1
|
Semwal R, Semwal RB, Lehmann J, Semwal DK. Recent advances in immunotoxicity and its impact on human health: causative agents, effects and existing treatments. Int Immunopharmacol 2022; 108:108859. [DOI: 10.1016/j.intimp.2022.108859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/21/2022] [Accepted: 05/10/2022] [Indexed: 12/22/2022]
|
2
|
Lin Z, Huang Y, Jiang H, Zhang D, Yang Y, Geng X, Li B. Functional differences and similarities in activated peripheral blood mononuclear cells by lipopolysaccharide or phytohemagglutinin stimulation between human and cynomolgus monkeys. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:257. [PMID: 33708884 PMCID: PMC7940909 DOI: 10.21037/atm-20-4548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background The monkey is a primary species used in toxicological research. However, the failures of preclinical studies to predict a life-threatening “cytokine storm”, which, for instance, rapidly occurred in six healthy volunteers with the CD28 superagonist monoclonal antibody (mAb) TGN1412 in the first-in-human phase I clinical trial, have emphasized a need to clarify the differences between human and monkey immune systems. Methods In the present study, we analyzed and compared the lymphocyte proliferation, cytokine secretion, and gene expression profiles after phytohemagglutinin (PHA) and lipopolysaccharide (LPS) stimulation of peripheral blood mononuclear cells (PBMCs) from three healthy humans and cynomolgus monkeys (Macaca fascicularis). Results The results derived from comparison with the corresponding control groups showed that PHA in humans induced a stronger proliferation and wider range of cytokine secretion, along with a greater number of differently expressed genes (DEGs), than when PHA was applied in cynomolgus monkeys. The significant upregulation of genes involved in the mitotic cell cycle, including cyclin B2, TOP2A, TYMS, and CEP55, was observed in human PBMCs with PHA stimulation, while only infrequent or slight upregulation occurred in cynomolgus monkey PBMCs, which may be one of the reasons for a stronger response to PHA in humans. In contrast to PHA, LPS in both species induced a similar proliferation ratio, cytokine profile, and DEG count, suggesting that human and cynomolgus monkeys have a similar response intensity for innate immune responses. Furthermore, 38 and 20 overlapped genes under PHA and LPS stimulation, respectively, were found in both species. These overlapped DEGs were associated with the same biological functions, including DNA replication, mitosis, immune response, chemotaxis, and inflammatory response. Thus, these results might reflect the highly conserved signatures of immune responses to PHA/LPS stimulation across the primates. Moreover, there were some differences in antigen processing and presentation, and the interferon gamma (INF-γ)–mediated signaling pathway in these species detected by gene expression profile study. Conclusions In conclusion, this is the first study to compare data on the responses of PBMCs to PHA and LPS in humans versus cynomolgus monkeys, and these findings may provide crucial insights into translating non-human primate (NHP) studies into human trials.
Collapse
Affiliation(s)
- Zhi Lin
- National Institute for Food and Drug Control, National Center for Safety Evaluation of Drugs, Beijing Key Lab for Preclinical Safety Evaluation of Drugs, Beijing, China
| | - Ying Huang
- National Institute for Food and Drug Control, National Center for Safety Evaluation of Drugs, Beijing Key Lab for Preclinical Safety Evaluation of Drugs, Beijing, China
| | - Hua Jiang
- National Institute for Food and Drug Control, National Center for Safety Evaluation of Drugs, Beijing Key Lab for Preclinical Safety Evaluation of Drugs, Beijing, China
| | - Di Zhang
- National Institute for Food and Drug Control, National Center for Safety Evaluation of Drugs, Beijing Key Lab for Preclinical Safety Evaluation of Drugs, Beijing, China
| | - Yanwei Yang
- National Institute for Food and Drug Control, National Center for Safety Evaluation of Drugs, Beijing Key Lab for Preclinical Safety Evaluation of Drugs, Beijing, China
| | - Xingchao Geng
- National Institute for Food and Drug Control, National Center for Safety Evaluation of Drugs, Beijing Key Lab for Preclinical Safety Evaluation of Drugs, Beijing, China
| | - Bo Li
- National Institute for Food and Drug Control, National Center for Safety Evaluation of Drugs, Beijing Key Lab for Preclinical Safety Evaluation of Drugs, Beijing, China
| |
Collapse
|
3
|
Abstract
Immunotoxicology is the study of immune system dysfunction that can result from occupational, inadvertent, or therapeutic exposure to a variety of chemical or biologic agents that alter the immune system and affect human health. Immunotoxicology can manifest in a variety of ways, with one of the most prominent effects being immunosuppression. Immunosuppression can be defined as a reduced ability of the immune system to respond to a challenge from a level considered normal, regardless of whether clinical disease results. Although immunosuppression can lead to an increased incidence and severity of infectious and neoplastic disease, interpreting data from experimental immunotoxicology studies, or even epidemiologic studies, for quantitative risk assessment has been a persistent challenge. Decades of research has resulted in the development of specific assays and the identification of sensitive endpoints that measure effects on the immune response, from which many regulatory agencies have developed specific immunotoxicity testing guidelines. However, establishing a direct link between exposure and disease manifestations for immunosuppression in humans is an ongoing challenge due to inherent limitations of epidemiological studies to draw causal conclusions. Efforts have been made to examine the relationships between laboratory measures of immune response and disease resistance in experimental animal models and also in human studies. The identification of sensitive endpoints and the development of experimental assays to identify suspect immunotoxicants are a primary focus of the field of immunotoxicology. This chapter is organized around sections discussing the impact and scientific basis of immunotoxicity testing, predictive immunotoxicity testing strategies, examples of immunotoxicity testing, and key considerations and recent developments related to effective testing strategies for health risk reduction.
