediated cardiac developmental defects in zebrafish and provides a reliable biomarker for future environmental risk assessment of DEHP.
Collapse
Affiliation(s)
- Yang Yang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaodong Yi
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Guanyu Zhong
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yanyan Gu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yunhe Cui
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
11
|
Li Z, Lu J, Ruan X, Wu Y, Zhao J, Jiao X, Sun J, Sun K. Exposure to volatile organic compounds induces cardiovascular toxicity that may involve DNA methylation. Toxicology 2024; 501:153705. [PMID: 38070821 DOI: 10.1016/j.tox.2023.153705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 01/08/2024]
Abstract
Volatile organic compounds (VOCs) are common air pollutants and water contaminants. We previously found maternal exposure to VOCs was associated with offspring congenital heart disease (CHD). However, little information is available about the effects of VOCs on cardiovascular development at embryonic stage and the underlying mechanism remains unclear. In this study, we aimed to investigate the effects of a mixture of six VOCs on cardiovascular development in zebrafish embryos. Embryos were exposed to different concentrations of VOCs mixture (32 mg/L, 64 mg/L and 128 mg/L) for 96 h, cardiovascular abnormalities including elongated heart shape, increased distance between sinus venosus and bulbus arteriosus, slowed circulation and altered heart rate were observed in a dose- and time-dependent manner. Meanwhile, VOCs exposure increased global DNA methylation levels in embryos. Analysis identified hundreds of differentially methylated sites and the enrichment of differentially methylated sites on cardiovascular development. Two differentially methylated-associated genes involved in MAPK pathway, hgfa and ntrk1, were identified to be the potential genes mediating the effects of VOCs. By enzyme-linked immunosorbent assay, altered human serum hgf and ntrk1 levels were detected in abnormal pregnancies exposed to higher VOCs levels with fetal CHD. For the first time, our study revealed exposure to VOCs induced severe cardiovascular abnormalities in zebrafish embryos. The toxicity might result from alterations in DNA methylation and corresponding expression levels of genes involved in MAPK pathway. Our study provides important information for the risk of VOCs exposure on embryonic cardiovascular development.
Collapse
Affiliation(s)
- Zhuoyan Li
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieru Lu
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Children's Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xuehua Ruan
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yurong Wu
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianyuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xianting Jiao
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jing Sun
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Kun Sun
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
12
|
Park J, An G, You J, Park H, Hong T, Song G, Lim W. Dimethenamid promotes oxidative stress and apoptosis leading to cardiovascular, hepatic, and pancreatic toxicities in zebrafish embryo. Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109741. [PMID: 37689173 DOI: 10.1016/j.cbpc.2023.109741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Dimethenamid, one of the acetamide herbicides, is widely used on soybeans and corns to inhibit weed growth. Although other acetamide herbicides have been reported to have several toxicities in non-target organisms including developmental toxicity, the toxicity of dimethenamid has not yet been studied. In this research, we utilized the zebrafish animal model to verify the developmental toxicity of dimethenamid. It not only led to morphological abnormalities in zebrafish larvae but also reduced their viability. ROS production and inflammation responses were promoted in zebrafish larvae. Also, uncontrolled apoptosis occurred when the gene expression level related to the cell cycle and apoptosis was altered by dimethenamid. These changes resulted in toxicities in the cardiovascular system, liver, and pancreas are observed in transgenic zebrafish models including fli1a:EGFP and L-fabp:dsRed;elastase:GFP. Dimethenamid triggered morphological defects in the heart and vasculature by altering the mRNA levels related to cardiovascular development. The liver and pancreas were also damaged through not only the changes of their morphology but also through the dysregulation in their function related to metabolic activity. This study shows the developmental defects induced by dimethenamid in zebrafish larvae and the possibility of toxicity in other non-target organisms.
Collapse
Affiliation(s)
- Junho Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jeankyoung You
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
13
|
Shankar P, Villeneuve DL. AOP Report: Aryl Hydrocarbon Receptor Activation Leads to Early-Life Stage Mortality via Sox9 Repression-Induced Craniofacial and Cardiac Malformations. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2063-2077. [PMID: 37341548 PMCID: PMC10772968 DOI: 10.1002/etc.5699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/22/2023]
Abstract
The aryl hydrocarbon receptors (Ahrs) are evolutionarily conserved ligand-dependent transcription factors that are activated by structurally diverse endogenous compounds as well as environmental chemicals such as polycyclic aromatic hydrocarbons and halogenated aromatic hydrocarbons. Activation of the Ahr leads to several transcriptional changes that can cause developmental toxicity resulting in mortality. Evidence was assembled and evaluated for two novel adverse outcome pathways (AOPs) which describe how Ahr activation (molecular initiating event) can lead to early-life stage mortality (adverse outcome), via either SOX9-mediated craniofacial malformations (AOP 455) or cardiovascular toxicity (AOP 456). Using a key event relationship (KER)-by-KER approach, we collected evidence using both a narrative search and a systematic review based on detailed search terms. Weight of evidence for each KER was assessed to inform overall confidence of the AOPs. The AOPs link to previous descriptions of Ahr activation and connect them to two novel key events (KEs), increase in slincR expression, a newly characterized long noncoding RNA with regulatory functions, and suppression of SOX9, a critical transcription factor implicated in chondrogenesis and cardiac development. In general, confidence levels for KERs ranged between medium and strong, with few inconsistencies, as well as several opportunities for future research identified. While the majority of KEs have only been demonstrated in zebrafish with 2,3,7,8-tetrachlorodibenzo-p-dioxin as an Ahr activator, evidence suggests that the two AOPs likely apply to most vertebrates and many Ahr-activating chemicals. Addition of the AOPs into the AOP-Wiki (https://aopwiki.org/) helps expand the growing Ahr-related AOP network to 19 individual AOPs, of which six are endorsed or in progress and the remaining 13 relatively underdeveloped. Environ Toxicol Chem 2023;42:2063-2077. © 2023 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Prarthana Shankar
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
- University of Wisconsin Madison Sea Grant Fellow at Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Daniel L. Villeneuve
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| |
Collapse
|
14
|
Chang Y, Tsai JF, Chen PJ, Huang YT, Liu BH. Thallium exposure interfered with heart development in embryonic zebrafish (Danio rerio): From phenotype to genotype. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162901. [PMID: 36948317 DOI: 10.1016/j.scitotenv.2023.162901] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/11/2023] [Accepted: 03/12/2023] [Indexed: 05/13/2023]
Abstract
Thallium (Tl) is a rare trace metal element but increasingly detected in wastewater produced by coal-burning, smelting, and more recently, high-tech manufacturing industries. However, the adverse effects of Tl, especially cardiotoxicity, on aquatic biota remain unclear. In this study, zebrafish model was used to elucidate the effects and mechanisms of Tl(I) cardiotoxicity in developing embryos. Exposure of embryonic zebrafish to low-dose Tl(I) (25-100 μg/L) decreased heart rate and blood flow activity, and subsequently impaired swim bladder inflation and locomotive behavior of larvae. Following high-level Tl(I) administration (200-800 μg/L), embryonic zebrafish exhibited pericardial edema, incorrect heart looping, and thinner myocardial layer. Based on RNA-sequencing, Tl(I) altered pathways responsible for protein folding and transmembrane transport, as well as negative regulation of heart rate and cardiac jelly development. The gene expression of nppa, nppb, ucp1, and ucp3, biomarkers of cardiac damage, were significantly upregulated by Tl(I). Our findings demonstrate that Tl(I) at environmentally relevant concentrations interfered with cardiac development with respect to anatomy, function, and transcriptomic alterations. The cardiotoxic mechanisms of Tl(I) provide valuable information in the assessment of Tl-related ecological risk in freshwater environment.
Collapse
Affiliation(s)
- Yung Chang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jui-Feng Tsai
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Jen Chen
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Ying-Tzu Huang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Biing-Hui Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
15
|
An G, Kim M, Park J, Park H, Hong T, Lim W, Song G. Embryonic exposure to chloroxylenol induces developmental defects and cardiovascular toxicity via oxidative stress, inflammation, and apoptosis in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2023; 268:109617. [PMID: 36965842 DOI: 10.1016/j.cbpc.2023.109617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/07/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023]
Abstract
Chloroxylenol is an extensively consumed anti-microbial compound. Since its usage is on the rise due to the coronavirus pandemic and ban on other antimicrobial ingredients, recent studies have suggested the necessity of estimating its potential for ecotoxicity. The detrimental effect of chloroxylenol on zebrafish (Danio rerio) viability has been reported; however, research on the mechanisms underlying its toxicity is quite limited. Therefore, we applied the zebrafish model for elucidating responses against chloroxylenol to predict its toxicity toward human health and ecology. Zebrafish exposed to chloroxylenol (0, 0.5, 1, 2.5, 5, and 10 mg/L) at the embryonic stage (from 6 h post-fertilization (hpf) to 96 hpf) showed impaired viability and hatchability, and pathological phenotypes. To address these abnormalities, cellular responses such as oxidative stress, inflammation, and apoptosis were confirmed via in vivo imaging of a fluorescent dye or measurement of the transcriptional changes related to each response. In particular, developmental defects in the cardiovascular system of zebrafish exposed to 0, 0.5, 1, and 2.5 mg/L of chloroxylenol from 6 to 96 hpf were identified by structural analyses of the system in the flk1:eGFP transgenic line. Additional experiments were conducted using human umbilical vein endothelial cells (HUVECs) to predict the adverse impacts of chloroxylenol on the human vascular system. Chloroxylenol impairs the viability and tube formation ability of HUVECs by modulating ERK signaling. The findings obtained using the zebrafish model provide evidence of the possible risks of chloroxylenol exposure and suggest the importance of more in-depth ecotoxicological studies.
