1
|
Piorczynski TB, Calixto J, Henry HC, England K, Cowley S, Hansen JM, Hill JT, Hansen JM. Valproic Acid Causes Redox-Regulated Post-Translational Protein Modifications That Are Dependent upon P19 Cellular Differentiation States. Antioxidants (Basel) 2024; 13:560. [PMID: 38790665 PMCID: PMC11117966 DOI: 10.3390/antiox13050560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Valproic acid (VPA) is a common anti-epileptic drug and known neurodevelopmental toxicant. Although the exact mechanism of VPA toxicity remains unknown, recent findings show that VPA disrupts redox signaling in undifferentiated cells but has little effect on fully differentiated neurons. Redox imbalances often alter oxidative post-translational protein modifications and could affect embryogenesis if developmentally critical proteins are targeted. We hypothesize that VPA causes redox-sensitive post-translational protein modifications that are dependent upon cellular differentiation states. Undifferentiated P19 cells and P19-derived neurons were treated with VPA alone or pretreated with D3T, an inducer of the nuclear factor erythroid 2-related factor 2 (NRF2) antioxidant pathway, prior to VPA exposure. Undifferentiated cells treated with VPA alone exhibited an oxidized glutathione redox couple and increased overall protein oxidation, whereas differentiated neurons were protected from protein oxidation via increased S-glutathionylation. Pretreatment with D3T prevented the effects of VPA exposure in undifferentiated cells. Taken together, our findings support redox-sensitive post-translational protein alterations in undifferentiated cells as a mechanism of VPA-induced developmental toxicity and propose NRF2 activation as a means to preserve proper neurogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jason M. Hansen
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA; (T.B.P.); (J.C.); (H.C.H.); (K.E.); (S.C.); (J.M.H.); (J.T.H.)
| |
Collapse
|
2
|
Lapehn S, Colacino JA, Harris C. Spatiotemporal protein dynamics during early organogenesis in mouse conceptuses treated with valproic acid. Neurotoxicol Teratol 2023; 99:107286. [PMID: 37442398 PMCID: PMC10697214 DOI: 10.1016/j.ntt.2023.107286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/29/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
Valproic acid (VPA) is an anti-epileptic medication that increases the risk of neural tube defect (NTD) outcomes in infants exposed during gestation. Previous studies into VPA's mechanism of action have focused on alterations in gene expression and metabolism but have failed to consider how exposure changes the abundance of critical developmental proteins over time. This study evaluates the effects of VPA on protein abundance in the developmentally distinct tissues of the mouse visceral yolk sac (VYS) and embryo proper (EMB) using mouse whole embryo culture. Embryos were exposed to 600 μM VPA at 2 h intervals over 10 h during early organogenesis with the aim of identifying protein pathways relevant to VPA's mechanism of action in failed NTC. Protein abundance was measured through tandem mass tag (TMT) labeling followed by liquid chromatography and mass spectrometry. Overall, there were over 1500 proteins with altered abundance after VPA exposure in the EMB or VYS with 428 of these proteins showing previous gene expression associations with VPA exposure. Limited overlap of significant proteins between tissues supported the conclusion of independent roles for the VYS and EMB in response to VPA. Pathway analysis of proteins with increased or decreased abundance identified multiple pathways with mechanistic relevance to NTC and embryonic development including convergent extension, Wnt Signaling/planar cell polarity, cellular migration, cellular proliferation, cell death, and cytoskeletal organization processes as targets of VPA. Clustering of co-regulated proteins to identify shared patterns of protein abundance over time highlighted 4 h and 6/10 h as periods of divergent protein abundance between control and VPA-treated samples in the VYS and EMB, respectively. Overall, this study demonstrated that VPA temporally alters protein content in critical developmental pathways in the VYS and the EMB during early organogenesis in mice.
Collapse
Affiliation(s)
- Samantha Lapehn
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States.
| | - Justin A Colacino
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Craig Harris
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
3
|
Samrani LMM, Dumont F, Hallmark N, Bars R, Tinwell H, Pallardy M, Piersma AH. Nervous system development related gene expression regulation in the zebrafish embryo after exposure to valproic acid and retinoic acid: A genome wide approach. Toxicol Lett 2023; 384:96-104. [PMID: 37451652 DOI: 10.1016/j.toxlet.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
The evaluation of chemical and pharmaceutical safety for humans is moving from animal studies to New Approach Methodologies (NAM), reducing animal use and focusing on mechanism of action, whilst enhancing human relevance. In developmental toxicology, the mechanistic approach is facilitated by the assessment of predictive biomarkers, which allow mechanistic pathways perturbation monitoring at the basis of human hazard assessment. In our search for biomarkers of maldevelopment, we focused on chemically-induced perturbation of the retinoic acid signaling pathway (RA-SP), a major pathway implicated in a plethora of developmental processes. A genome-wide expression screening was performed on zebrafish embryos treated with two teratogens, all-trans retinoic acid (ATRA) and valproic acid (VPA), and a non-teratogen reference compound, folic acid (FA). Each compound was found to have a specific mRNA expression profile with 248 genes commonly dysregulated by both teratogenic compounds but not by FA. These genes were implicated in several developmental processes (e.g., the circulatory and nervous system). Given the prominent response of neurodevelopmental gene sets, and the crucial need to better understand developmental neurotoxicity, our study then focused on nervous system development. We found 62 genes that are potential early neurodevelopmental toxicity biomarker candidates. These results advance NAM-based safety assessment evaluation by highlighting the usefulness of the RA-SP in providing early toxicity biomarker candidates.
Collapse
Affiliation(s)
- Laura M M Samrani
- Centre for Health Protection National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Université Paris-Saclay, Inflammation, Microbiome and Immunosurveillance, INSERM, Faculté Pharmacie, 91104 Orsay, France; Institute for Risk Assessment Sciences (IRAS), Utrecht University, the Netherlands.
| | | | | | | | | | - Marc Pallardy
- Université Paris-Saclay, Inflammation, Microbiome and Immunosurveillance, INSERM, Faculté Pharmacie, 91104 Orsay, France
| | - Aldert H Piersma
- Centre for Health Protection National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, the Netherlands
| |
Collapse
|
4
|
Cediel-Ulloa A, Lupu DL, Johansson Y, Hinojosa M, Özel F, Rüegg J. Impact of endocrine disrupting chemicals on neurodevelopment: the need for better testing strategies for endocrine disruption-induced developmental neurotoxicity. Expert Rev Endocrinol Metab 2022; 17:131-141. [PMID: 35255767 DOI: 10.1080/17446651.2022.2044788] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/17/2022] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Brain development is highly dependent on hormonal regulation. Exposure to chemicals disrupting endocrine signaling has been associated with neurodevelopmental impairment. This raises concern about exposure to the suspected thousands of endocrine disruptors, and has resulted in efforts to improve regulation of these chemicals. Yet, the causal links between endocrine disruption and developmental neurotoxicity, which would be required for regulatory action, are still largely missing. AREAS COVERED In this review, we illustrate the importance of two endocrine systems, thyroid hormone and retinoic acid pathways, for neurodevelopment. We place special emphasis on TH and RA synthesis, metabolism, and how endocrine disrupting chemicals known or suspected to affect these systems are associated with developmental neurotoxicity. EXPERT OPINION While it is clear that neurodevelopment is dependent on proper hormonal functioning, and evidence is increasing for developmental neurotoxicity induced by endocrine disrupting chemicals, this is not grasped by current chemical testing. Thus, there is an urgent need to develop test methods detecting endocrine disruption in the context of neurodevelopment. Key to this development is further mechanistic insights on the involvement of endocrine signaling in neurodevelopment as well as increased support to develop and validate new test methods for the regulatory context.