Collapse
Affiliation(s)
- Stacey E Anderson
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA.
| | - Hillary L Shane
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
4
|
Huang Y, Lin Z, Huo Y, Geng X, Li M, Yang Y, Li B. Procainamide-induced autoimmunity: Relationship to T-helper 2-type T-cell activation. Hum Exp Toxicol 2017; 37:647-662. [PMID: 28741378 DOI: 10.1177/0960327117718043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Drug-induced autoimmunity (DIA) refers to a group of adverse drug reactions, and they remain unpredictable largely due to the limited understanding of the mechanisms involved. There is evidence that procainamide can cause autoimmune reactions in humans but the mechanisms involved remain unclear. To examine the cellular and genetic factors involved in the procainamide-induced autoimmune response, we compared rats that are genetically T-helper (Th)2-predisposed (Brown Norway (BN)), Th1-predisposed (Lewis (LEW)) or not genetically predisposed (Sprague Dawley (SD)). We revealed significant differences in response to autoimmunity induced by procainamide among three strains rats, BN was the most sensitive one, SD exhibited less sensitive, while LEW resistance to procainamide. Much more pronounced of Th2-type responses and more complex differentially expressed genes involved in immune regulation and response in BN might contribute to its susceptibleness to DIA. Moreover, similar immune mechanisms were found between BN and SD, which suggesting that these changes would serve as the potential bridge biomarkers to predict DIA among species. This study may also benefit to further understand the toxicological mechanism of drug-induced autoimmune reactions.
Collapse
Affiliation(s)
- Y Huang
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, The Beijing Key Lab for Pre-clinical safety evaluation of Drugs, Beijing, People's Republic of China
| | - Z Lin
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, The Beijing Key Lab for Pre-clinical safety evaluation of Drugs, Beijing, People's Republic of China
| | - Y Huo
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, The Beijing Key Lab for Pre-clinical safety evaluation of Drugs, Beijing, People's Republic of China
| | - X Geng
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, The Beijing Key Lab for Pre-clinical safety evaluation of Drugs, Beijing, People's Republic of China
| | - M Li
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, The Beijing Key Lab for Pre-clinical safety evaluation of Drugs, Beijing, People's Republic of China
| | - Y Yang
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, The Beijing Key Lab for Pre-clinical safety evaluation of Drugs, Beijing, People's Republic of China
| | - B Li
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, The Beijing Key Lab for Pre-clinical safety evaluation of Drugs, Beijing, People's Republic of China
| |
Collapse
|
5
|
DeWitt JC, Germolec DR, Luebke RW, Johnson VJ. Associating Changes in the Immune System with Clinical Diseases for Interpretation in Risk Assessment. CURRENT PROTOCOLS IN TOXICOLOGY 2016; 67:18.1.1-18.1.22. [PMID: 26828330 PMCID: PMC4780336 DOI: 10.1002/0471140856.tx1801s67] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This overview is an update of the unit originally published in 2004. While the basic tenets of immunotoxicity have not changed in the past 10 years, several publications have explored the application of immunotoxicological data to the risk assessment process. Therefore, the goal of this unit is still to highlight relationships between xenobiotic-induced immunosuppression and risk of clinical diseases progression. In immunotoxicology, this may require development of models to equate moderate changes in markers of immune functions to potential changes in incidence or severity of infectious diseases. For most xenobiotics, exposure levels and disease incidence data are rarely available, and safe exposure levels must be estimated based on observations from experimental models or human biomarker studies. Thus, it is important to establish a scientifically sound framework that allows accurate and quantitative interpretation of experimental or biomarker data in the risk assessment process.