Collapse
Affiliation(s)
- Garam An
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Miji Kim
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Junho Park
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
16
|
Park J, An G, Park H, Hong T, Lim W, Song G. Developmental defects induced by thiabendazole are mediated via apoptosis, oxidative stress and alteration in PI3K/Akt and MAPK pathways in zebrafish. ENVIRONMENT INTERNATIONAL 2023; 176:107973. [PMID: 37196567 DOI: 10.1016/j.envint.2023.107973] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
Thiabendazole, a benzimidazole fungicide, is widely used to prevent yield loss in agricultural land by inhibiting plant diseases derived from fungi. As thiabendazole has a stable benzimidazole ring structure, it remains in the environment for an extended period, and its toxic effects on non-target organisms have been reported, indicating the possibility that it could threaten public health. However, little research has been conducted to elucidate the comprehensive mechanisms of its developmental toxicity. Therefore, we used zebrafish, a representative toxicological model that can predict toxicity in aquatic organisms and mammals, to demonstrate the developmental toxicity of thiabendazole. Various morphological malformations were observed, including decreased body length, eye size, and increased heart and yolk sac edema. Apoptosis, reactive oxygen species (ROS) production, and inflammatory response were also triggered by thiabendazole exposure in zebrafish larvae. Furthermore, PI3K/Akt and MAPK signaling pathways important for appropriate organogenesis were significantly changed by thiabendazole. These results led to toxicity in various organs and a reduction in the expression of related genes, including cardiovascular toxicity, neurotoxicity, and hepatic and pancreatic toxicity, which were detected in flk1:eGFP, olig2:dsRED, and L-fabp:dsRed;elastase:GFP transgenic zebrafish models, respectively. Overall, this study partly determined the developmental toxicity of thiabendazole in zebrafish and provided evidence of the environmental hazards of this fungicide.
Collapse
Affiliation(s)
- Junho Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
17
|
Wirgin I, Chambers RC, Waldman JR, Roy NK, Witting DA, Mattson MT. Effects of Hudson River Stressors on Atlantic Tomcod: Contaminants and a Warming Environment. REVIEWS IN FISHERIES SCIENCE & AQUACULTURE 2023; 31:342-371. [PMID: 37621745 PMCID: PMC10446889 DOI: 10.1080/23308249.2023.2189483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The Hudson River (HR) Estuary has a long history of pollution with a variety of contaminants including PCBs, and dioxins. In fact, 200 miles of the mainstem HR is designated a U.S. federal Superfund site, the largest in the nation, because of PCB contamination. The tidal HR hosts the southernmost spawning population of Atlantic tomcod, and studies revealed a correlation between exposure of juveniles to warm water temperature during summer to abundance of spawning adults of the same cohort in the following winter. Further, a battery of mechanistically linked biomarkers, ranging from the molecular to the population levels, were significantly impacted from contaminant exposures of the HR tomcod population. In response to xenobiotic insult, the HR tomcod population developed resistance to PCB sand TCDD toxicity resulting from a deletion in the aryl hydrocarbon receptor2 (AHR2) gene. Furthermore, RNA-Seq analysis of global gene expression demonstrated that effects of the AHR2 polymorphism were far more pervasive than anticipated. The most highly PCB-contaminated sediments in the upper HR were dredged between 2009 and 2015 with the objective of lowering PCB concentrations in fishes in the lower HR. Success of the remediation project has been controversial. These observations suggest that tomcod provides an informative model to evaluate the efficacy of HR PCB remediation efforts on downriver fish populations and possible interactive effects between contaminant exposure and a warming environment.
Collapse
Affiliation(s)
- Isaac Wirgin
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | | | | | - Nirmal K Roy
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | | | | |
Collapse
|
18
|
Shi H, Li M, Meng H, Zheng X, Zhang K, Fent K, Dai J, Zhao Y. Reduced Transcriptome Analysis of Zebrafish Embryos Prioritizes Environmental Compounds with Adverse Cardiovascular Activities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4959-4970. [PMID: 36935584 DOI: 10.1021/acs.est.2c08920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cardiovascular diseases are the leading cause of premature death in humans and remain a global public health challenge. While age, sex, family history, and false nutrition make a contribution, our understanding of compounds acting as cardiovascular disruptors is far from complete. Here, we aim to identify cardiovascular disruptors via a reduced transcriptome atlas (RTA) approach, which integrates large-scale transcriptome data sets of zebrafish and compiles a specific gene panel related to cardiovascular diseases. Among 767 gene expression profiles covering 81 environmental compounds, 11 priority compounds are identified with the greatest effects on the cardiovascular system at the transcriptional level. Among them, metals (AgNO3, Ag nanoparticles, arsenic) and pesticides/biocides (linuron, methylparaben, triclosan, and trimethylchlorotin) are identified with the most significant effects. Distinct transcriptional signatures are further identified by the percentage values, indicating that different physiological endpoints exist among prioritized compounds. In addition, cardiovascular dysregulations are experimentally confirmed for the prioritized compounds via alterations of cardiovascular physiology and lipid profiles of zebrafish. The accuracy rate of experimental verification reaches up to 62.9%. The web-based RTA analysis tool, Cardionet, for rapid cardiovascular disruptor discovery was further provided at http://www.envh.sjtu.edu.cn/cardionet.jsp. Our integrative approach yields an efficient platform to discover novel cardiovascular-disrupting chemicals in the environment.
Collapse
Affiliation(s)
- Haochun Shi
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Meng Li
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Haoyu Meng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xuehan Zheng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kun Zhang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Karl Fent
- Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental Systems Science, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yanbin Zhao
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
19
|
Mi P, Li N, Ai K, Li L, Yuan D. AhR-mediated lipid peroxidation contributes to TCDD-induced cardiac defects in zebrafish. CHEMOSPHERE 2023; 317:137942. [PMID: 36702031 DOI: 10.1016/j.chemosphere.2023.137942] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a persistent environmental contaminant that activates the aryl hydrocarbon receptor (AhR) pathway, has been reported to cause cardiac damage. However, the mechanism underlying AhR-induced cardiac defects in response to TCDD exposure remains unclear. In this study, we characterized the impacts of TCDD exposure on heart morphology and cardiac function in zebrafish. TCDD exposure in the early developmental stage of zebrafish embryos led to morphological heart malformation and pericardial edema, concomitant with reduced cardiac function. These cardiac defects were attenuated by inhibiting AhR activity with CH223191. Transcriptome profiling showed that, along with an upregulation of the AhR signaling pathway by TCDD treatment, the expression of pro-ferroptotic genes was upregulated, while that of genes implicated in glutathione metabolism were downregulated. Moreover, lipid peroxidation, as indicated by malonaldehyde (MDA) production, was increased in TCDD-exposed cardiac tissue. Accordingly, inhibiting lipid peroxidation with liproxstatin-1 reversed the adverse cardiac effects induced by TCDD treatment. Taken together, our findings demonstrate that AhR-mediated lipid peroxidation contributes to cardiac defects in the early developmental stage in zebrafish embryos exposed to TCDD.
Collapse
Affiliation(s)
- Ping Mi
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
| | - Na Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
| | - Kang Ai
- Department of Histology and Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
| | - Lei Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University, Jinan, Shandong, 250012, China.
| | - Detian Yuan
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
20
|
Lizano-Fallas V, Carrasco del Amor A, Cristobal S. Prediction of Molecular Initiating Events for Adverse Outcome Pathways Using High-Throughput Identification of Chemical Targets. TOXICS 2023; 11:189. [PMID: 36851063 PMCID: PMC9965981 DOI: 10.3390/toxics11020189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The impact of exposure to multiple chemicals raises concerns for human and environmental health. The adverse outcome pathway method offers a framework to support mechanism-based assessment in environmental health starting by describing which mechanisms are triggered upon interaction with different stressors. The identification of the molecular initiating event and the molecular interaction between a chemical and a protein target is still a challenge for the development of adverse outcome pathways. The cellular response to chemical exposure studied with omics could not directly identify the protein targets. However, recent mass spectrometry-based methods are offering a proteome-wide identification of protein targets interacting with s but unrevealing a molecular initiating event from a set of targets is still dependent on available knowledge. Here, we directly coupled the target identification findings from the proteome integral solubility alteration assay with an analytical hierarchy process for the prediction of a prioritized molecular initiating event. We demonstrate the applicability of this combination of methodologies with a test compound (TCDD), and it could be further studied and integrated into AOPs. From the eight protein targets identified by the proteome integral solubility alteration assay after analyzing 2824 human hepatic proteins, the analytical hierarchy process can select the most suitable protein for an AOP. Our combined method solves the missing links between high-throughput target identification and prediction of the molecular initiating event. We anticipate its utility to decipher new molecular initiating events and support more sustainable methodologies to gain time and resources in chemical assessment.
Collapse
Affiliation(s)
- Veronica Lizano-Fallas
- Department of Biomedical and Clinical Sciences, Cell Biology, Faculty of Medicine, Linköping University, 581 85 Linköping, Sweden
| | - Ana Carrasco del Amor
- Department of Biomedical and Clinical Sciences, Cell Biology, Faculty of Medicine, Linköping University, 581 85 Linköping, Sweden
| | - Susana Cristobal
- Department of Biomedical and Clinical Sciences, Cell Biology, Faculty of Medicine, Linköping University, 581 85 Linköping, Sweden
- Ikerbasque, Basque Foundation for Sciences, Department of Physiology, Faculty of Medicine, and Nursing, University of the Basque Country (UPV/EHU), 489 40 Leioa, Spain
| |
Collapse
|
21
|
Qin JY, Jia W, Ru S, Xiong JQ, Wang J, Wang W, Hao L, Zhang X. Bisphenols induce cardiotoxicity in zebrafish embryos: Role of the thyroid hormone receptor pathway. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 254:106354. [PMID: 36423468 DOI: 10.1016/j.aquatox.2022.106354] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/21/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Bisphenols are frequently found in the environment and have been of emerging concern because of their adverse effects on aquatic animals and humans. In this study, we demonstrated that bisphenol A, S, and F (BPA, BPS, BPF) at environmental concentrations induced cardiotoxicity in zebrafish embryos. BPA decreased heart rate at 96 hpf (hours post fertilization) and increased the distance between the sinus venosus (SV) and bulbus arteriosus (BA), in zebrafish. BPF promoted heart pumping and stroke volume, shortened the SV-BAdistance, and increased body weight. Furthermore, we found that BPA increased the expression of the dio3b, thrβ, and myh7 genes but decreased the transcription of dio2. In contrast, BPF downregulated the expression of myh7 but upregulated that of thrβ. Molecular docking results showed that both BPA and BPF are predicted to bind tightly to the active pockets of zebrafish THRβ with affinities of -4.7 and -4.77 kcal/mol, respectively. However, BPS did not significantly affect dio3b, thrβ, and myh7 transcription and had a higher affinity for zebrafish THRβ (-2.13 kcal/mol). These findings suggest that although BPA, BPS, and BPF have similar structures, they may induce cardiotoxicity through different molecular mechanisms involving thyroid hormone systems. This investigation provides novel insights into the potential mechanism of cardiotoxicity from the perspective of thyroid disruption and offer a cautionary role for the use of BPA substitution.