Collapse
Affiliation(s)
| | | | - Ylva Johansson
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Maria Hinojosa
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Fatih Özel
- Department of Organismal Biology, Uppsala University, Sweden
- Centre for Women's Mental Health during the Reproductive Lifespan - Womher, Uppsala University, Sweden
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
| | - Joëlle Rüegg
- Department of Organismal Biology, Uppsala University, Sweden
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
| |
Collapse
|
5
|
Ren F, Ning H, Ge Y, Yin Z, Chen L, Hu D, Shen S, Wang X, Wang S, Li R, He J. Bisphenol A Induces Apoptosis in Response to DNA Damage through c-Abl/YAPY357/ p73 Pathway in P19 Embryonal Carcinoma Stem Cells. Toxicology 2022; 470:153138. [DOI: 10.1016/j.tox.2022.153138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 12/22/2022]
|
6
|
Parodi C, Di Fede E, Peron A, Viganò I, Grazioli P, Castiglioni S, Finnell RH, Gervasini C, Vignoli A, Massa V. Chromatin Imbalance as the Vertex Between Fetal Valproate Syndrome and Chromatinopathies. Front Cell Dev Biol 2021; 9:654467. [PMID: 33959609 PMCID: PMC8093873 DOI: 10.3389/fcell.2021.654467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
Prenatal exposure to valproate (VPA), an antiepileptic drug, has been associated with fetal valproate spectrum disorders (FVSD), a clinical condition including congenital malformations, developmental delay, intellectual disability as well as autism spectrum disorder, together with a distinctive facial appearance. VPA is a known inhibitor of histone deacetylase which regulates the chromatin state. Interestingly, perturbations of this epigenetic balance are associated with chromatinopathies, a heterogeneous group of Mendelian disorders arising from mutations in components of the epigenetic machinery. Patients affected from these disorders display a plethora of clinical signs, mainly neurological deficits and intellectual disability, together with distinctive craniofacial dysmorphisms. Remarkably, critically examining the phenotype of FVSD and chromatinopathies, they shared several overlapping features that can be observed despite the different etiologies of these disorders, suggesting the possible existence of a common perturbed mechanism(s) during embryonic development.
Collapse
Affiliation(s)
- Chiara Parodi
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Elisabetta Di Fede
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Angela Peron
- Human Pathology and Medical Genetics, ASST Santi Paolo e Carlo, San Paolo Hospital, Milan, Italy.,Child Neuropsychiatry Unit-Epilepsy Center, Department of Health Sciences, San Paolo Hospital, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy.,Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Ilaria Viganò
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Paolo Grazioli
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Silvia Castiglioni
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Richard H Finnell
- Departments of Molecular and Cellular Biology, Molecular and Human Genetics and Medicine, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Cristina Gervasini
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.,"Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy
| | - Aglaia Vignoli
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valentina Massa
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.,"Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
7
|
Chaudhary S, Sahu U, Parvez S. Melatonin attenuates branch chain fatty acid induced apoptosis mediated neurodegeneration. ENVIRONMENTAL TOXICOLOGY 2021; 36:491-505. [PMID: 33219756 DOI: 10.1002/tox.23055] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/04/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Valproic acid (VPA)-a short branched chain fatty acid (BCFA), is widely recognized as an anticonvulsant and a mood-stabilizing drug, but various adverse effects of VPA have also been investigated. However, the impact of BCFAs aggregation on brain cells, in the pathogenesis of neurodegeneration remains elusive. The objective of this study is to understand the cellular mechanisms underlying VPA-induced neuronal cell death mediated by oxidative stress, and the neuroprotective role of exogenous melatonin treatment on VPA-induced cell death. Neurotoxicity of VPA and protective role exerted by melatonin were assessed in vitro in SH-SY5Y cells and in vivo in the cerebral cortex and cerebellum regions of Wistar rat brain. The results show that melatonin pre-treatment protects the cells from VPA-induced toxicity by exerting an anti-apoptotic and anti-inflammatory effect by regulating apoptotic proteins and pro-inflammatory cytokines. The findings of the present study emphasize novel insights of melatonin as a supplement for the prevention and treatment of neuronal dysfunction induced by VPA.
Collapse
Affiliation(s)
- Shaista Chaudhary
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi, India
| | - Upasana Sahu
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi, India
| |
Collapse
|
8
|
Shafique S, Winn LM. Gestational valproic acid exposure induces epigenetic modifications in murine decidua. Placenta 2021; 107:31-40. [PMID: 33735658 DOI: 10.1016/j.placenta.2021.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Valproic acid (VPA), a widely prescribed antiepileptic drug and an effective treatment for bipolar disorder and neuropathic pain, results in multiple developmental defects following in utero exposure. Uterine decidua provides nutritional and physical support during implantation and early embryonic development. Perturbations in the molecular mechanisms within decidual tissue during early pregnancy might affect early embryonic growth, result in early pregnancy loss or cause complications in the later gestational stage. VPA is a known histone deacetylase inhibitor and epigenetic changes such as histone hyperacetylation and methylation have been proposed as a mechanism of VPA-induced teratogenesis. METHODS This study investigated the effects of in utero VPA exposure on histone modifications in murine decidual tissue. Pregnant CD-1 mice were exposed to 400 mg/kg VPA or saline on GD9 via subcutaneous injection. Decidual tissue from each gestational sac was harvested at 1, 3 and 6 h following exposure. Levels of acetylated histones H3, H4 and H3K56, as well as methylated histones H3K9 and H3K27 were acid extracted and assessed by western blotting followed by acid histone extraction. RESULTS VPA exposure induced a significant increase (p < 0.05) in the levels of acetylated H3 at 1, 3 h; acetylated H4 at 1, 3 and 6 h and trimethylated H3K9 at 6 h. In contrast, no significant perturbations were noted in the levels of monomethylated H3K9, trimethylated H3K27 and acetylated H3K56. DISCUSSION The results from this study suggest that VPA-induced decidual histone modifications might play an important role as a mechanism of VPA-induced teratogenesis during early embryonic growth.