Collapse
Affiliation(s)
- Jamie C DeWitt
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Dori R Germolec
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina
| | - Robert W Luebke
- Cardiopulmonary and Immunotoxicology Branch, United States Environmental Protection Agency, Research Triangle Park, North Carolina
| | | |
Collapse
|
6
|
Schmeits PCJ, Schaap MM, Luijten M, van Someren E, Boorsma A, van Loveren H, Peijnenburg AACM, Hendriksen PJM. Detection of the mechanism of immunotoxicity of cyclosporine A in murine in vitro and in vivo models. Arch Toxicol 2014; 89:2325-37. [PMID: 25224403 DOI: 10.1007/s00204-014-1365-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 09/04/2014] [Indexed: 01/25/2023]
Abstract
Transcriptomics in combination with in vitro cell systems is a powerful approach to unravel modes of action of toxicants. An important question is to which extent the modes of action as revealed by transcriptomics depend on cell type, species and study type (in vitro or in vivo). To acquire more insight into this, we assessed the transcriptomic effects of the immunosuppressive drug cyclosporine A (CsA) upon 6 h of exposure of the mouse cytotoxic T cell line CTLL-2, the thymoma EL-4 and primary splenocytes and compared these to the effects in spleens of mice orally treated with CsA for 7 days. EL-4 and CTLL-2 cells showed the highest similarities in response. CsA affected many genes in primary splenocytes that were not affected in EL-4 or CTLL-2. Pathway analysis demonstrated that CsA upregulated the unfolded protein response, endoplasmic reticulum stress and NRF2 activation in EL-4 cells, CTLL-2 cells and primary mouse splenocytes but not in mouse spleen in vivo. As expected, CsA downregulated cell cycle and immune response in splenocytes in vitro, spleens in vivo as well as CTLL-2 in vitro. Genes up- and downregulated in human Jurkat, HepG2 and renal proximal tubular cells were similarly affected in CTLL-2, EL-4 and primary splenocytes in vitro. In conclusion, of the models tested in this study, the known mechanism of immunotoxicity of CsA is best represented in the mouse cytotoxic T cell line CTLL-2. This is likely due to the fact that this cell line is cultured in the presence of a T cell activation stimulant (IL-2) making it more suitable to detect inhibitory effects on T cell activation.
Collapse
Affiliation(s)
- P C J Schmeits
- RIKILT Institute of Food Safety, Wageningen University and Research Centre, P.O. Box 230, 6700 AE, Wageningen, The Netherlands.
- Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | - M M Schaap
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
- Department of Toxicogenetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - M Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
- Department of Toxicogenetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - E van Someren
- Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Research Group Microbiology and Systems Biology, TNO, P.O. Box 360, 3700 AJ, Zeist, The Netherlands
| | - A Boorsma
- Research Group Microbiology and Systems Biology, TNO, P.O. Box 360, 3700 AJ, Zeist, The Netherlands
| | - H van Loveren
- Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
| | - A A C M Peijnenburg
- RIKILT Institute of Food Safety, Wageningen University and Research Centre, P.O. Box 230, 6700 AE, Wageningen, The Netherlands
- Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - P J M Hendriksen
- RIKILT Institute of Food Safety, Wageningen University and Research Centre, P.O. Box 230, 6700 AE, Wageningen, The Netherlands.
| |
Collapse
|
7
|
Transcriptome-based functional classifiers for direct immunotoxicity. Arch Toxicol 2013; 88:673-89. [DOI: 10.1007/s00204-013-1179-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 12/03/2013] [Indexed: 01/28/2023]
|
8
|
Zaccaria KJ, McClure PR. Using Immunotoxicity Information to Improve Cancer Risk Assessment for Polycyclic Aromatic Hydrocarbon Mixtures. Int J Toxicol 2013; 32:236-50. [DOI: 10.1177/1091581813492829] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Estimating cancer risk from environmental mixtures containing polycyclic aromatic hydrocarbons (PAHs) is challenging. Ideally, each mixture would undergo toxicity testing to derive a cancer slope factor (CSF) for use in site-specific cancer risk assessments. However, this whole mixture approach is extremely costly in terms of finances, time, and animal usage. Alternatively, if an untested mixture is “sufficiently similar” to a well-characterized mixture with a CSF, the “surrogate” CSF can be used in risk assessments. We propose that similarity between 2 mixtures could be established using an in vitro battery of genotoxic and nongenotoxic tests. An observed association between carcinogenicity and immunosuppression of PAHs suggests that the addition of immune suppression assays may improve this battery. First, using published studies of benzo[a]pyrene (BaP) and other PAHs, we demonstrated a correlation between the derived immune suppression relative potency factors (RPFs) for 9 PAHs and their respective cancer RPFs, confirming observations published previously. Second, we constructed an integrated knowledge map for immune suppression by BaP based on the available mechanistic information. The map illustrates the mechanistic complexities involved in BaP immunosuppression, suggesting that multiple in vitro tests of immune suppression involving different processes, cell types, and tissues will have greater predictive value for immune suppression in vivo than a single test. Based on these observations, research strategies are recommended to validate a battery of in vitro immune suppression tests that, along with tests for genotoxic and other nongenotoxic modes of cancer action, could be used to establish “sufficient similarity” of 2 mixtures for site-specific cancer risk assessments.