Collapse
Affiliation(s)
- Jing-Yu Qin
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Wenyi Jia
- College of urban and environmental sciences, Peking University, Beijing 100871, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jiu-Qiang Xiong
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Liping Hao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
22
|
Kossack ME, Manz KE, Martin NR, Pennell KD, Plavicki J. Environmentally relevant uptake, elimination, and metabolic changes following early embryonic exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin in zebrafish. CHEMOSPHERE 2023; 310:136723. [PMID: 36241106 PMCID: PMC9835613 DOI: 10.1016/j.chemosphere.2022.136723] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/16/2022] [Accepted: 09/30/2022] [Indexed: 06/03/2023]
Abstract
Dioxin and dioxin-like compounds are ubiquitous environmental contaminants that induce toxicity by binding to the aryl hydrocarbon receptor (AHR), a ligand activated transcription factor. The zebrafish model has been used to define the developmental toxicity observed following exposure to exogenous AHR ligands such as the potent agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin, TCDD). While the model has successfully identified cellular targets of TCDD and molecular mechanisms mediating TCDD-induced phenotypes, fundamental information such as the body burden produced by standard exposure models is still unknown. We performed targeted gas chromatography (GC) high-resolution mass spectrometry (HRMS) in tandem with non-targeted liquid chromatography (LC) HRMS to quantify TCDD uptake, model the elimination dynamics of TCDD, and determine how TCDD exposure affects the zebrafish metabolome. We found that 50 ppt, 10 ppb, and 1 ppb waterborne exposures to TCDD during early embryogenesis produced environmentally relevant body burdens: 38 ± 4.34, 26.6 ± 1.2, and 8.53 ± 0.341 pg/embryo, respectively, at 24 hours post fertilization. TCDD exposure was associated with the dysregulation of metabolic pathways that are associated with the AHR signaling pathway as well as pathways shown to be affected in mammals following TCDD exposure. In addition, we discovered that TCDD exposure affected several metabolic pathways that are critical for brain development and function including glutamate metabolism, chondroitin sulfate biosynthesis, and tyrosine metabolism. Together, these data demonstrate that existing exposure methods produce environmentally relevant body burdens of TCDD in zebrafish and provide insight into the biochemical pathways impacted by toxicant-induced AHR activation.
Collapse
Affiliation(s)
- Michelle E Kossack
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship St, Providence, RI, 02903, USA
| | - Katherine E Manz
- School of Engineering, Brown University, 184 Hope St, Box D, Providence, RI, 02903, USA
| | - Nathan R Martin
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship St, Providence, RI, 02903, USA
| | - Kurt D Pennell
- School of Engineering, Brown University, 184 Hope St, Box D, Providence, RI, 02903, USA
| | - Jessica Plavicki
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship St, Providence, RI, 02903, USA.
| |
Collapse
|
23
|
Protective Effects of Hippophae rhamnoides L. Phenylpropanoids on Doxorubicin-Induced Cardiotoxicity in Zebrafish. Molecules 2022; 27:molecules27248858. [PMID: 36557990 PMCID: PMC9786120 DOI: 10.3390/molecules27248858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Hippophae rhamnoides L. is a deciduous shrub that contains many unique bioactive substances. This sea buckthorn possesses anticancer, antioxidant, anti-inflammatory, and cardiovascular protective properties. Herein, the effects of phenylpropyl compounds extracted from H. rhamnoides L. on doxorubicin (Dox)-induced cardiotoxicity were evaluated in zebrafish. Cardiac injury in zebrafish was induced using 35 μM Dox for 96 h, and 30 μM phenylpropanoid compounds were used as the protective treatment. The cardioprotective effects and mechanisms of the four phenylpropanoids were investigated using microscopy, behavioral analysis, acridine orange staining, western blotting, flow cytometry, and real-time quantitative polymerase chain reaction. The extracted phenylpropanoids could significantly relieve Dox-induced cardiac injury in zebrafish and inhibit cardiomyocyte apoptosis. The mechanisms of action were mainly related to the stability of mitochondrial biogenesis and function maintained by phenylpropanoids in zebrafish. To our knowledge, this is the first report on the protective effect of sea buckthorn against myocardial injury in zebrafish. Our findings provide support for the further research and development of sea buckthorn and its components.
Collapse
|
24
|
Yang X, Wang C, Zheng Q, Liu Q, Wawryk NJP, Li XF. Emerging Disinfection Byproduct 2,6-Dichlorobenzoquinone-Induced Cardiovascular Developmental Toxicity of Embryonic Zebrafish and Larvae: Imaging and Transcriptome Analysis. ACS OMEGA 2022; 7:45642-45653. [PMID: 36530307 PMCID: PMC9753109 DOI: 10.1021/acsomega.2c06296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Epidemiological studies have observed the potential association of water disinfection byproduct (DBP) exposure with cardiac defects. Aromatic DBPs represent a significant portion of total DBPs, but their effects on cardiovascular development are unclear. In this study, we examined the effects of an aromatic DBP, 2,6-dichlorobenzoquinone (DCBQ), on the cardiovascular development of zebrafish embryos. After exposure to 2, 4, and 8 μM DCBQ, morphological images of growing zebrafish embryos clearly showed cardiovascular malformation. Fluorescent images of transgenic zebrafish strains with fluorescently labeled heart and blood vessels show that DCBQ exposure resulted in deformed atrium-ventricle looping, degenerated abdomen and trunk vessels, pericardial edema, and decreased blood flow. Furthermore, the expression of the marker gene myl7 (essential for the differentiation and motility of cardiomyocytes) was inhibited in a dose-dependent manner by DCBQ exposure. Finally, transcriptome analysis found that in the 4 μM DCBQ exposure group, the numbers of differentially expressed genes (DEGs) were 113 (50 upregulated and 63 downregulated) at 24 hpf, 2123 (762 upregulated and 1361 downregulated) at 48 hpf, and 61 (11 upregulated and 50 downregulated) at 120 hpf; in the 8 μM DCBQ exposure group, the number of DEGs was 1407 (647 upregulated and 760 downregulated) at 120 hpf. The FoxO signaling pathway was significantly altered. The in vivo results demonstrate the effects of 2,6-DCBQ (0-8 μM) on cardiovascular development, contributing to the understanding of the developmental toxicity of aromatic DBP halobenzoquinones (HBQs).
Collapse
Affiliation(s)
- Xue Yang
- Hubei
Key Laboratory of Environmental and Health Effects of Persistent Toxic
Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Chang Wang
- Hubei
Key Laboratory of Environmental and Health Effects of Persistent Toxic
Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Qi Zheng
- Hubei
Key Laboratory of Environmental and Health Effects of Persistent Toxic
Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Qiongyu Liu
- Hubei
Key Laboratory of Environmental and Health Effects of Persistent Toxic
Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Nicholas J. P. Wawryk
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Xing-Fang Li
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| |
Collapse
|
25
|
Li W, Guo S, Miao N. Transcriptional responses of fluxapyroxad-induced dysfunctional heart in zebrafish (Danio rerio) embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90034-90045. [PMID: 35864390 DOI: 10.1007/s11356-022-21981-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Fluxapyroxad (FLU) is a succinate dehydrogenase inhibitor (SDHI) fungicide used in controlling crop diseases. Potential toxicity to aquatic organisms is not known. We exposed zebrafish to 1, 2, and 4 μM FLU for 3 days. The embryonic zebrafish showed developmental cardiac defects, including heart malformation, pericardial edema, and heart rate reduction. Compared with the controls, cardiac-specific transcription factors (nkx2.5, myh7, myl7, and myh6) exhibited dysregulated expression patterns after FLU treatment. We next used transcriptome and qRT-PCR analyses to explore the molecular mechanism of FLU cardiotoxicity. The transcriptome analysis and interaction network showed that the downregulated genes were enriched in calcium signaling pathways, adrenergic signaling in cardiomyocytes, and cardiac muscle contraction. FLU exposure repressed the cardio-related calcium signaling pathway, associated with apoptosis in the heart and other manifestations of cardiotoxicity. Thus, the findings provide valuable evidence that FLU exposure causes disruption of cardiac development in zebrafish embryos. Our findings will help to promote a better understanding of the toxicity mechanisms of FLU and act as a reference to explore the rational use and safety of FLU in agriculture.