Collapse
Affiliation(s)
- Sidra Shafique
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Louise M Winn
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada; School of Environmental Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
9
|
Shafique S, Winn LM. Characterizing the effects of in utero valproic acid exposure on NF-κB signaling in CD-1 mouse embryos during neural tube closure. Neurotoxicol Teratol 2020; 83:106941. [PMID: 33212164 DOI: 10.1016/j.ntt.2020.106941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/26/2022]
Abstract
Nuclear factor kappa B (NF-κB) is a heterodimer of protein subunits p65 and p50, that regulates the expression of a large number of genes related to cell growth and proliferation. The p65 subunit is activated after phosphorylation by Pim-1, while the p50 subunit is the cleaved product of its precursor molecule p105. Valproic acid (VPA), an antiepileptic drug, is a known teratogen and its exposure during pregnancy is associated with 1-2% of neural tube defects in the offspring. The current study aimed at investigating the effects of in utero VPA exposure on the key components of the NF-κB signaling pathway including p65, p50, and Pim-1 in CD-1 mouse embryos during the critical period of neural tube closure. Here we report that p65, Pim-1 and p105/p50 mRNA were significantly (p < 0.05) downregulated at 1 and 3 h following in utero exposure to a teratogenic dose (400 mg/kg) of VPA in gestational day (GD)9 exposed embryos. At GD13 heads of control, non-exencephalic and exencephalic embryos were used for analysis and we found significant upregulation of p65 protein expression in non-exencephalic GD13 heads while p50 protein levels were significantly downregulated in both non-exencephalic and exencephalic groups. On the other hand, p65 and p50 protein levels remained unchanged in the nuclear extracts of the VPA-exposed non-exencephalic and exencephalic GD13 embryo heads. The reported results suggest that VPA exposure perturbates p65, p105/p50, Pim-1 transcript and p65/p50 protein levels in mouse embryos.
Collapse
Affiliation(s)
- Sidra Shafique
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Louise M Winn
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada; School of Environmental Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
10
|
Abstract
Developmental toxicity associated with exposure to exogenous compounds such as drugs and environmental chemicals can be assessed using a variety of different in vitro models, each with their own advantages and disadvantages. These models include cultured cells (Chapters 3 - 6 ), organ and tissue cultures (Chapters 7 and 8 ), and whole embryo cultures (Chapters 13 - 15 ) and typically support the guiding principles of the three Rs: replace, reduce, and refine. These models can be used in early chemical screens and have helped further our understanding into the mechanisms associated with developmental toxicity following exposure to many chemicals.
Collapse
|
11
|
Miranda CC, Fernandes TG, Pinto SN, Prieto M, Diogo MM, Cabral JM. A scale out approach towards neural induction of human induced pluripotent stem cells for neurodevelopmental toxicity studies. Toxicol Lett 2018; 294:51-60. [DOI: 10.1016/j.toxlet.2018.05.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/28/2018] [Accepted: 05/04/2018] [Indexed: 12/30/2022]
|
12
|
Sgadò P, Rosa-Salva O, Versace E, Vallortigara G. Embryonic Exposure to Valproic Acid Impairs Social Predispositions of Newly-Hatched Chicks. Sci Rep 2018; 8:5919. [PMID: 29650996 PMCID: PMC5897402 DOI: 10.1038/s41598-018-24202-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 03/28/2018] [Indexed: 12/13/2022] Open
Abstract
Biological predispositions to attend to visual cues, such as those associated with face-like stimuli or with biological motion, guide social behavior from the first moments of life and have been documented in human neonates, infant monkeys and domestic chicks. Impairments of social predispositions have been recently reported in neonates at high familial risk of Autism Spectrum Disorder (ASD). Using embryonic exposure to valproic acid (VPA), an anticonvulsant associated to increased risk of developing ASD, we modeled ASD behavioral deficits in domestic chicks. We then assessed their spontaneous social predispositions by comparing approach responses to a stimulus containing a face configuration, a stuffed hen, vs. a scrambled version of it. We found that this social predisposition was abolished in VPA-treated chicks, whereas experience-dependent mechanisms associated with filial imprinting were not affected. Our results suggest a specific effect of VPA on the development of biologically-predisposed social orienting mechanisms, opening new perspectives to investigate the neurobiological mechanisms involved in early ASD symptoms.
Collapse
Affiliation(s)
- Paola Sgadò
- Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, Rovereto, Italy.
| | - Orsola Rosa-Salva
- Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, Rovereto, Italy
| | - Elisabetta Versace
- Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, Rovereto, Italy.,Department of Biological and Experimental Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Giorgio Vallortigara
- Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, Rovereto, Italy
| |
Collapse
|
13
|
Valproic acid increases NF-κB transcriptional activation despite decreasing DNA binding ability in P19 cells, which may play a role in VPA-initiated teratogenesis. Reprod Toxicol 2017; 74:32-39. [PMID: 28865949 DOI: 10.1016/j.reprotox.2017.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 08/14/2017] [Accepted: 08/29/2017] [Indexed: 12/15/2022]
Abstract
The nuclear factor-kappa B (NF-κB) family of transcription factors regulate gene expression in response to diverse stimuli. We previously demonstrated that valproic acid (VPA) exposure in utero decreases total cellular protein expression of the NF-κB subunit p65 in CD-1 mouse embryos with a neural tube defect but not in phenotypically normal littermates. This study evaluated p65 mRNA and protein expression in P19 cells and determined the impact on DNA binding ability and activity. Exposure to 5mM VPA decreased p65 mRNA and total cellular protein expression however, nuclear p65 protein expression was unchanged. VPA reduced NF-κB DNA binding and nuclear protein of the p65 DNA-binding partner, p50. NF-κB transcriptional activity was increased with VPA alone, despite decreased phosphorylation of p65 at Ser276, and when combined with tissue necrosis factor α. These results demonstrate that VPA increases NF-κB transcriptional activity despite decreasing DNA binding, which may play a role in VPA-initiated teratogenesis.
Collapse
|
14
|
Lamparter CL, Winn LM. Valproic acid exposure decreases Cbp/p300 protein expression and histone acetyltransferase activity in P19 cells. Toxicol Appl Pharmacol 2016; 306:69-78. [PMID: 27381264 DOI: 10.1016/j.taap.2016.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/17/2016] [Accepted: 07/01/2016] [Indexed: 12/13/2022]
Abstract
The teratogenicity of the antiepileptic drug valproic acid (VPA) is well established and its inhibition of histone deacetylases (HDAC) is proposed as an initiating factor. Recently, VPA-mediated HDAC inhibition was demonstrated to involve transcriptional downregulation of histone acetyltransferases (HATs), which was proposed to compensate for the increased acetylation resulting from HDAC inhibition. Cbp and p300 are HATs required for embryonic development and deficiencies in either are associated with congenital malformations and embryolethality. The objective of the present study was to characterize Cbp/p300 following VPA exposure in P19 cells. Consistent with previous studies, exposure to 5mM VPA over 24h induced a moderate decrease in Cbp/p300 mRNA, which preceded a strong decrease in total cellular protein mediated by ubiquitin-proteasome degradation. Nuclear Cbp/p300 protein was also decreased following VPA exposure, although to a lesser extent. Total cellular and nuclear p300 HAT activity was reduced proportionately to p300 protein levels, however while total cellular HAT activity also decreased, nuclear HAT activity was unaffected. Using the Cbp/p300 HAT inhibitor C646, we demonstrated that HAT inhibition similarly affected many of the same endpoints as VPA, including increased reactive oxygen species and caspase-3 cleavage, the latter of which could be attenuated by pre-treatment with the antioxidant catalase. C646 exposure also decreased NF-κB/p65 protein, which was not due to reduced mRNA and was not attenuated with catalase pre-treatment. This study provides support for an adaptive HAT response following VPA exposure and suggests that reduced Cbp/p300 HAT activity could contribute to VPA-mediated alterations.