Collapse
Affiliation(s)
| | - Peter R. McClure
- SRC, Inc, Defense and Environmental Solutions, North Syracuse, NY, USA
| |
Collapse
|
9
|
Shao J, Katika MR, Schmeits PCJ, Hendriksen PJM, van Loveren H, Peijnenburg AACM, Volger OL. Toxicogenomics-based identification of mechanisms for direct immunotoxicity. Toxicol Sci 2013; 135:328-46. [PMID: 23824090 DOI: 10.1093/toxsci/kft151] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Compounds with direct immunotoxic properties, including metals, mycotoxins, agricultural pesticides, and industrial chemicals, form potential human health risks due to exposure through food, drinking water, and the environment. Insights into the mechanisms of action are currently lacking for the majority of these direct immunotoxicants. Therefore, the present work aimed to gain insights into the molecular mechanisms underlying direct immunotoxicity. To this end, we assessed in vitro the effects of 31 test compounds on the transcriptome of the human Jurkat T-cell line. These compounds included direct immunotoxicants, immunosuppressive drugs with different mode of actions, and nonimmunotoxic control chemicals. Pathway analysis of the microarray data allowed us to identify canonical pathways and Gene Ontology processes that were transcriptionally regulated in common by immunotoxicants (1) with structural similarities, such as tributyltin chloride and tributyltin oxide that activated the retinoic acid/X receptor signaling pathway and (2) without structural similarities, such as As2O3, dibutyltin chloride, diazinon, MeHg, ochratoxin A (OTA), S9-treated OTA, S9-treated cyclophosphamide, and S9-treated benzo[a]pyrene, which activated unfolded protein response, and FTY720, lindane, and propanil, which activated the cholesterol biosynthesis pathway. In addition, processes uniquely affected by individual immunotoxicants were identified, such as the induction of Notch receptor signaling and the downregulation of acute-phase response genes by OTA. These findings were validated by quantitative real-time PCR analysis of genes involved in these processes. Our study indicated that diverse modes of action are involved in direct immunotoxicity and that a set of pathways or genes, rather than one single gene, can be used to screen compounds for direct immunotoxicity.
Collapse
Affiliation(s)
- Jia Shao
- * RIKILT-Institute of Food Safety, Wageningen University and Research Centre, 6700 AE Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
10
|
Geng XC, Li B, Zhang L, Song Y, Lin Z, Zhang YQ, Wang JZ. Corn oil as a vehicle in drug development exerts a dose-dependent effect on gene expression profiles in rat thymus. J Appl Toxicol 2012; 32:850-7. [DOI: 10.1002/jat.2773] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Revised: 04/09/2012] [Accepted: 04/09/2012] [Indexed: 12/20/2022]
Affiliation(s)
| | - Bo Li
- National Institute for Food and Drug Control; Beijing; 100050; People's Republic of China
| | - Liang Zhang
- BioChain (Beijing) Science and Technology Inc.; Beijing; 100176; People's Republic of China
| | - Ying Song
- School of Pharmaceutical Science; Sun Yat-sen University; Guangzhou; 510006; People's Republic of China
| | - Zhi Lin
- National Institute for Food and Drug Control; Beijing; 100050; People's Republic of China
| | - Ying-Qi Zhang
- Biotechnology Center, School of Pharmacy; The Fourth Military Medical University; Xi'an; 710032; People's Republic of China
| | - Jun-Zhi Wang
- National Institute for Food and Drug Control; Beijing; 100050; People's Republic of China
| |
Collapse
|
11
|
Dietert RR. Fractal immunology and immune patterning: potential tools for immune protection and optimization. J Immunotoxicol 2011; 8:101-10. [PMID: 21428733 DOI: 10.3109/1547691x.2011.559951] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fractals are self-similar geometric patterns that are inherently embedded throughout nature. Their discovery and application have produced significant benefits across a wide variety of biomedical applications. Recently, complex physiological systems (e.g., neurological, respiratory, cardiovascular) have been shown to exhibit fractal dimensions that are capable of distinguishing among physiologic function versus dysfunction and, in turn, health versus disease. Additionally, fractal data suggest that the immune system operates under similar patterned relationships, and this is in keeping with the recent findings that immune-based diseases are organized according to specific patterns. This review considers the potential benefits of using fractal analysis along with considerations of nonlinearity, scaling, and chaos as calibration tools to obtain holistic information on immune-environment interactions. The potential uses of both synthetic and artificial immune systems for improved protection of the biological immune system are also discussed. The addition of holistic measures of immune status to currently collected biomarkers of immunotoxicity has the potential to increase the effectiveness of health risk assessment. The objective of extending fractal physiology analyses to the immune system would be to promote immune optimization as a public health benefit, which would include improved: (1) immunotoxicity testing and effective health risk reduction and (2) measures of effective immune management for children, adults, and aged individuals.