Collapse
Affiliation(s)
- Wenhua Li
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, People's Republic of China
| | - Shanshan Guo
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, People's Republic of China
| | - Nan Miao
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, 668 Jimei Road, Xiamen, 361021, People's Republic of China.
| |
Collapse
|
26
|
Martin NR, Patel R, Kossack ME, Tian L, Camarillo MA, Cintrón-Rivera LG, Gawdzik JC, Yue MS, Nwagugo FO, Elemans LMH, Plavicki JS. Proper modulation of AHR signaling is necessary for establishing neural connectivity and oligodendrocyte precursor cell development in the embryonic zebrafish brain. Front Mol Neurosci 2022; 15:1032302. [PMID: 36523606 PMCID: PMC9745199 DOI: 10.3389/fnmol.2022.1032302] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/24/2022] [Indexed: 12/03/2022] Open
Abstract
2,3,7,8-tetrachlorodibenzo-[p]-dioxin (TCDD) is a persistent global pollutant that exhibits a high affinity for the aryl hydrocarbon receptor (AHR), a ligand activated transcription factor. Epidemiological studies have associated AHR agonist exposure with multiple human neuropathologies. Consistent with the human data, research studies using laboratory models have linked pollutant-induced AHR activation to disruptions in learning and memory as well as motor impairments. Our understanding of endogenous AHR functions in brain development is limited and, correspondingly, scientists are still determining which cell types and brain regions are sensitive to AHR modulation. To identify novel phenotypes resulting from pollutant-induced AHR activation and ahr2 loss of function, we utilized the optically transparent zebrafish model. Early embryonic TCDD exposure impaired embryonic brain morphogenesis, resulted in ventriculomegaly, and disrupted neural connectivity in the optic tectum, habenula, cerebellum, and olfactory bulb. Altered neural network formation was accompanied by reduced expression of synaptic vesicle 2. Loss of ahr2 function also impaired nascent network development, but did not affect gross brain or ventricular morphology. To determine whether neural AHR activation was sufficient to disrupt connectivity, we used the Gal4/UAS system to express a constitutively active AHR specifically in differentiated neurons and observed disruptions only in the cerebellum; thus, suggesting that the phenotypes resulting from global AHR activation likely involve multiple cell types. Consistent with this hypothesis, we found that TCDD exposure reduced the number of oligodendrocyte precursor cells and their derivatives. Together, our findings indicate that proper modulation of AHR signaling is necessary for the growth and maturation of the embryonic zebrafish brain.
Collapse
Affiliation(s)
- Nathan R. Martin
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Ratna Patel
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Michelle E. Kossack
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Lucy Tian
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Manuel A. Camarillo
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Layra G. Cintrón-Rivera
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Joseph C. Gawdzik
- Molecular and Environmental Toxicology Center, University of Wisconsin at Madison, Madison, WI, United States,Division of Pharmaceutical Sciences, University of Wisconsin at Madison, Madison, WI, United States
| | - Monica S. Yue
- Molecular and Environmental Toxicology Center, University of Wisconsin at Madison, Madison, WI, United States,Division of Pharmaceutical Sciences, University of Wisconsin at Madison, Madison, WI, United States
| | - Favour O. Nwagugo
- Department of Biology, University of Maryland Baltimore County, Baltimore, MD, United States
| | - Loes M. H. Elemans
- Division of Toxicology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, Netherlands
| | - Jessica S. Plavicki
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States,*Correspondence: Jessica S. Plavicki,
| |
Collapse
|
27
|
An G, Park J, Lim W, Song G. Thiobencarb induces phenotypic abnormalities, apoptosis, and cardiovascular toxicity in zebrafish embryos through oxidative stress and inflammation. Comp Biochem Physiol C Toxicol Pharmacol 2022; 261:109440. [PMID: 35961533 DOI: 10.1016/j.cbpc.2022.109440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/19/2022] [Accepted: 08/07/2022] [Indexed: 11/29/2022]
Abstract
Thiobencarb is a representative herbicide used on rice paddies. Because thiobencarb is used extensively on agricultural lands, especially on paddy fields, there is a high risk of unintended leaks into aquatic ecosystems. For this reason, several studies have investigated and reported on the toxicity of thiobencarb to aquatic species. In European eels, thiobencarb affected acetylcholinesterase levels in plasma and impaired adenosine triphosphatase activity in their gills. In medaka, thiobencarb-exposed embryos showed lower viability. However, molecular mechanisms underlying thiobencarb-mediated embryotoxicity have yet to be clarified. Therefore, the objective of our study was to investigate its mechanism of toxicity using zebrafish embryos. The viability of zebrafish embryos decreased upon exposure to thiobencarb and various phenotypic abnormalities were observed at concentrations lower than the lethal dose. The developmental toxicity of thiobencarb was mediated by pro-inflammatory cytokines (il1b, cxcl8, cxcl18b, and cox2a) and excessive generation of reactive oxygen species due to the downregulation of genes such as catalase, sod1, and sod2, which encode antioxidant enzymes. In addition, severe defects of the cardiovascular system were identified in response to thiobencarb exposure. Specifically, deformed cardiac looping, delayed common cardinal vein (CCV) regression, and interrupted dorsal aorta (DA)-posterior cardinal vein (PCV) segregation were observed. Our results provide an essential resource that demonstrates molecular mechanisms underlying the toxicity of thiobencarb on non-target organisms, which may contribute to the establishment of a mitigation strategy.
Collapse
Affiliation(s)
- Garam An
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Junho Park
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
28
|
Du Z, Hou K, Zhou T, Shi B, Zhang C, Zhu L, Li B, Wang J, Wang J. Polyhalogenated carbazoles (PHCZs) induce cardiotoxicity and behavioral changes in zebrafish at early developmental stages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156738. [PMID: 35716752 DOI: 10.1016/j.scitotenv.2022.156738] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Polyhalogenated carbazoles (PHCZs) are widely present in the environment, and their health risks are of increasing concern. Available studies primarily confirm their dioxin-like toxicity mechanism based on biomarkers, such as aryl hydrocarbon receptor (AHR) and CYP1A1, while few studies have investigated their actual toxic effects at the level of individual organisms. In the present study, the developmental toxicity of two typical PHCZs with a high detection rate and high concentration in the environment (3,6-dichlorocarbazol (3,6-DCCZ) and 3,6-dibromocarbazole (3,6-DBCZ)) was investigated based on a fish embryo acute toxicity test (FET, zebrafish) and transcriptomics analysis. The 96 h LC50 values of 3,6-DCCZ and 3,6-DBCZ were 0.636 mg/L and 1.167 mg/L, respectively. Both tested PHCZs reduced the zebrafish heart rate and blocked heart looping at concentrations of 0.5 mg/L or higher. The swimming/escaping behavior of zebrafish larvae was more vulnerable to 3,6-DBCZ than 3,6-DCCZ. Transcriptomics assays showed that multiple pathways linked to organ development, immunization, metabolism and protein synthesis were disturbed in PHCZ-exposed fish, which might be the internal mechanism of the adverse effects. The present study provides evidence that PHCZs cause cardiac developmental toxicity and behavioral changes and improves our understanding of their health risks.
Collapse
Affiliation(s)
- Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, Taian 271018, PR China.
| | - Kaixuan Hou
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, Taian 271018, PR China.
| | - Tongtong Zhou
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, Taian 271018, PR China
| | - Baihui Shi
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, Taian 271018, PR China.
| | - Cheng Zhang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, Taian 271018, PR China.
| | - Bing Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, Taian 271018, PR China
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, Taian 271018, PR China.
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, Taian 271018, PR China.
| |
Collapse
|
29
|
Sankar S, Jayabalan M, Venkatesh S, Ibrahim M. Effect of hyperglycemia on tbx5a and nppa gene expression and its correlation to structural and functional changes in developing zebrafish heart. Cell Biol Int 2022; 46:2173-2184. [PMID: 36069519 DOI: 10.1002/cbin.11901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/09/2022]
Abstract
The objective of the current study is to analyze the effects of gestational diabetes on structural and functional changes in correlation with these two essential regulators of developing hearts in vivo using zebrafish embryos. We employed fertilized zebrafish embryos exposed to a hyperglycemic condition of 25 mM glucose for 96 h postfertilization. The embryos were subjected to various structural and functional analyses in a time-course manner. The data showed that exposure to high glucose significantly affected the embryo's size, heart length, heart rate, and looping of the heart compared to the control. Further, we observed an increased incidence of ventricular standstill and valvular regurgitation with a marked reduction of peripheral blood flow in the high glucose-exposed group compared to the control. In addition, the histological data showed that the high-glucose exposure markedly reduced the thickness of the wall and the number of cardiomyocytes in both atrium and ventricles. We also observed striking alterations in the pericardium like edema, increase in diameter with thinning of the wall compared to the control group. Interestingly, the expression of tbx5a and nppa was increased in the early development and found to be repressed in the later stage of development in the hyperglycemic group compared to the control. In conclusion, the developing heart is more susceptible to hyperglycemia in the womb, thereby showing various developmental defects possibly by altering the expression of crucial gene regulators such as tbx5a and nppa.
Collapse
Affiliation(s)
- Suruthi Sankar
- Department of Anatomy, Dr. ALM Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| | - Monisha Jayabalan
- Department of Anatomy, Dr. ALM Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| | - Sundararajan Venkatesh
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Muhammed Ibrahim
- Department of Anatomy, Dr. ALM Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| |
Collapse
|
30
|
Chen G, Wang M, Zhu P, Wang G, Hu T. Adverse effects of SYP-3343 on zebrafish development via ROS-mediated mitochondrial dysfunction. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129382. [PMID: 35749898 DOI: 10.1016/j.jhazmat.2022.129382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/01/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
As a newly-invented and highly-efficiency strobilurin fungicide, pyraoxystrobin (SYP-3343) has been recognized as a highly poisonous toxin for a variety of aquatic organisms. Nevertheless, the developmental toxicity and potential mechanism of SYP-3343 have not been well-documented. The results showed that SYP-3343 was relatively stable and maintained within the range of 20 % in 24 h, and the LC50 value to embryos at 72 hpf was 17.13 μg/L. The zebrafish embryotoxicity induced by 1, 2, 4, and 8 μg/L SYP-3343 is demonstrated by repressive embryo incubation, enhancive mortality rate, abnormal heart rate, malformed morphological characteristic, and impaired spontaneous coiling, indicating SYP-3343 mostly exerted its toxicity in a dose- and time-dependent manner. Besides SYP-3343 was critically involved in regulating cell cycle, mitochondrial membrane potential, and reactive oxygen species production as well as zebrafish primary cells apoptosis, which can be mitigated using antioxidant N-acetyl-L-cysteine. A significant change occurred in total protein content, the biochemical indices, and antioxidant capacities owing to SYP-3343 exposure. Additionally, SYP-3343 altered the mRNA levels of heart development-, mitochondrial function-, and apoptosis-related genes in zebrafish embryos. These results indicated that SYP-3343 induced apoptosis accompanying reactive oxygen species-initiated mitochondrial dysfunction in zebrafish embryos.