Collapse
Affiliation(s)
- Christina L Lamparter
- Department of Biomedical and Molecular Sciences, Graduate Program in Pharmacology and Toxicology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Louise M Winn
- Department of Biomedical and Molecular Sciences, Graduate Program in Pharmacology and Toxicology, Queen's University, Kingston, Ontario K7L 3N6, Canada; School of Environmental Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
15
|
Banerjee A, Luong JA, Ho A, Saib AO, Ploski JE. Overexpression of Homer1a in the basal and lateral amygdala impairs fear conditioning and induces an autism-like social impairment. Mol Autism 2016; 7:16. [PMID: 26929812 PMCID: PMC4770673 DOI: 10.1186/s13229-016-0077-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 02/02/2016] [Indexed: 12/20/2022] Open
Abstract
Background Autism spectrum disorders (ASDs) represent a heterogeneous group of disorders with a wide range of behavioral impairments including social and communication deficits. Apart from these core symptoms, a significant number of ASD individuals display higher levels of anxiety, and some studies indicate that a subset of ASD individuals have a reduced ability to be fear conditioned. Deciphering the molecular basis of ASD has been considerably challenging and it currently remains poorly understood. In this study we examined the molecular basis of autism-like impairments in an environmentally induced animal model of ASD, where pregnant rats are exposed to the known teratogen, valproic acid (VPA), on day 12.5 of gestation and the subsequent progeny exhibit ASD-like symptoms. We focused our analysis on the basal and lateral nucleus of the amygdala (BLA), a region of the brain found to be associated with ASD pathology. Methods We performed whole genome gene expression analysis on the BLA using DNA microarrays to examine differences in gene expression within the amygdala of VPA-exposed animals. We validated one VPA-dysregulated candidate gene (Homer1a) using both quantitative PCR (qRT-PCR) and western blot. Finally, we overexpressed Homer1a within the basal and lateral amygdala of naïve animals utilizing adeno-associated viruses (AAV) and subsequently examined these animals in a battery of behavioral tests associated with ASD, including auditory fear conditioning, social interaction and open field. Results Our microarray data indicated that Homer1a was one of the genes which exhibited a significant upregulation within the amygdala. We observed an increase in Homer1a messenger RNA (mRNA) and protein in multiple cohorts of VPA-exposed animals indicating that dysregulation of Homer1a levels might underlie some of the symptoms exhibited by VPA-exposed animals. To test this hypothesis, we overexpressed Homer1a within BLA neurons utilizing a viral-mediated approach and found that overexpression of Homer1a impaired auditory fear conditioning and reduced social interaction, while having no influence on open-field behavior. Conclusions This study indicates that dysregulation of amygdala Homer1a might contribute to some autism-like symptoms induced by VPA exposure. These findings are interesting in part because Homer1a influences the functioning of Shank3, metabotropic glutamate receptors (mGluR5), and Homer1, and these proteins have previously been associated with ASD, indicating that these differing models of ASD may have a similar molecular basis. Electronic supplementary material The online version of this article (doi:10.1186/s13229-016-0077-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anwesha Banerjee
- Department of Cell Biology, Emory University, 615 Michael St. WBRB #415, Atlanta, GA 30322 USA
| | - Jonathan A Luong
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 West Campbell road, Richardson, TX 75080 USA
| | - Anthony Ho
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 West Campbell road, Richardson, TX 75080 USA
| | - Aeshah O Saib
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 West Campbell road, Richardson, TX 75080 USA
| | - Jonathan E Ploski
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 West Campbell road, Richardson, TX 75080 USA
| |
Collapse
|
16
|
Rempel E, Hoelting L, Waldmann T, Balmer NV, Schildknecht S, Grinberg M, Das Gaspar JA, Shinde V, Stöber R, Marchan R, van Thriel C, Liebing J, Meisig J, Blüthgen N, Sachinidis A, Rahnenführer J, Hengstler JG, Leist M. A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol 2015; 89:1599-618. [PMID: 26272509 PMCID: PMC4551554 DOI: 10.1007/s00204-015-1573-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 07/22/2015] [Indexed: 12/17/2022]
Abstract
Test systems to identify developmental toxicants are urgently needed. A combination of human stem cell technology and transcriptome analysis was to provide a proof of concept that toxicants with a related mode of action can be identified and grouped for read-across. We chose a test system of developmental toxicity, related to the generation of neuroectoderm from pluripotent stem cells (UKN1), and exposed cells for 6 days to the histone deacetylase inhibitors (HDACi) valproic acid, trichostatin A, vorinostat, belinostat, panobinostat and entinostat. To provide insight into their toxic action, we identified HDACi consensus genes, assigned them to superordinate biological processes and mapped them to a human transcription factor network constructed from hundreds of transcriptome data sets. We also tested a heterogeneous group of ‘mercurials’ (methylmercury, thimerosal, mercury(II)chloride, mercury(II)bromide, 4-chloromercuribenzoic acid, phenylmercuric acid). Microarray data were compared at the highest non-cytotoxic concentration for all 12 toxicants. A support vector machine (SVM)-based classifier predicted all HDACi correctly. For validation, the classifier was applied to legacy data sets of HDACi, and for each exposure situation, the SVM predictions correlated with the developmental toxicity. Finally, optimization of the classifier based on 100 probe sets showed that eight genes (F2RL2, TFAP2B, EDNRA, FOXD3, SIX3, MT1E, ETS1 and LHX2) are sufficient to separate HDACi from mercurials. Our data demonstrate how human stem cells and transcriptome analysis can be combined for mechanistic grouping and prediction of toxicants. Extension of this concept to mechanisms beyond HDACi would allow prediction of human developmental toxicity hazard of unknown compounds with the UKN1 test system.