Collapse
Affiliation(s)
- Rodney R Dietert
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
12
|
Meland S, Farmen E, Heier LS, Rosseland BO, Salbu B, Song Y, Tollefsen KE. Hepatic gene expression profile in brown trout (Salmo trutta) exposed to traffic related contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:1430-1443. [PMID: 21295820 DOI: 10.1016/j.scitotenv.2011.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 01/05/2011] [Accepted: 01/06/2011] [Indexed: 05/30/2023]
Abstract
In recent decades there has been growing concern about highway runoff as a potential threat and a significant source of diffuse pollution to the aquatic environment. However, identifying ecotoxicological effects might be challenging, especially at sites where the traffic density is modest to low. Hence, there is a need for alternatives e.g. small-scale toxicity tests using conventional endpoints such as mortality and growth. The present paper presents result from a transcriptional (microarray) screening performed on liver from brown trout (Salmo trutta) acutely exposed (4h) to traffic-related contaminants during washing of a highway tunnel outside the city of Oslo, Norway. The results demonstrated that traffic-related contaminants caused a plethora of molecular changes that persisted several hours after the exposure (i.e. during recovery). Beside an evident transcriptional up-regulation of e.g. cytochrome P450 1A1 (CYP1A1), cytochrome P450 1B1 (CYP1B1), and cytosolic sulfotransferase (SULT) involved in xenobiotic biotransformation, the observed responses were predominantly associated with immunosuppression, oxidative damage, and endocrine modulation. The observed responses were likely caused by an interaction of several contaminants including trace metals and organic micro-pollutants such as PAHs.
Collapse
Affiliation(s)
- Sondre Meland
- Norwegian University of Life Sciences (UMB), Department of Plant and Environmental Sciences, P.O. Box 5003, N-1432 Ås, Norway.
| | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Martini F, Fernández C, Segundo LS, Tarazona JV, Pablos MV. Assessment of potential immunotoxic effects caused by cypermethrin, fluoxetine, and thiabendazole using heat shock protein 70 and interleukin-1β mRNA expression in the anuran Xenopus laevis. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2010; 29:2536-2543. [PMID: 20886500 DOI: 10.1002/etc.313] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The current study describes the effect of cypermethrin, fluoxetine, and thiabendazole, at environmentally relevant concentrations, on the expression of heat shock protein 70 (HSP70) and interleukin 1β (IL-1β), using Xenopus laevis larvae as animal model. Cytokines and interleukins are considered good predictors of the immunotoxic potential of xenobiotics. Tadpoles at stage 47 (normal tables of X. laevis) were exposed under static conditions to: 0.3 and 30 µg/L fluoxetine, 0.7 µg/L thiabendazole, and 0.24 µg/L cypermethrin. The effects were evaluated at 7, 24, and 72 h, and 6 and 9 d. Randomly chosen tadpoles were used as genetic material for detection of hsp70 and IL-1β mRNA induction through reverse transcription PCR. Tadpoles exposed to 30 µg/L fluoxetine showed mRNA expression of both genes at all exposure times, whereas at 0.3 µg/L a peak response for hsp70 was observed after 24 h, and the increase in IL-1β mRNA was statistically significant with respect to the control 72 h after exposure. Thiabendazole induced a high expression of mRNA for both hsp70 and IL-1β at all exposure times. Cypermethrin increased the hsp70 mRNA levels, with a peak at 24 h, and provoked high expression of IL-1β mRNA at all exposure times. Considering the relationship between HSP70 and IL-1β and their involvement (mainly of IL-1β) in immune responses, certain changes observed in their expression could be considered warning indicators of potential immunotoxic effects of these substances on Xenopus.