Collapse
Affiliation(s)
- Guoliang Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Mingxing Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Panpan Zhu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
31
|
Cardiotoxicity of Zebrafish Induced by 6-Benzylaminopurine Exposure and Its Mechanism. Int J Mol Sci 2022; 23:ijms23158438. [PMID: 35955574 PMCID: PMC9369308 DOI: 10.3390/ijms23158438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/15/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023] Open
Abstract
6-BA is a common plant growth regulator, but its safety has not been conclusive. The heart is one of the most important organs of living organisms, and the cardiogenesis process of zebrafish is similar to that of humans. Therefore, based on wild-type and transgenic zebrafish, we explored the development of zebrafish heart under 6-BA exposure and its mechanism. We found that 6-BA affected larval cardiogenesis, inducing defective expression of key genes for cardiac development (myl7, vmhc, and myh6) and AVC differentiation (bmp4, tbx2b, and notch1b), ultimately leading to weakened cardiac function (heart rate, diastolic speed, systolic speed). Acridine orange staining showed that the degree of apoptosis in zebrafish hearts was significantly increased under 6-BA, and the expression of cell-cycle-related genes was also changed. In addition, HPA axis assays revealed abnormally expressed mRNA levels of genes and significantly increased cortisol contents, which was also consistent with the observed anxiety behavior in zebrafish at 3 dpf. Transcriptional abnormalities of pro- and anti-inflammatory factors in immune signaling pathways were also detected in qPCR experiments. Collectively, we found that 6-BA induced cardiotoxicity in zebrafish, which may be related to altered HPA axis activity and the onset of inflammatory responses under 6-BA treatment.
Collapse
|
32
|
Eriksson ANM, Rigaud C, Rokka A, Skaugen M, Lihavainen JH, Vehniäinen ER. Changes in cardiac proteome and metabolome following exposure to the PAHs retene and fluoranthene and their mixture in developing rainbow trout alevins. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154846. [PMID: 35351515 DOI: 10.1016/j.scitotenv.2022.154846] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/11/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) is known to affect developing organisms. Utilization of different omics-based technologies and approaches could therefore provide a base for the discovery of novel mechanisms of PAH induced development of toxicity. To this aim, we investigated how exposure towards two PAHs with different toxicity mechanisms: retene (an aryl hydrocarbon receptor 2 (Ahr2) agonist), and fluoranthene (a weak Ahr2 agonist and cytochrome P450 inhibitor (Cyp1a)), either alone or as a mixture, affected the cardiac proteome and metabolome in newly hatched rainbow trout alevins (Oncorhynchus mykiss). In total, we identified 65 and 82 differently expressed proteins (DEPs) across all treatments compared to control (DMSO) after 7 and 14 days of exposure. Exposure to fluoranthene altered the expression of 11 and 19 proteins, retene 29 and 23, while the mixture affected 44 and 82 DEPs by Days 7 and 14, respectively. In contrast, only 5 significantly affected metabolites were identified. Pathway over-representation analysis identified exposure-specific activation of phase II metabolic processes, which were accompanied with exposure-specific body burden profiles. The proteomic data highlights that exposure to the mixture increased oxidative stress, altered iron metabolism and impaired coagulation capacity. Additionally, depletion of several mini-chromosome maintenance components, in combination with depletion of several intermediate filaments and microtubules, among alevins exposed to the mixture, suggests compromised cellular integrity and reduced rate of mitosis, whereby affecting heart growth and development. Furthermore, the combination of proteomic and metabolomic data indicates altered energy metabolism, as per amino acid catabolism among mixture exposed alevins; plausibly compensatory mechanisms as to counteract reduced absorption and consumption of yolk. When considered as a whole, proteomic and metabolomic data, in relation to apical effects on the whole organism, provides additional insight into PAH toxicity and the effects of exposure on heart structure and molecular processes.
Collapse
Affiliation(s)
- Andreas N M Eriksson
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FI-40014, Finland.
| | - Cyril Rigaud
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FI-40014, Finland.
| | - Anne Rokka
- Turku Proteomics Facility, Turku University, Tykistökatu 6, 20520 Turku, Finland.
| | - Morten Skaugen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Campus Ås, Universitetstunet 3, 1430 Ås, Norway.
| | - Jenna H Lihavainen
- Umeå Plant Science Centre, Umeå University, KB. K3 (Fys. Bot.), Artedigränd 7, Fysiologisk botanik, UPSC, KB. K3 (B3.44.45) Umeå universitet, 901 87 Umeå, Sweden.
| | - Eeva-Riikka Vehniäinen
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FI-40014, Finland.
| |
Collapse
|
33
|
Pesavento S, Bilel S, Murari M, Gottardo R, Arfè R, Tirri M, Panato A, Tagliaro F, Marti M. Zebrafish larvae: A new model to study behavioural effects and metabolism of fentanyl, in comparison to a traditional mice model. MEDICINE, SCIENCE, AND THE LAW 2022; 62:188-198. [PMID: 35040690 DOI: 10.1177/00258024221074568] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In an effort to find alternatives to study in vivo the so-called New Psychoactive Substances (NPS), the present work was undertaken to investigate the use of zebrafish larvae as animal model in pharmaco-toxicology, providing behavioural and metabolism information. For this purpose, fentanyl, the progenitor of an extremely dangerous group of NPS, was administered at different doses to zebrafish larvae (1, 10, 50, 100 µM) in comparison to mice (0.1, 1, 6, 15 mg/kg), as a well-established animal model. A behavioural assay was performed at the time of the peak effect of fentanyl, showing that the results in larvae are consistent with those observed in mice. On the other hand, several morphological abnormalities (namely yolk sac edema, abnormal pericardial edema, jaw defect and spinal curvature) were found in larvae mostly at high fentanyl doses (50, 100 µM). Larva extract and mice urine were analyzed by using liquid chromatography coupled to high resolution mass spectrometry to identify the metabolic pathways of fentanyl. The main metabolites detected were norfentanyl and hydroxyfentanyl in both the tested models. In conclusion, the present study provides evidence that fentanyl effects on zebrafish larvae and metabolism are similar to rodents and consequently support the hypothesis of using zebrafish larvae as a suitable rapid screening tool to investigate new drugs, and particularly NPS.
Collapse
Affiliation(s)
- S Pesavento
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - S Bilel
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, 9299University of Ferrara, Italy
| | - M Murari
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - R Gottardo
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - R Arfè
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, 9299University of Ferrara, Italy
| | - M Tirri
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, 9299University of Ferrara, Italy
| | - A Panato
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - F Tagliaro
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- "World-Class Research Center" Digital biodesign and personalized healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
| | - M Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, 9299University of Ferrara, Italy
- Collaborative Center of the National Early Warning System, Department for Anti-Drug Policies, Presidency of the Council of Ministers, Italy
| |
Collapse
|
34
|
Jia ZL, Zhu CY, Rajendran RS, Xia Q, Liu KC, Zhang Y. Impact of airborne total suspended particles (TSP) and fine particulate matter (PM 2.5 )-induced developmental toxicity in zebrafish (Danio rerio) embryos. J Appl Toxicol 2022; 42:1585-1602. [PMID: 35315093 DOI: 10.1002/jat.4325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 01/11/2023]
Abstract
Airborne total suspended particles (TSP) and particulate matter (PM2.5 ) threaten global health and their potential impact on cardiovascular and respiratory diseases are extensively studied. Recent studies attest premature deaths, low birth weight, and congenital anomalies in the fetus of pregnant women exposed to air pollution. In this regard, only few studies have explored the effects of TSP and PM2.5 on cardiovascular and cerebrovascular development. As both TSP and PM2.5 differ in size and composition, this study is attempted to assess the variability in toxicity effects between TSP and PM2.5 on the development of cardiovascular and cerebrovascular systems and the underlying mechanisms in a zebrafish model. To explore the potential toxic effects of TSP and PM2.5 , zebrafish embryos/larvae were exposed to 25, 50, 100, 200, and 400 μg/ml of TSP and PM2.5 from 24 to 120 hpf (hours post-fertilization). Both TSP and PM2.5 exposure increased the rate of mortality, malformations, and oxidative stress, whereas locomotor behavior, heart rate, blood flow velocity, development of cardiovasculature and neurovasculature, and dopaminergic neurons were reduced. The expression of genes involved in endoplasmic reticulum stress (ERS), Wnt signaling, and central nervous system (CNS) development were altered in a dose- and time-dependent manner. This study provides evidence for acute exposure to TSP and PM2.5 -induced cardiovascular and neurodevelopmental toxicity, attributed to enhanced oxidative stress and aberrant gene expression. Comparatively, the effects of PM2.5 were more pronounced than TSP.
Collapse
Affiliation(s)
- Zhi-Li Jia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, China.,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, China.,School of life sciences, Henan University, Kaifeng, Henan Province, China
| | - Cheng-Yue Zhu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, China.,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, China
| | - R Samuel Rajendran
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, China.,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, China
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, China.,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, China
| | - Ke-Chun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, China.,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, China.,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, China
| |
Collapse
|
35
|
Wiegand J, Cheng V, Reddam A, Avila-Barnard S, Volz DC. Triphenyl phosphate-induced pericardial edema is associated with elevated epidermal ionocytes within zebrafish embryos. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 89:103776. [PMID: 34798236 PMCID: PMC8724387 DOI: 10.1016/j.etap.2021.103776] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 05/16/2023]
Abstract
Triphenyl phosphate (TPHP) is an organophosphate ester-based plasticizer and flame retardant. The objective of this study was to identify the potential role of epidermal ionocytes in mediating TPHP-induced pericardial edema within zebrafish embryos. Exposure to TPHP from 24 to 72 h post fertilization (hpf) resulted in a significant increase in pericardial edema and the number of ionocytes at 72 hpf relative to time-matched embryos treated with vehicle. In addition, co-exposure of embryos to mannitol (an osmotic diuretic) blocked TPHP-induced pericardial edema and effects on ionocyte abundance. However, knockdown of ATPase1a1.4 - an abundant Na+/K+-ATPase localized to epidermal ionocytes - mitigated TPHP-induced effects on ionocyte abundance but not pericardial edema, whereas co-exposure of embryos to ouabain - a Na+/K+-ATPase inhibitor - enhanced TPHP-induced pericardial edema but not ionocyte abundance. Overall, our findings suggest that TPHP may have multiple mechanisms of toxicity leading to an increase in ionocyte abundance and pericardial edema within developing zebrafish embryos.