Collapse
Affiliation(s)
- Eugen Rempel
- Department of Statistics, TU Dortmund University, 44139, Dortmund, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Meganathan K, Jagtap S, Srinivasan SP, Wagh V, Hescheler J, Hengstler J, Leist M, Sachinidis A. Neuronal developmental gene and miRNA signatures induced by histone deacetylase inhibitors in human embryonic stem cells. Cell Death Dis 2015; 6:e1756. [PMID: 25950486 PMCID: PMC4669700 DOI: 10.1038/cddis.2015.121] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/26/2015] [Accepted: 03/30/2015] [Indexed: 12/19/2022]
Abstract
Human embryonic stem cells (hESCs) may be applied to develop human-relevant sensitive in vitro test systems for monitoring developmental toxicants. The aim of this study was to identify potential developmental toxicity mechanisms of the histone deacetylase inhibitors (HDAC) valproic acid (VPA), suberoylanilide hydroxamic acid (SAHA) and trichostatin A (TSA) relevant to the in vivo condition using a hESC model in combination with specific differentiation protocols and genome-wide gene expression and microRNA profiling. Analysis of the gene expression data showed that VPA repressed neural tube and dorsal forebrain (OTX2, ISL1, EMX2 and SOX10)-related transcripts. In addition, VPA upregulates axonogenesis and ventral forebrain-associated genes, such as SLIT1, SEMA3A, DLX2/4 and GAD2. HDACi-induced expression of miR-378 and knockdown of miR-378 increases the expression of OTX2 and EMX2, which supports our hypothesis that HDACi targets forebrain markers through miR-378. In conclusion, multilineage differentiation in vitro test system is very sensitive for monitoring molecular activities relevant to in vivo neuronal developmental toxicity. Moreover, miR-378 seems to repress the expression of the OTX2 and EMX2 and therefore could be a regulator of the development of neural tube and dorsal forebrain neurons.
Collapse
Affiliation(s)
- K Meganathan
- Center of Physiology and Pathophysiology, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), Robert-Koch-Str. 39, Cologne, Germany
| | - S Jagtap
- Center of Physiology and Pathophysiology, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), Robert-Koch-Str. 39, Cologne, Germany
| | - S P Srinivasan
- Center of Physiology and Pathophysiology, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), Robert-Koch-Str. 39, Cologne, Germany
| | - V Wagh
- Center of Physiology and Pathophysiology, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), Robert-Koch-Str. 39, Cologne, Germany
| | - J Hescheler
- Center of Physiology and Pathophysiology, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), Robert-Koch-Str. 39, Cologne, Germany
| | - J Hengstler
- Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund (IfADo), Dortmund, Germany
| | - M Leist
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | - A Sachinidis
- Center of Physiology and Pathophysiology, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), Robert-Koch-Str. 39, Cologne, Germany
| |
Collapse
|
18
|
Ehashi T, Suzuki N, Ando S, Sumida K, Saito K. Effects of valproic acid on gene expression during human embryonic stem cell differentiation into neurons. J Toxicol Sci 2014; 39:383-90. [PMID: 24849673 DOI: 10.2131/jts.39.383] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The widely used antiepileptic drug valproic acid (VPA) is known to exhibit teratogenicity in the form of a failure of the neural tube in humans. Embryonic stem cells (ESCs) are reported to be a promising cell source for evaluating chemical teratogenicity, because they are capable of reproducing embryonic developmental model and enable reduction in the number of experimental animals used. We previously investigated 22 genes for which expressions are altered by teratogens, specifically focusing on neural differentiation of mouse ESCs. In the present study, expressions of the investigated genes were evaluated by quantitative real-time PCR and compared during differentiation of human ESCs into neurons with or without VPA. Under the conditions, almost all gene expressions significantly changed in VPA-containing culture. Specifically, in neural development-related genes such as DCX, ARX, MAP2, and NNAT, more than 2-fold expression was observed. The findings suggest that the genes focused on in this study may help to elucidate the teratogenic effects of VPA and might be a useful tool to analyze embryotoxic potential of chemicals in humans.
Collapse
Affiliation(s)
- Tomo Ehashi
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd
| | | | | | | | | |
Collapse
|
19
|
Banerjee A, Engineer CT, Sauls BL, Morales AA, Kilgard MP, Ploski JE. Abnormal emotional learning in a rat model of autism exposed to valproic acid in utero. Front Behav Neurosci 2014; 8:387. [PMID: 25429264 PMCID: PMC4228846 DOI: 10.3389/fnbeh.2014.00387] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/17/2014] [Indexed: 01/30/2023] Open
Abstract
Autism Spectrum Disorders (ASD) are complex neurodevelopmental disorders characterized by repetitive behavior and impaired social communication and interactions. Apart from these core symptoms, a significant number of ASD individuals display higher levels of anxiety and some ASD individuals exhibit impaired emotional learning. We therefore sought to further examine anxiety and emotional learning in an environmentally induced animal model of ASD that utilizes the administration of the known teratogen, valproic acid (VPA) during gestation. Specifically we exposed dams to one of two different doses of VPA (500 and 600 mg/kg) or vehicle on day 12.5 of gestation and examined the resultant progeny. Our data indicate that animals exposed to VPA in utero exhibit enhanced anxiety in the open field test and normal object recognition memory compared to control animals. Animals exposed to 500 mg/kg of VPA displayed normal acquisition of auditory fear conditioning, and exhibited reduced extinction of fear memory and normal litter survival rates as compared to control animals. We observed that animals exposed to 600 mg/kg of VPA exhibited a significant reduction in the acquisition of fear conditioning, a significant reduction in social interaction and a significant reduction in litter survival rates as compared to control animals. VPA (600 mg/kg) exposed animals exhibited similar shock sensitivity and hearing as compared to control animals indicating the fear conditioning deficit observed in these animals was not likely due to sensory deficits, but rather due to deficits in learning or memory retrieval. In conclusion, considering that progeny from dams exposed to rather similar doses of VPA exhibit striking differences in emotional learning, the VPA model may serve as a useful tool to explore the molecular and cellular mechanisms that contribute to not only ASD, but also emotional learning.