Collapse
Affiliation(s)
- Federica Martini
- Laboratory for Ecotoxicology, Department of Environment, INIA, Ctra de la Coruña, Madrid, Spain.
| | | | | | | | | |
Collapse
|
15
|
House RV, Selgrade MJ. A Quarter-Century of Immunotoxicology: Looking Back, Looking Forward. Toxicol Sci 2010; 118:1-3. [DOI: 10.1093/toxsci/kfq242] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
16
|
Hochstenbach K, van Leeuwen DM, Gmuender H, Stølevik SB, Nygaard UC, Løvik M, Granum B, Namork E, van Delft JHM, van Loveren H. Transcriptomic profile indicative of immunotoxic exposure: in vitro studies in peripheral blood mononuclear cells. Toxicol Sci 2010; 118:19-30. [PMID: 20702593 DOI: 10.1093/toxsci/kfq239] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Investigating the immunotoxic effects of exposure to chemicals usually comprises evaluation of weight and histopathology of lymphoid tissues, various lymphocyte parameters in the circulation, and immune function. Immunotoxicity assessment is time consuming in humans or requires a high number of animals, making it expensive. Furthermore, reducing the use of animals in research is an important ethical and political issue. Immunotoxicogenomics represents a novel approach to investigate immunotoxicity able of overcoming these limitations. The current research, embedded in the European Union project NewGeneris, aimed to retrieve gene expression profiles that are indicative of exposure to immunotoxicants. To this end, whole-genome gene expression was investigated in human peripheral blood mononuclear cells in response to in vitro exposure to a range of immunotoxic chemicals (4-hydroxy-2-nonenal, aflatoxin B1, benzo[a]pyrene, deoxynivalenol, ethanol, malondialdehyde, polychlorinated biphenyl 153, and 2,3,7,8-tetrachlorodibenzo-p-dioxin) and nonimmunotoxic chemicals (acrylamide, dimethylnitrosamine, 2-amino-3-methyl-3H-imidazo[4,5-F]quinoline, and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine). Using Agilent oligonucleotide microarrays, whole-genome gene expression profiles were generated, which were analyzed using Genedata's Expressionist software. Using Recursive Feature Elimination and Support Vector Machine, a set of 48 genes was identified that distinguishes the immunotoxic from the nonimmunotoxic compounds. Analysis for enrichment of biological processes showed the gene set to be highly biologically and immunologically relevant. We conclude that we have identified a promising transcriptomic profile indicative of immunotoxic exposure.
Collapse
Affiliation(s)
- Kevin Hochstenbach
- Department of Health Risk Analysis and Toxicology, Maastricht University, 6200 MD Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lankveld DPK, Van Loveren H, Baken KA, Vandebriel RJ. In vitro testing for direct immunotoxicity: state of the art. Methods Mol Biol 2010; 598:401-23. [PMID: 19967527 DOI: 10.1007/978-1-60761-401-2_26] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Immunotoxicity is defined as the toxicological effects of xenobiotics including pharmaceuticals on the functioning of the immune system and can be induced in either direct or indirect ways. Direct immunotoxicity is caused by the effects of chemicals on the immune system, leading to immunosuppression and subsequently to reduced resistance to infectious diseases or certain forms of nongenotoxic carcinogenicity.In vitro testing has several advantages over in vivo testing, such as detailed mechanistic understanding, species extrapolation (parallelogram approach), and reduction, refinement, and replacement of animal experiments. In vitro testing for direct immunotoxicity can be done in a two-tiered approach, the first tier measuring myelotoxicity. If this type of toxicity is apparent, the compound can be designated immunotoxic. If not, the compound is tested for lymphotoxicity (second tier). Several in vitro assays for lymphotoxicity exist, each comprising specific functions of the immune system (cytokine production, cell proliferation, cytotoxic T-cell activity, natural killer cell activity, antibody production, and dendritic cell maturation). A brief description of each assay is provided. Only one assay, the human whole blood cytokine release assay, has undergone formal prevalidation, while another one, the lymphocyte proliferation assay, is progressing towards that phase.Progress in in vitro testing for direct immunotoxicity includes prevalidation of existing assays and selection of the assay (or combination of assays) that performs best. To avoid inter-species extrapolation, assays should preferably use human cells. Furthermore, the use of whole blood has the advantage of comprising multiple cell types in their natural proportion and environment. The so-called "omics" techniques provide additional mechanistic understanding and hold promise for the characterization of classes of compounds and prediction of specific toxic effects. Technical innovations such as high-content screening and high-throughput analysis will greatly expand the opportunities for in vitro testing.
Collapse
|
18
|
Abstract
A brief historical perspective of immunotoxicology is presented describing the early development of predictive screening tests to identify xenobiotics that may cause immunosuppression or skin sensitization. This includes a discussion of the evolution of the discipline to support a better understanding of basic -science and improvement of human risk assessment. The last section describes the need for additional validated screening tests and recent efforts to address this gap in the other areas of immunotoxicology including food and respiratory allergy, autoimmunity and immunostimulation.