Collapse
Affiliation(s)
- Jenna Wiegand
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Vanessa Cheng
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Aalekhya Reddam
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Sarah Avila-Barnard
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - David C Volz
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
36
|
Park SH, Kim K. Microplastics induced developmental toxicity with microcirculation dysfunction in zebrafish embryos. CHEMOSPHERE 2022; 286:131868. [PMID: 34399253 DOI: 10.1016/j.chemosphere.2021.131868] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) and nanoplastics (NPs) have attracted worldwide attention as potential environmental pollutants. However, toxic effects of exposure to MPs and NPs on organisms at developmental stages have not been elucidated yet. In this study, zebrafish embryos at early stage were used to evaluate potential toxic effects of exposure to MPs with diameter of 1 μm and NPs with diameter of 0.4 μm. Solution containing NPs was optically more transparent than solution containing MPs at the same mass concentration. However, exposure to NPs induced significantly higher mortality rate of zebrafish embryos than exposure to MPs. Exposure to MPs or NPs caused pathological changes of caudal vein plexus. In addition, caudal tissues were impaired with inhibition of intact growth of zebrafish embryos. Peripheral microcirculation at caudal region was significantly deteriorated by exposure to MPs or NPs. However, systematic perfusion was still maintained with preservation of RBC velocity profiles regardless of exposure to MPs or NPs. This study provides a new insight to the use of plastics, demonstrating that exposure to MPs or NPs can lead to developmental disorder with significant impairment of growth and peripheral microcirculation dysfunction.
Collapse
Affiliation(s)
- Sung Ho Park
- Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Kiwoong Kim
- Mechanical Engineering, Hannam University, Daejeon, 34430, South Korea.
| |
Collapse
|
37
|
Sánchez-Aceves LM, Pérez-Alvarez I, Gómez-Oliván LM, Islas-Flores H, Barceló D. Developmental alterations, teratogenic effects, and oxidative disruption induced by ibuprofen, aluminum, and their binary mixture on Danio rerio. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118078. [PMID: 34534830 DOI: 10.1016/j.envpol.2021.118078] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Several studies highlighted the ubiquitous presence of ibuprofen and aluminum in the aquatic environment around the world and demonstrated their potential to induce embryotoxic and teratogenic defects on aquatic species individually. Although studies that evaluate developmental alterations induced by mixtures of these pollutants are scarce; and, since environmental contamination presented in the form of a mixture of toxicants with different chemical properties and toxicity mechanisms capable of generating interactions; the objective of this study was to evaluate the developmental defects, teratogenic alterations, and oxidative stress induced by individual forms and the mixture of ibuprofen (IBU) and aluminum (Al) on zebrafish embryos. Oocytes exposed to environmentally relevant concentrations of IBU (0.1-20 μg L-1) and Al (0.01-8 mg L-1) and one binary mixture. The LC50 and EC50 were obtained to calculate the teratogenic index (TI). The IBU LC50, EC50, and TI were 8.06 μg L-1, 2.85 μg L-1 and 2.82. In contrast, Al LC50 was 5.0 mg L-1with an EC50 of 3.58 mg L-1 and TI of 1.39. The main alterations observed for individual compounds were hatching alterations, head malformation, skeletal deformities, hypopigmentation, pericardial edema, and heart rate impairment. The mixture also showed significant delays to embryonic development. Moreover, oxidative stress biomarkers of cellular oxidation and antioxidant defenses at 72 and 96 hpf significantly increased. Results show that environmentally relevant concentrations of ibuprofen (IBU), aluminum (Al), and their mixture promote a series of developmental defects, teratogenic effects, and oxidative disruption on D. rerio embryos, and the interaction of both substances altered the response. In conclusion, morphological and biochemical tests are suitable tools for assessing the health risk of aquatic wildlife by exposure to individual and mixed pollutants in freshwater bodies.
Collapse
Affiliation(s)
- Livier M Sánchez-Aceves
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Itzayana Pérez-Alvarez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico.
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA, CSIC), Jordi Girona 18, 08017, Barcelona, Spain
| |
Collapse
|
38
|
Dopkins N, Neameh WH, Hall A, Lai Y, Rutkovsky A, Gandy AO, Lu K, Nagarkatti PS, Nagarkatti M. Effects of Acute 2,3,7,8-Tetrachlorodibenzo-p-Dioxin Exposure on the Circulating and Cecal Metabolome Profile. Int J Mol Sci 2021; 22:11801. [PMID: 34769237 PMCID: PMC8583798 DOI: 10.3390/ijms222111801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a polyhalogenated planar hydrocarbon belonging to a group of highly toxic and persistent environmental contaminants known as "dioxins". TCDD is an animal teratogen and carcinogen that is well characterized for causing immunosuppression through activation of aryl hydrocarbon receptor (AHR). In this study, we investigated the effect of exposure of mice to an acute dose of TCDD on the metabolic profile within the serum and cecal contents to better define the effects of TCDD on host physiology. Our findings demonstrated that within the circulating metabolome following acute TCDD exposure, there was significant dysregulation in the metabolism of bioactive lipids, amino acids, and carbohydrates when compared with the vehicle (VEH)-treated mice. These widespread changes in metabolite abundance were identified to regulate host immunity via modulating nuclear factor-kappa B (NF-κB) and extracellular signal-regulated protein kinase (ERK1/2) activity and work as biomarkers for a variety of organ injuries and dysfunctions that follow TCDD exposure. Within the cecal content of mice exposed to TCDD, we were able to detect changes in inflammatory markers that regulate NF-κB, markers of injury-related inflammation, and changes in lysine degradation, nicotinamide metabolism, and butanoate metabolism, which collectively suggested an immediate suppression of broad-scale metabolic processes in the gastrointestinal tract. Collectively, these results demonstrate that acute TCDD exposure results in immediate irregularities in the circulating and intestinal metabolome, which likely contribute to TCDD toxicity and can be used as biomarkers for the early detection of individual exposure.
Collapse
Affiliation(s)
- Nicholas Dopkins
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Wurood Hantoosh Neameh
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Alina Hall
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Yunjia Lai
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Alex Rutkovsky
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Alexa Orr Gandy
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Prakash S Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| |
Collapse
|
39
|
Lizano-Fallas V, Carrasco Del Amor A, Cristobal S. Systematic analysis of chemical-protein interactions from zebrafish embryo by proteome-wide thermal shift assay, bridging the gap between molecular interactions and toxicity pathways. J Proteomics 2021; 249:104382. [PMID: 34555547 DOI: 10.1016/j.jprot.2021.104382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023]
Abstract
The molecular interaction between chemicals and proteins often promotes alteration of cellular function. One of the challenges of the toxicology is to predict the impact of exposure to chemicals. Assessing the impact of exposure implies to understand their mechanism of actions starting from identification of specific protein targets of the interaction. Current methods can mainly predict effects of characterized chemicals with knowledge of its targets, and mechanism of actions. Here, we show that proteome-wide thermal shift methods can identify chemical-protein interactions and the protein targets from bioactive chemicals. We analyzed the identified targets from a soluble proteome extracted from zebrafish embryo, that is a model system for toxicology. To evaluate the utility to predict mechanism of actions, we discussed the applicability in four cases: single chemicals, chemical mixtures, novel chemicals, and novel drugs. Our results showed that this methodology could identify the protein targets, discriminate between protein increasing and decreasing in solubility, and offering additional data to complement the map of intertwined mechanism of actions. We anticipate that the proteome integral solubility alteration (PISA) assay, as it is defined here for the unbiased identification of protein targets of chemicals could bridge the gap between molecular interactions and toxicity pathways. SIGNIFICANCE: One of the challenges of the environmental toxicology is to predict the impact of exposure to chemicals on environment and human health. Our phenotype should be explained by our genotype and the environmental exposure. Genomic methodologies can offer a deep analysis of human genome that alone cannot explain our risks of disease. We are starting to understand the key role of exposure to chemicals on our health and risks of disease. Here, we present a proteomic-based method for the identification of soluble proteins interacting with chemicals in zebrafish embryo and discuss the opportunities to complement the map of toxicity pathway perturbations. We anticipate that this PISA assay could bridge the gap between molecular interactions and toxicity pathways.
Collapse
Affiliation(s)
- Veronica Lizano-Fallas
- Department of Biomedical and Clinical Sciences, Cell Biology, Medical Faculty, Linköping University, Linköping 581 85, Sweden
| | - Ana Carrasco Del Amor
- Department of Biomedical and Clinical Sciences, Cell Biology, Medical Faculty, Linköping University, Linköping 581 85, Sweden
| | - Susana Cristobal
- Department of Biomedical and Clinical Sciences, Cell Biology, Medical Faculty, Linköping University, Linköping 581 85, Sweden.; Ikerbasque, Basque Foundation for Science, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena, s/n, Leioa 48940, Spain..
| |
Collapse
|
40
|
Yang M, Huang J, Zhang S, Zhao X, Feng D, Feng X. Melatonin mitigated circadian disruption and cardiovascular toxicity caused by 6-benzylaminopurine exposure in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112555. [PMID: 34332249 DOI: 10.1016/j.ecoenv.2021.112555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
As a highly effective plant hormone, the overuse of 6-benzylaminopurine (6-BA) may pose potential threats to organisms and the environment. Melatonin is widely known for its regulation of sleep rhythm, and it also shows a beneficial effect in a variety of adverse situations. In order to investigate the harm of 6-BA to vertebrates and whether melatonin can reverse the toxicity induced by 6-BA, we analyzed the circadian rhythm and cardiovascular system of zebrafish, and further clarified the role of the thyroid endocrine system. The exposure of well-developed embryos started at 2 hpf, then 6-BA and/or melatonin were carried out. The results indicated that 6-BA disturbed the rhythmic activities of the larvae, increased wakefulness, correspondingly reduced their rest, and induced disrupted clock gene expression. Video analysis and qRT-PCR data found that zebrafish under 6-BA exposure showed obvious cardiovascular morphological abnormalities and dysfunction, and the mRNA levels of cardiovascular-related genes (nkx2.5, gata4, myl7, vegfaa and vegfab) were significantly down-regulated. In addition, altered thyroid hormone content and hypothalamus-pituitary-thyroid (HPT) axis-related gene expression were also clearly observed. 1umol/L of melatonin had little effect on zebrafish, but its addition could significantly alleviate the circadian disturbance and cardiovascular toxicity caused by 6-BA, and simultaneously played a regulatory role in thyroid system. Our research revealed the adverse effects of 6-BA on zebrafish larvae and the protective role of melatonin in circadian rhythm, cardiovascular and thyroid systems.