Collapse
Affiliation(s)
- Anwesha Banerjee
- School of Behavioral and Brain Sciences, University of Texas at Dallas Richardson, TX, USA
| | - Crystal T Engineer
- School of Behavioral and Brain Sciences, University of Texas at Dallas Richardson, TX, USA
| | - Bethany L Sauls
- School of Behavioral and Brain Sciences, University of Texas at Dallas Richardson, TX, USA
| | - Anna A Morales
- School of Behavioral and Brain Sciences, University of Texas at Dallas Richardson, TX, USA
| | - Michael P Kilgard
- School of Behavioral and Brain Sciences, University of Texas at Dallas Richardson, TX, USA
| | - Jonathan E Ploski
- School of Behavioral and Brain Sciences, University of Texas at Dallas Richardson, TX, USA
| |
Collapse
|
20
|
Colleoni S, Galli C, Gaspar JA, Meganathan K, Jagtap S, Hescheler J, Zagoura D, Bremer S, Sachinidis A, Lazzari G. A comparative transcriptomic study on the effects of valproic acid on two different hESCs lines in a neural teratogenicity test system. Toxicol Lett 2014; 231:38-44. [DOI: 10.1016/j.toxlet.2014.08.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/29/2014] [Accepted: 08/29/2014] [Indexed: 11/30/2022]
|
21
|
Mowery TM, Wilson SM, Kostylev PV, Dina B, Buchholz JB, Prieto AL, Garraghty PE. Embryological exposure to valproic acid disrupts morphology of the deep cerebellar nuclei in a sexually dimorphic way. Int J Dev Neurosci 2014; 40:15-23. [PMID: 25447790 DOI: 10.1016/j.ijdevneu.2014.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/26/2014] [Accepted: 10/23/2014] [Indexed: 01/17/2023] Open
Abstract
Autism spectrum disorders (ASD) is diagnosed in males at a much higher rate than females. For this reason, the majority of autism research has used male subjects exclusively. However; more recent studies using genetic sex as a factor find that the development of the male and female brain is differentially affected by ASD. That is, the natural sex-specific differences that exist between male and female brains lead to sexually dimorphic expressions of autism. Here we investigate the putative sexual dimorphism that exists in the deep cerebellar nuclei of male and female rats exposed to valproic acid (VPA) on embryological day 12.5. We find natural sex-specific differences in adult nucleus area, length, and estimated cell populations. Therefore VPA exposure during embryology creates some sex-specific deficits such as higher cell counts in the VPA males and lower cell counts in the VPA females. At the same time, some effects of VPA exposure occur regardless of sex. That is, smaller nucleus area and length lead to truncated nuclei in both VPA males and females. These deficits are more pronounced in the VPA males suggesting that genetic sex could play a role in teratogenic susceptibility to VPA. Taken together our results suggests that VPA exposure induces sexually dimorphic aberrations in morphological development along a mediolateral gradient at a discrete region of the hindbrain approximate to rhombomere (R) 1 and 2. Sex-specific disruption of the local and long-range projections emanating from this locus of susceptibility could offer a parsimonious explanation for the brain-wide neuroanatomical variance reported in males and females with ASD.
Collapse
Affiliation(s)
- Todd M Mowery
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States.
| | - Sarah M Wilson
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Polina V Kostylev
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Blair Dina
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Jennifer B Buchholz
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Anne L Prieto
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States; Program in Neuroscience, Indiana University, Bloomington, IN, United States
| | - Preston E Garraghty
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States; Program in Neuroscience, Indiana University, Bloomington, IN, United States
| |
Collapse
|
22
|
Balmer NV, Klima S, Rempel E, Ivanova VN, Kolde R, Weng MK, Meganathan K, Henry M, Sachinidis A, Berthold MR, Hengstler JG, Rahnenführer J, Waldmann T, Leist M. From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol 2014; 88:1451-68. [PMID: 24935251 PMCID: PMC4067541 DOI: 10.1007/s00204-014-1279-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 05/19/2014] [Indexed: 01/17/2023]
Abstract
The superordinate principles governing the transcriptome response of differentiating cells exposed to drugs are still unclear. Often, it is assumed that toxicogenomics data reflect the immediate mode of action (MoA) of drugs. Alternatively, transcriptome changes could describe altered differentiation states as indirect consequence of drug exposure. We used here the developmental toxicants valproate and trichostatin A to address this question. Neurally differentiating human embryonic stem cells were treated for 6 days. Histone acetylation (primary MoA) increased quickly and returned to baseline after 48 h. Histone H3 lysine methylation at the promoter of the neurodevelopmental regulators PAX6 or OTX2 was increasingly altered over time. Methylation changes remained persistent and correlated with neurodevelopmental defects and with effects on PAX6 gene expression, also when the drug was washed out after 3-4 days. We hypothesized that drug exposures altering only acetylation would lead to reversible transcriptome changes (indicating MoA), and challenges that altered methylation would lead to irreversible developmental disturbances. Data from pulse-chase experiments corroborated this assumption. Short drug treatment triggered reversible transcriptome changes; longer exposure disrupted neurodevelopment. The disturbed differentiation was reflected by an altered transcriptome pattern, and the observed changes were similar when the drug was washed out during the last 48 h. We conclude that transcriptome data after prolonged chemical stress of differentiating cells mainly reflect the altered developmental stage of the model system and not the drug MoA. We suggest that brief exposures, followed by immediate analysis, are more suitable for information on immediate drug responses and the toxicity MoA.
Collapse
Affiliation(s)
- Nina V. Balmer
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Box 657, 78457 Constance, Germany
| | - Stefanie Klima
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Box 657, 78457 Constance, Germany
| | - Eugen Rempel
- Department of Statistics, TU Dortmund, Dortmund, Germany
| | - Violeta N. Ivanova
- Chair for Bioinformatics and Information Mining, University of Konstanz, Constance, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Constance, Germany
| | | | - Matthias K. Weng
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Box 657, 78457 Constance, Germany
| | - Kesavan Meganathan
- Institute of Neurophysiology, University of Cologne, 50931 Cologne, Germany
| | - Margit Henry
- Institute of Neurophysiology, University of Cologne, 50931 Cologne, Germany
| | - Agapios Sachinidis
- Institute of Neurophysiology, University of Cologne, 50931 Cologne, Germany
| | - Michael R. Berthold
- Chair for Bioinformatics and Information Mining, University of Konstanz, Constance, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Constance, Germany
| | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), 44139 Dortmund, Germany
| | | | - Tanja Waldmann
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Box 657, 78457 Constance, Germany
| | - Marcel Leist
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Box 657, 78457 Constance, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Constance, Germany
| |
Collapse
|
23
|
Smirnova L, Block K, Sittka A, Oelgeschläger M, Seiler AEM, Luch A. MicroRNA profiling as tool for in vitro developmental neurotoxicity testing: the case of sodium valproate. PLoS One 2014; 9:e98892. [PMID: 24896083 PMCID: PMC4045889 DOI: 10.1371/journal.pone.0098892] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/08/2014] [Indexed: 01/10/2023] Open
Abstract
Studying chemical disturbances during neural differentiation of murine embryonic stem cells (mESCs) has been established as an alternative in vitro testing approach for the identification of developmental neurotoxicants. miRNAs represent a class of small non-coding RNA molecules involved in the regulation of neural development and ESC differentiation and specification. Thus, neural differentiation of mESCs in vitro allows investigating the role of miRNAs in chemical-mediated developmental toxicity. We analyzed changes in miRNome and transcriptome during neural differentiation of mESCs exposed to the developmental neurotoxicant sodium valproate (VPA). A total of 110 miRNAs and 377 mRNAs were identified differently expressed in neurally differentiating mESCs upon VPA treatment. Based on miRNA profiling we observed that VPA shifts the lineage specification from neural to myogenic differentiation (upregulation of muscle-abundant miRNAs, mir-206, mir-133a and mir-10a, and downregulation of neural-specific mir-124a, mir-128 and mir-137). These findings were confirmed on the mRNA level and via immunochemistry. Particularly, the expression of myogenic regulatory factors (MRFs) as well as muscle-specific genes (Actc1, calponin, myosin light chain, asporin, decorin) were found elevated, while genes involved in neurogenesis (e.g. Otx1, 2, and Zic3, 4, 5) were repressed. These results were specific for valproate treatment and―based on the following two observations―most likely due to the inhibition of histone deacetylase (HDAC) activity: (i) we did not observe any induction of muscle-specific miRNAs in neurally differentiating mESCs exposed to the unrelated developmental neurotoxicant sodium arsenite; and (ii) the expression of muscle-abundant mir-206 and mir-10a was similarly increased in cells exposed to the structurally different HDAC inhibitor trichostatin A (TSA). Based on our results we conclude that miRNA expression profiling is a suitable molecular endpoint for developmental neurotoxicity. The observed lineage shift into myogenesis, where miRNAs may play an important role, could be one of the developmental neurotoxic mechanisms of VPA.