Collapse
|
19
|
Zhou T, Chou J, Watkins PB, Kaufmann WK. Toxicogenomics: transcription profiling for toxicology assessment. EXS 2009; 99:325-66. [PMID: 19157067 DOI: 10.1007/978-3-7643-8336-7_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Toxicogenomics, the application of transcription profiling to toxicology, has been widely used for elucidating the molecular and cellular actions of chemicals and other environmental stressors on biological systems, predicting toxicity before any functional damages, and classification of known or new toxicants based on signatures of gene expression. The success of a toxicogenomics study depends upon close collaboration among experts in different fields, including a toxicologist or biologist, a bioinformatician, statistician, physician and, sometimes, mathematician. This review is focused on toxicogenomics studies, including transcription profiling technology, experimental design, significant gene extraction, toxicological results interpretation, potential pathway identification, database input and the applications of toxicogenomics in various fields of toxicological study.
Collapse
Affiliation(s)
- Tong Zhou
- Center for Drug Safety Sciences, The Hamner Institutes for Health Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, NC, USA.
| | | | | | | |
Collapse
|
20
|
Boverhof DR, Gollapudi BB, Hotchkiss JA, Osterloh-Quiroz M, Woolhiser MR. Evaluation of a toxicogenomic approach to the local lymph node assay (LLNA). Toxicol Sci 2008; 107:427-39. [DOI: 10.1093/toxsci/kfn247] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
21
|
Mustafa A, Holladay SD, Goff M, Witonsky SG, Kerr R, Reilly CM, Sponenberg DP, Gogal RM. An enhanced postnatal autoimmune profile in 24 week-old C57BL/6 mice developmentally exposed to TCDD. Toxicol Appl Pharmacol 2008; 232:51-9. [PMID: 18534654 DOI: 10.1016/j.taap.2008.04.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 04/12/2008] [Accepted: 04/15/2008] [Indexed: 11/27/2022]
Abstract
Developmental exposure of mice to the environmental contaminant and AhR agonist, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), causes persistent postnatal suppression of T cell-mediated immune responses. The extent to which prenatal TCDD may induce or exacerbate postnatal autoimmune disease remains unknown. In the present study, time-pregnant high affinity AhR C57BL/6 mice received a single oral administration of 0, 2.5, or 5 microg/kg TCDD on gestation day (gd) 12. Offspring of these mice (n=5/gender/treatment) were evaluated at 24 weeks-of-age and showed considerable immune dysregulation that was often gender-specific. Decreased thymic weight and percentages of CD4(+)CD8(+) thymocytes, and increased CD4(+)CD8(-) thymocytes, were present in the female but not male offspring. Males but not females showed decreased CD4(-)CD8(+) T cells, and increased Vbeta3(+) and Vbeta17a(+) T cells, in the spleen. Males but not females also showed increased percentages of bone marrow CD24(-)B220(+) B cell progenitors. Antibody titers to dsDNA, ssDNA and cardiolipin displayed increasing trends in both male and female mice, reaching significance for anti-dsDNA in both genders and for ssDNA in males at 5 microg/kg TCDD. Immunofluorescent staining of IgG and C3 deposition in kidney glomeruli increased in both genders of prenatal TCDD-exposed mice, suggestive of early stages of autoimmune glomerulonephritis. Collectively, these results show that exposure to TCDD during immune system development causes persistent humoral immune dysregulation as well as altered cell-mediated responses, and induces an adult profile of changes suggestive of increased risk for autoimmune disease.
Collapse
Affiliation(s)
- A Mustafa
- Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0342, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Burns-Naas LA, Hastings KL, Ladics GS, Makris SL, Parker GA, Holsapple MP. What’s So Special about the Developing Immune System? Int J Toxicol 2008; 27:223-54. [DOI: 10.1080/10915810801978110] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The evolution of the subdiscipline of developmental immunotoxicology (DIT) as it exists today has been shaped by significant regulatory pressures as well as key scientific advances. This review considers the role played by legislation to protect children’s health, and on the emergence of immunotoxcity and developmental immunotoxicity guidelines, as well as providing some context to the need for special attention on DIT by considering the evidence that the developing immune system may have unique susceptibilities when compared to the adult immune system. Understanding the full extent of this potential has been complicated by a paucity of data detailing the development of the immune system during critical life stages as well as by the complexities of comparisons across species. Notably, there are differences between humans and nonhuman species used in toxicity testing that include specific differences relative to the timing of the development of the immune system as well as more general anatomic differences, and these differences must be factored into the interpretation of DIT studies. Likewise, understanding how the timing of the immune development impacts on various immune parameters is critical to the design of DIT studies, parameters most extensively characterized to date in young adult animals. Other factors important to DIT, which are considered in this review, are the recognition that effects other than suppression (e.g., allergy and autoimmunity) are important; the need to improve our understanding of how to assess the potential for DIT in humans; and the role that pathology has played in DIT studies in test animals. The latter point receives special emphasis in this review because pathology evaluations have been a major component of standard nonclinical toxicology studies, and could serve an important role in studies to evaluate DIT. This possibility is very consistent with recommendations to incorporate a DIT evaluation into standard developmental and reproductive toxicology (DART) protocols. The overall objective of this review is to provide a ‘snapshot’ of the current state-of-the-science of DIT. Despite significant progress, DIT is still evolving and it is our hope that this review will advance the science.