Collapse
Affiliation(s)
- Mengying Yang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Jiaxing Huang
- The Institute of Robotics and Automatic Information System, Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China
| | - Shuhui Zhang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Xin Zhao
- The Institute of Robotics and Automatic Information System, Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China.
| | - Daofu Feng
- Department of General Surgery, Tianjin Medical University General Hospital, No.154 Anshan Road, Tianjin 300052, China.
| | - Xizeng Feng
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China.
| |
Collapse
|
41
|
Huang Y, Zhang J, Tao Y, Ji C, Aniagu S, Jiang Y, Chen T. AHR/ROS-mediated mitochondria apoptosis contributes to benzo[a]pyrene-induced heart defects and the protective effects of resveratrol. Toxicology 2021; 462:152965. [PMID: 34597721 DOI: 10.1016/j.tox.2021.152965] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/06/2021] [Accepted: 09/26/2021] [Indexed: 12/27/2022]
Abstract
Benzo[a]pyrene (BaP), a prototypical polycyclic aromatic hydrocarbon, is widely present in the environment. BaP-induced heart defects have been frequently reported, but the underlying molecular mechanisms remain elusive. Here, we found that BaP increased heart malformations in zebrafish embryos in a concentration-dependent manner, which were attenuated by supplementation with either CH223191 (CH), an aryl hydrocarbon receptor (AHR) inhibitor, or N-acetyl-l-cysteine (NAC), a reactive oxygen species (ROS) scavenger. While CH and NAC both inhibited BaP-induced ROS generation, NAC had no effect on BaP-induced AHR activation. We further demonstrated that BaP increased mitochondrial ROS, decreased mitochondrial membrane potential, and caused endogenous apoptosis, with all these effects being counteracted by supplementation with either CH or NAC. Resveratrol (RSV), a natural AHR antagonist and ROS scavenger, also counteracted the heart malformations caused by BaP. Further experiments showed that RSV attenuated BaP-induced oxidative stress, mitochondrial damage and apoptosis, but had no significant effect on AHR activation. In conclusion, our findings show that BaP induces oxidative stress via AHR activation, which causes mitochondria-mediated intrinsic apoptosis, resulting in heart malformations in zebrafish embryos, and that RSV had a protective effect against BaP-induced heart defects mainly by inhibiting oxidative stress rather than through antagonism of AHR activity.
Collapse
Affiliation(s)
- Yujie Huang
- School of Public Health, Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Jie Zhang
- School of Public Health, Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Yizhou Tao
- School of Public Health, Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Cheng Ji
- School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
| | - Stanley Aniagu
- Toxicology, Risk Assessment, and Research Division, Texas Commission on Environmental Quality, 12015 Park 35 Cir, Austin, TX, USA
| | - Yan Jiang
- School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou, China.
| | - Tao Chen
- School of Public Health, Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.
| |
Collapse
|
42
|
Hansen BH, Nordtug T, Farkas J, Khan EA, Oteri E, Kvæstad B, Faksness LG, Daling PS, Arukwe A. Toxicity and developmental effects of Arctic fuel oil types on early life stages of Atlantic cod (Gadus morhua). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 237:105881. [PMID: 34139396 DOI: 10.1016/j.aquatox.2021.105881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 05/18/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
Due to the heavy fuel oil (HFO) ban in Arctic maritime transport and new legislations restricting the sulphur content of fuel oils, new fuel oil types are continuously developed. However, the potential impacts of these new fuel oil types on marine ecosystems during accidental spills are largely unknown. In this study, we studied the toxicity of three marine fuel oils (two marine gas oils with low sulphur contents and a heavy fuel oil) in early life stages of cod (Gadus morhua). Embryos were exposed for 4 days to water-soluble fractions of fuel oils at concentrations ranging from 4.1 - 128.3 µg TPAH/L, followed by recovery in clean seawater until 17 days post fertilization. Exposure to all three fuel oils resulted in developmental toxicity, including severe morphological changes, deformations and cardiotoxicity. To assess underlying molecular mechanisms, we studied fuel oil-mediated activation of aryl hydrocarbon receptor (Ahr) gene battery and genes related to cardiovascular, angiogenesis and osteogenesis pathways. Overall, our results suggest comparable mechanisms of toxicity for the three fuel oils. All fuel oils caused concentration-dependant increases of cyp1a mRNA which paralleled ahrr, but not ahr1b transcript expression. On the angiogenesis and osteogenesis pathways, fuel oils produced concentration-specific transcriptional effects that were either increasing or decreasing, compared to control embryos. Based on the observed toxic responses, toxicity threshold values were estimated for individual endpoints to assess the most sensitive molecular and physiological effects, suggesting that unresolved petrogenic components may be significant contributors to the observed toxicity.
Collapse
Affiliation(s)
| | - Trond Nordtug
- SINTEF Ocean, Climate and Environment, Trondheim, Norway
| | - Julia Farkas
- SINTEF Ocean, Climate and Environment, Trondheim, Norway
| | - Essa A Khan
- Norwegian University of Science and Technology, Department of Biology, Trondheim, Norway
| | - Erika Oteri
- Norwegian University of Science and Technology, Department of Biology, Trondheim, Norway
| | - Bjarne Kvæstad
- SINTEF Ocean, Climate and Environment, Trondheim, Norway
| | | | - Per S Daling
- SINTEF Ocean, Climate and Environment, Trondheim, Norway
| | - Augustine Arukwe
- Norwegian University of Science and Technology, Department of Biology, Trondheim, Norway
| |
Collapse
|
43
|
Zhang G, Yu X, Huang G, Lei D, Tong M. An improved automated zebrafish larva high-throughput imaging system. Comput Biol Med 2021; 136:104702. [PMID: 34352455 DOI: 10.1016/j.compbiomed.2021.104702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/09/2021] [Accepted: 07/26/2021] [Indexed: 12/16/2022]
Abstract
As a typical multicellular model organism, the zebrafish has been increasingly used in biological research. Despite the efforts to develop automated zebrafish larva imaging systems, existing ones are still defective in terms of reliability and automation. This paper presents an improved zebrafish larva high-throughput imaging system, which makes improvements to the existing designs in the following aspects. Firstly, a single larva extraction strategy is developed to make larva loading more reliable. The aggregated larvae are identified, classified by their numbers and patterns, and separated by the aspiration pipette or water stream. Secondly, the dynamic model of larva motion in the capillary is established and an adaptive robust controller is designed for decelerating the fast-moving larva to ensure the survival rate. Thirdly, rotating the larva to the desired orientation is automated by developing an algorithm to estimate the larva's initial rotation angle. For validating the improved larva imaging system, a real-time heart rate monitoring experiment is conducted as an application example. Experimental results demonstrate that the goals of the improvements have been achieved. With these improvements, the improved zebrafish larva imaging system remarkably reduces human intervention and increases the efficiency and success/survival rates of larva imaging.
Collapse
Affiliation(s)
- Gefei Zhang
- Research Institute of Intelligent Control and Systems, Harbin Institute of Technology, Harbin, 150001, China
| | - Xinghu Yu
- Research Institute of Intelligent Control and Systems, Harbin Institute of Technology, Harbin, 150001, China; Ningbo Institute of Intelligent Equipment Technology Co. Ltd., Ningbo, China
| | - Gang Huang
- Research Institute of Intelligent Control and Systems, Harbin Institute of Technology, Harbin, 150001, China
| | - Dongxu Lei
- Research Institute of Intelligent Control and Systems, Harbin Institute of Technology, Harbin, 150001, China
| | - Mingsi Tong
- Research Institute of Intelligent Control and Systems, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
44
|
Park H, Lee JY, Lim W, Song G. Assessment of the in vivo genotoxicity of pendimethalin via mitochondrial bioenergetics and transcriptional profiles during embryogenesis in zebrafish: Implication of electron transport chain activity and developmental defects. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125153. [PMID: 33485224 DOI: 10.1016/j.jhazmat.2021.125153] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Pendimethalin, an herbicide used to control weeds, acts by inhibiting plant cell division and mitosis. Several studies have reported the detrimental effects of pendimethalin on non-target organisms. It has been found to be especially toxic to aquatic life. Additionally, there is some evidence that pendimethalin induces mitochondrial stress. However, none of the studies have provided information about the functional defects in mitochondria and toxicity during embryogenesis. In this study, we evaluated the impact of pendimethalin on the electron transport chain (ETC) activity and mitochondrial complexes via in vivo screening of oxidative phosphorylation and transcriptional profiles in zebrafish embryos. The results showed that pendimethalin interferes with mitochondrial complexes I and V, which inhibit embryo energy metabolism, thereby leading to developmental defects. Transgenic zebrafish, fli1:eGFP and olig2:dsRed, were used to confirm pendimethalin-induced functional depletion in neurogenesis and vasculogenesis during embryo development. This study provides new insights into the methodology of environmental assessment of biohazard chemicals that target ETC activity in mitochondria. Additionally, the results suggest that real-time respiratory and metabolic monitoring in zebrafish will be useful for the genotoxicity assessment of environmentally hazardous substances and may be used as an alternative model for the control of aquatic environmental pollutants.