Collapse
Affiliation(s)
- Lena Smirnova
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
- * E-mail:
| | - Katharina Block
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | | | | | - Andreas Luch
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
24
|
Waldmann T, Rempel E, Balmer NV, König A, Kolde R, Gaspar JA, Henry M, Hescheler J, Sachinidis A, Rahnenführer J, Hengstler JG, Leist M. Design principles of concentration-dependent transcriptome deviations in drug-exposed differentiating stem cells. Chem Res Toxicol 2014; 27:408-20. [PMID: 24383497 PMCID: PMC3958134 DOI: 10.1021/tx400402j] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Information on design principles
governing transcriptome changes
upon transition from safe to hazardous drug concentrations or from
tolerated to cytotoxic drug levels are important for the application
of toxicogenomics data in developmental toxicology. Here, we tested
the effect of eight concentrations of valproic acid (VPA; 25–1000
μM) in an assay that recapitulates the development of human
embryonic stem cells to neuroectoderm. Cells were exposed to the drug
during the entire differentiation process, and the number of differentially
regulated genes increased continuously over the concentration range
from zero to about 3000. We identified overrepresented transcription
factor binding sites (TFBS) as well as superordinate cell biological
processes, and we developed a gene ontology (GO) activation profiler,
as well as a two-dimensional teratogenicity index. Analysis of the
transcriptome data set by the above biostatistical and systems biology
approaches yielded the following insights: (i) tolerated (≤25
μM), deregulated/teratogenic (150–550 μM), and
cytotoxic (≥800 μM) concentrations could be differentiated.
(ii) Biological signatures related to the mode of action of VPA, such
as protein acetylation, developmental changes, and cell migration,
emerged from the teratogenic concentrations range. (iii) Cytotoxicity
was not accompanied by signatures of newly emerging canonical cell
death/stress indicators, but by catabolism and decreased expression
of cell cycle associated genes. (iv) Most, but not all of the GO groups
and TFBS seen at the highest concentrations were already overrepresented
at 350–450 μM. (v) The teratogenicity index reflected
this behavior, and thus differed strongly from cytotoxicity. Our findings
suggest the use of the highest noncytotoxic drug concentration for
gene array toxicogenomics studies, as higher concentrations possibly
yield wrong information on the mode of action, and lower drug levels
result in decreased gene expression changes and thus a reduced power
of the study.
Collapse
Affiliation(s)
- Tanja Waldmann
- Doerenkamp-Zbinden Chair for in Vitro Toxicology and Biomedicine, University of Konstanz , 78457 Konstanz, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Robinson JF, Piersma AH. Toxicogenomic approaches in developmental toxicology testing. Methods Mol Biol 2013; 947:451-73. [PMID: 23138921 DOI: 10.1007/978-1-62703-131-8_31] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The emergence of toxicogenomic applications provides new tools to characterize, classify, and potentially predict teratogens. However, due to the vast number of experimental and statistical procedural steps, toxicogenomic studies are challenging. Here, we guide researchers through the basic framework of conducting toxicogenomic investigations in the field of developmental toxicology, providing examples of biological and technical factors that may influence response and interpretation. Furthermore, we review current, diverse applications of toxicogenomic-based approaches in teratology testing, including exposure-response characterization (dose and duration), chemical classification studies, and cross-model comparisons study designs. This review is intended to guide scientists through the challenging and complex structure of conducting toxicogenomic analyses, while considering the many applications of using toxicogenomics in study designs and the future of these types of "omics" approaches in developmental toxicology.
Collapse
Affiliation(s)
- Joshua F Robinson
- Laboratory for Health Protection Research-National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| | | |
Collapse
|
26
|
Krug AK, Kolde R, Gaspar JA, Rempel E, Balmer NV, Meganathan K, Vojnits K, Baquié M, Waldmann T, Ensenat-Waser R, Jagtap S, Evans RM, Julien S, Peterson H, Zagoura D, Kadereit S, Gerhard D, Sotiriadou I, Heke M, Natarajan K, Henry M, Winkler J, Marchan R, Stoppini L, Bosgra S, Westerhout J, Verwei M, Vilo J, Kortenkamp A, Hescheler J, Hothorn L, Bremer S, van Thriel C, Krause KH, Hengstler JG, Rahnenführer J, Leist M, Sachinidis A. Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol 2012. [PMID: 23179753 PMCID: PMC3535399 DOI: 10.1007/s00204-012-0967-3] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Developmental neurotoxicity (DNT) and many forms of reproductive toxicity (RT) often manifest themselves in functional deficits that are not necessarily based on cell death, but rather on minor changes relating to cell differentiation or communication. The fields of DNT/RT would greatly benefit from in vitro tests that allow the identification of toxicant-induced changes of the cellular proteostasis, or of its underlying transcriptome network. Therefore, the ‘human embryonic stem cell (hESC)-derived novel alternative test systems (ESNATS)’ European commission research project established RT tests based on defined differentiation protocols of hESC and their progeny. Valproic acid (VPA) and methylmercury (MeHg) were used as positive control compounds to address the following fundamental questions: (1) Does transcriptome analysis allow discrimination of the two compounds? (2) How does analysis of enriched transcription factor binding sites (TFBS) and of individual probe sets (PS) distinguish between test systems? (3) Can batch effects be controlled? (4) How many DNA microarrays are needed? (5) Is the highest non-cytotoxic concentration optimal and relevant for the study of transcriptome changes? VPA triggered vast transcriptional changes, whereas MeHg altered fewer transcripts. To attenuate batch effects, analysis has been focused on the 500 PS with highest variability. The test systems differed significantly in their responses (<20 % overlap). Moreover, within one test system, little overlap between the PS changed by the two compounds has been observed. However, using TFBS enrichment, a relatively large ‘common response’ to VPA and MeHg could be distinguished from ‘compound-specific’ responses. In conclusion, the ESNATS assay battery allows classification of human DNT/RT toxicants on the basis of their transcriptome profiles.