Collapse
Affiliation(s)
- Leigh Ann Burns-Naas
- Drug Safety Research and Development, Pfizer Global Research and Development, San Diego, CA 92064, California, USA
| | - Kenneth L. Hastings
- United States Food and Drug Administration, Center for Drug Evaluation Research, Office of New Drugs, Rockville, Maryland, USA
| | | | - Susan L. Makris
- United States Environmental Protection Agency, National Center for Environmental Assessment, Washington, DC, USA
| | | | | |
Collapse
|
23
|
Baken KA, Pennings JL, Jonker MJ, Schaap MM, de Vries A, van Steeg H, Breit TM, van Loveren H. Overlapping gene expression profiles of model compounds provide opportunities for immunotoxicity screening. Toxicol Appl Pharmacol 2008; 226:46-59. [DOI: 10.1016/j.taap.2007.08.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 08/17/2007] [Accepted: 08/29/2007] [Indexed: 11/28/2022]
|
24
|
Baken KA, Arkusz J, Pennings JLA, Vandebriel RJ, van Loveren H. In vitro immunotoxicity of bis(tri-n-butyltin)oxide (TBTO) studied by toxicogenomics. Toxicology 2007; 237:35-48. [PMID: 17553608 DOI: 10.1016/j.tox.2007.04.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 04/24/2007] [Accepted: 04/27/2007] [Indexed: 11/19/2022]
Abstract
The biocide and environmental pollutant bis(tri-n-butyltin)oxide (TBTO) causes thymus atrophy in rodents. Whether the depletion of thymic lymphocytes by tributyltin compounds may be the result of inhibition of cell proliferation or induction of apoptosis is subject of debate. We examined gene expression profiles in primary rat thymocytes exposed to TBTO in vitro at dose levels of 0, 0.1, 0.3, 0.5, and 1.0microM. By measuring cell viability and apoptosis, exposure conditions were selected that would provide information on changes in gene expression preceding or accompanying functional effects of TBTO. Several processes related to TBTO-induced toxicity were detected at the transcriptome level. Effects on lipid metabolisms appeared to be the first indication of disruption of cellular function. Many transcriptional effects of TBTO at higher dose levels were related to apoptotic processes, which corresponded to present or subsequent thymocyte apoptosis observed phenotypically. The gene expression profile was, however, not unambiguous since expression of apoptosis-related genes was both increased and decreased. Stimulation of glucocorticoid receptor signaling appeared to be a relevant underlying mechanism of action. These findings suggest that TBTO exerts its toxic effects on the thymus primarily by affecting apoptotic processes, but the possibility is discussed that this may in fact represent an early effect that precedes inhibition of cell proliferation. At the highest dose level tested, TBTO additionally repressed mitochondrial function and immune cell activation. Our in vitro toxicogenomics approach thus identified several cellular and molecular targets of TBTO that may mediate the toxicity towards thymocytes and thereby its immunosuppressive effects.
Collapse
Affiliation(s)
- Kirsten A Baken
- Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Department of Health Risk Analysis and Toxicology (GRAT), Maastricht University, Maastricht, The Netherlands; National Institute of Public Health and the Environment (RIVM), Laboratory for Toxicology, Pathology and Genetics (TOX), Bilthoven, The Netherlands.
| | - Joanna Arkusz
- Nofer Institute of Occupational Medicine, Department of Toxicology and Carcinogenesis, Lodz, Poland
| | - Jeroen L A Pennings
- National Institute of Public Health and the Environment (RIVM), Laboratory for Toxicology, Pathology and Genetics (TOX), Bilthoven, The Netherlands
| | - Rob J Vandebriel
- National Institute of Public Health and the Environment (RIVM), Laboratory for Toxicology, Pathology and Genetics (TOX), Bilthoven, The Netherlands
| | - Henk van Loveren
- Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Department of Health Risk Analysis and Toxicology (GRAT), Maastricht University, Maastricht, The Netherlands; National Institute of Public Health and the Environment (RIVM), Laboratory for Toxicology, Pathology and Genetics (TOX), Bilthoven, The Netherlands
| |
Collapse
|