Collapse
Affiliation(s)
- Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jin-Young Lee
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
45
|
Krzykwa JC, King SM, Sellin Jeffries MK. Investigating the Predictive Power of Three Potential Sublethal Endpoints for the Fathead Minnow Fish Embryo Toxicity Test: Snout-Vent Length, Eye Size, and Pericardial Edema. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6907-6916. [PMID: 33914518 DOI: 10.1021/acs.est.1c00837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The fish embryo acute toxicity (FET) test is known to be less sensitive than the fish acute test for some chemicals, including neurotoxicants. Thus, there is an interest in identifying additional endpoints that can improve FET test performance. The goal of this project was to advance alternative toxicity testing methods by determining whether select developmental abnormalities-snout-vent length, eye size, and pericardial area-are linked to adverse alterations in ecologically-relevant behaviors and delayed mortality. Fathead minnow (Pimephales promelas) FET tests were conducted with 3,4-dicholoroaniline, cadmium, and perfluorooctanesulfonic acid (PFOS) and developmental abnormalities were quantified. Surviving eleutheroembryos were reared in clean water to 14 days post fertilization (dpf), during which time behaviors and mortality were evaluated. None of the abnormalities evaluated were predictive of behavioral alterations; however, embryos with ≥14% reductions in length or ≥3.54-fold increases in pericardial area had an 80% chance of mortality by 14 dpf. When these abnormalities were used as markers of mortality, the LC50s for cadmium and PFOS were less than those calculated using only standardized FET test endpoints and similar to those obtained via larval fish tests, indicating that the snout-vent length and pericardial area warrant consideration as standard FET test endpoints.
Collapse
Affiliation(s)
- Julie C Krzykwa
- Department of Biology, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Sarah M King
- Department of Biology, Texas Christian University, Fort Worth, Texas 76129, United States
| | | |
Collapse
|
46
|
Yue MS, Martin SE, Martin NR, Taylor MR, Plavicki JS. 2,3,7,8-Tetrachlorodibenzo-p-dioxin exposure disrupts development of the visceral and ocular vasculature. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 234:105786. [PMID: 33735685 PMCID: PMC8457527 DOI: 10.1016/j.aquatox.2021.105786] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 05/09/2023]
Abstract
The aryl hydrocarbon receptor (AHR) has endogenous functions in mammalian vascular development and is necessary for mediating the toxic effects of a number of environmental contaminants. Studies in mice have demonstrated that AHR is necessary for the formation of the renal, retinal, and hepatic vasculature. In fish, exposure to the prototypic AHR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces expression of the AHR biomarker cyp1a throughout the developing vasculature and produces vascular malformations in the head and heart. However, it is not known whether the vascular structures that are sensitive to loss of AHR function are also disrupted by aberrant AHR activation. Here, we report that TCDD-exposure in zebrafish disrupts development of 1) the subintestinal venous plexus (SIVP), which vascularizes the developing liver, kidney, gut, and pancreas, and 2) the superficial annular vessel (SAV), an essential component of the retinal vasculature. Furthermore, we determined that TCDD exposure increased the expression of bmp4, a key molecular mediator of SIVP morphogenesis. We hypothesize that the observed SIVP phenotypes contribute to one of the hallmarks of TCDD exposure in fish - the failure of the yolk sac to absorb. Together, our data describe novel TCDD-induced vascular phenotypes and provide molecular insight into critical factors producing the observed vascular malformations.
Collapse
Affiliation(s)
- Monica S Yue
- Molecular and Environmental Toxicology Center, University of Wisconsin at Madison, Madison, WI, USA; Division of Pharmaceutical Sciences, University of Wisconsin at Madison, Madison, WI, USA
| | - Shannon E Martin
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Nathan R Martin
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Michael R Taylor
- Division of Pharmaceutical Sciences, University of Wisconsin at Madison, Madison, WI, USA
| | - Jessica S Plavicki
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA.
| |
Collapse
|
47
|
Singleman C, Holtzman NG. PCB and TCDD derived embryonic cardiac defects result from a novel AhR pathway. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 233:105794. [PMID: 33662880 DOI: 10.1016/j.aquatox.2021.105794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/30/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
Polychlorinated biphenyls (PCBs) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are environmental contaminants known to impact cardiac development, a key step in the embryonic development of most animals. To date, little is understood of the molecular mechanism driving the observed cardiac defects in exposed fishes. The literature shows PCB & TCDD derived cardiac defects are concurrent with, but not caused by, expression of cyp1A, due to activation of the aryl hydrocarbon receptor (AhR) gene activation pathway. However, in this study, detailed visualization of fish hearts exposed to PCBs and TCDD show that, in addition to a failure of cardiac looping in early heart development, the inner endocardial lining of the heart fails to maintain proper cell adhesion and tissue integrity. The resulting gap between the endocardium and myocardium in both zebrafish and Atlantic sturgeon suggested functional faults in endothelial adherens junction formation. Thus, we explored the molecular mechanism triggering cardiac defects using immunohistochemistry to identify the location and phosphorylation state of key regulatory and adhesion molecules. We hypothesized that PCB and TCDD activates AhR, phosphorylating Src, which then phosphorylates the endothelial adherens junction protein, VEcadherin. When phosphorylated, VEcadherin dimers, found in the endocardium and vasculature, separate, reducing tissue integrity. In zebrafish, treatment with PCB and TCDD contaminants leads to higher phosphorylation of VEcadherin in cardiac tissue suggesting that these cells have reduced connectivity. Small molecule inhibition of Src phosphorylation prevents contaminant stimulated phosphorylation of VEcadherin and rescues both cardiac function and gross morphology. Atlantic sturgeon hearts show parallels to contaminant exposed zebrafish cardiac phenotype at the tissue level. These data suggest that the mechanism for PCB and TCDD action in the heart is, in part, distinct from the canonical mechanism described in the literature and that cardiac defects are impacted by this nongenomic mechanism.
Collapse
Affiliation(s)
- Corinna Singleman
- Department of Biology, Queens College, City University of New York, 65-30 Kissena Blvd, Queens NY 11367-1597, USA; The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Nathalia G Holtzman
- Department of Biology, Queens College, City University of New York, 65-30 Kissena Blvd, Queens NY 11367-1597, USA; The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA.
| |
Collapse
|
48
|
Tapia-Arellano A, Gallardo-Toledo E, Ortiz C, Henríquez J, Feijóo CG, Araya E, Sierpe R, Kogan MJ. Functionalization with PEG/Angiopep-2 peptide to improve the delivery of gold nanoprisms to central nervous system: in vitro and in vivo studies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111785. [DOI: 10.1016/j.msec.2020.111785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/05/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022]
|
49
|
Lee JY, Park H, Lim W, Song G. Benfuresate induces developmental toxicity in zebrafish larvae by generating apoptosis and pathological modifications. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 172:104751. [PMID: 33518044 DOI: 10.1016/j.pestbp.2020.104751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 10/19/2020] [Accepted: 11/12/2020] [Indexed: 05/21/2023]
Abstract
Benfuresate (2,3-dihydro-3,3-dimethylbenzofuran-5-yl ethanesulphonate) is a widely used pre-emergence herbicide of the benzofurane group, which works through the inhibition of lipid synthesis. During embryonic development of zebrafish, benfuresate retards growth while causing internal changes in the body, including alteration of the expression of cell cycle regulators, induction of apoptosis, and suppression of the circulatory system. Acute toxicity towards benfuresate is seen across the range of 5-15 μM in a dose-dependent manner and contributes to pathological conditions and subsequent morphological changes. For embryos 120 h post fertilization (hpf), benfuresate exposure results in an array of malformations involving eye or otolith development, pericardial edema, yolk sac edema, and abnormal curvature of the spine. Mechanistically, benfuresate exposure altered the transcription levels of the proliferative pathway genes ccnd1, ccne1, cdk2, and cdk6, all of which sensitize cells to apoptosis. Benfuresate exposure also affected vascular formation, including the formation of various vessels (DA, SIVs, CA, CV) whose functions in lymphatic-blood circulation were disrupted following decreased vegfaa, vegfc, flt1, flt4, and kdrl expression. These findings provide evidence of embryo-larval toxicity due to benfuresate and highlight the perils of herbicide exposure for non-target organisms far removed from application sites, especially in aquatic environments.
Collapse
Affiliation(s)
- Jin-Young Lee
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
50
|
Chen J. NF-Y is critical for the proper growth of zebrafish embryonic heart and its cardiomyocyte proliferation. Genesis 2021; 59:e23408. [PMID: 33417743 DOI: 10.1002/dvg.23408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 11/06/2022]
Abstract
The ubiquitous NF-Y gene regulates the expression of different genes in various signaling pathways. However, the function of NF-Y in zebrafish heart development is largely unknown. Previously we identified a same group of cell cycle related gene cluster (CCRG) was downregulated in the embryonic hearts with impeded growth due to various stresses. The promoter regions of these CCRG genes shared a most common motif for NF-Y. Chromatin immunoprecipitation experiment demonstrated that the binding of NF-Y to its motif was real on the CCRG candidate gene promoters. Knockdown of embryonic NF-Y by morpholinos led to a small heart, mimicking the abnormal heart phenotype caused by other stresses. In parallel the expression of certain CCRG candidate genes was reduced in the NF-Y A morphant hearts exposed to malignant environments. Absence of NF-Y A also led to undermine cardiomyocyte proliferation and hence less total number of caridomyocytes per heart. Trans-AM Elisa experiment also found that in the presence of the stresses such as TCDD and TNNT2 MO, the binding capacity of NF-Y A subunit to its core motif was reduced. We conclude that NF-Y sustains proper cardiomyocyte proliferation in the heart, thus it plays a positive role in promoting early zebrafish heart growth.
Collapse
Affiliation(s)
- Jing Chen
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|