Collapse
Affiliation(s)
- Anne K. Krug
- Department of Biology, University of Konstanz (UKN), 78457 Constance, Germany
| | - Raivo Kolde
- OÜ Quretec (Qure), Limited Liability Company, 51003 Tartu, Estonia
- Institute of Computer Science, University of Tartu, 50409 Tartu, Estonia
| | - John A. Gaspar
- Center of Physiology and Pathophysiology, Institute of Neurophysiology, University of Cologne (UKK), Robert-Koch-Str. 39, 50931 Cologne, Germany
| | - Eugen Rempel
- Department of Statistics, TU Dortmund University , 44221 Dortmund, Germany
| | - Nina V. Balmer
- Department of Biology, University of Konstanz (UKN), 78457 Constance, Germany
| | - Kesavan Meganathan
- Center of Physiology and Pathophysiology, Institute of Neurophysiology, University of Cologne (UKK), Robert-Koch-Str. 39, 50931 Cologne, Germany
| | - Kinga Vojnits
- Commission of the European Communities (JRC) Joint Research Centre, 1049 Brussels, Belgium
| | - Mathurin Baquié
- Department of Pathology and Immunology, Geneva Medical Faculty, University of Geneva (UNIGE), 1211 Geneva 4, Switzerland
| | - Tanja Waldmann
- Department of Biology, University of Konstanz (UKN), 78457 Constance, Germany
| | - Roberto Ensenat-Waser
- Commission of the European Communities (JRC) Joint Research Centre, 1049 Brussels, Belgium
| | - Smita Jagtap
- Center of Physiology and Pathophysiology, Institute of Neurophysiology, University of Cologne (UKK), Robert-Koch-Str. 39, 50931 Cologne, Germany
| | | | - Stephanie Julien
- Department of Pathology and Immunology, Geneva Medical Faculty, University of Geneva (UNIGE), 1211 Geneva 4, Switzerland
| | - Hedi Peterson
- Department of Pathology and Immunology, Geneva Medical Faculty, University of Geneva (UNIGE), 1211 Geneva 4, Switzerland
| | - Dimitra Zagoura
- Commission of the European Communities (JRC) Joint Research Centre, 1049 Brussels, Belgium
| | - Suzanne Kadereit
- Department of Biology, University of Konstanz (UKN), 78457 Constance, Germany
| | - Daniel Gerhard
- Gottfried Wilhelm Leibniz University (LUH), Institute for Biostatistics, 30167 Hannover, Germany
| | - Isaia Sotiriadou
- Center of Physiology and Pathophysiology, Institute of Neurophysiology, University of Cologne (UKK), Robert-Koch-Str. 39, 50931 Cologne, Germany
| | - Michael Heke
- Center of Physiology and Pathophysiology, Institute of Neurophysiology, University of Cologne (UKK), Robert-Koch-Str. 39, 50931 Cologne, Germany
| | - Karthick Natarajan
- Center of Physiology and Pathophysiology, Institute of Neurophysiology, University of Cologne (UKK), Robert-Koch-Str. 39, 50931 Cologne, Germany
| | - Margit Henry
- Center of Physiology and Pathophysiology, Institute of Neurophysiology, University of Cologne (UKK), Robert-Koch-Str. 39, 50931 Cologne, Germany
| | - Johannes Winkler
- Center of Physiology and Pathophysiology, Institute of Neurophysiology, University of Cologne (UKK), Robert-Koch-Str. 39, 50931 Cologne, Germany
| | - Rosemarie Marchan
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, 44139 Dortmund, Germany
| | - Luc Stoppini
- Department of Pathology and Immunology, Geneva Medical Faculty, University of Geneva (UNIGE), 1211 Geneva 4, Switzerland
| | - Sieto Bosgra
- Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek (TNO), 2628 VK Delft, The Netherlands
| | - Joost Westerhout
- Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek (TNO), 2628 VK Delft, The Netherlands
| | - Miriam Verwei
- Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek (TNO), 2628 VK Delft, The Netherlands
| | - Jaak Vilo
- OÜ Quretec (Qure), Limited Liability Company, 51003 Tartu, Estonia
- Institute of Computer Science, University of Tartu, 50409 Tartu, Estonia
| | | | - Jürgen Hescheler
- Center of Physiology and Pathophysiology, Institute of Neurophysiology, University of Cologne (UKK), Robert-Koch-Str. 39, 50931 Cologne, Germany
| | - Ludwig Hothorn
- Gottfried Wilhelm Leibniz University (LUH), Institute for Biostatistics, 30167 Hannover, Germany
| | - Susanne Bremer
- Commission of the European Communities (JRC) Joint Research Centre, 1049 Brussels, Belgium
| | - Christoph van Thriel
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, 44139 Dortmund, Germany
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Geneva Medical Faculty, University of Geneva (UNIGE), 1211 Geneva 4, Switzerland
| | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, 44139 Dortmund, Germany
| | - Jörg Rahnenführer
- Department of Statistics, TU Dortmund University , 44221 Dortmund, Germany
| | - Marcel Leist
- Department of Biology, University of Konstanz (UKN), 78457 Constance, Germany
| | - Agapios Sachinidis
- Center of Physiology and Pathophysiology, Institute of Neurophysiology, University of Cologne (UKK), Robert-Koch-Str. 39, 50931 Cologne, Germany
| |
Collapse
|
27
|
Escalona-Cardoso GN, Paniagua-Castro N, Pérez-Pastén R, Chamorro-Cevallos G. Spirulina (arthrospira) protects against valproic acid-induced neural tube defects in mice. J Med Food 2012; 15:1103-8. [PMID: 23134463 DOI: 10.1089/jmf.2012.0057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Valproic acid (VPA) is a potent inducer of neural tube defects in human and mouse, its teratogenicity is associated with its potential to generation of free radicals and increase oxidative stress. Furthermore, spirulina (SP) has shown pharmacological properties against teratogenicity, which are attributed to its antioxidant potential. Accordingly, the present study was performed to investigate the influence of SP on the teratogenicity of VPA in imprinting control region mice and the possible mechanisms of action. VPA (sodium valproate) was administered intraperitoneally to mice on gestation day (GD) 8 at a dose of 600 mg/kg. SP was given orally at 125, 250, and 500 mg/kg daily from GD0 through GD18. The most common finding in fetuses with VPA exposure was exencephaly. SP decreased the incidence of this and other malformations and increased levels of superoxide dismutase, catalase, and glutathione peroxidase. In conclusion, these results illustrate the protective action of SP through its antioxidant activity against VPA-induced teratogenicity.
Collapse
Affiliation(s)
- Gerardo N Escalona-Cardoso
- Department of Physiology, National School of Biological Sciences, National Polytechnic Institute, Mexico City, Distrito Federal, Mexico
| | | | | | | |
Collapse
|
28
|
Histone deacetylases are required for amphibian tail and limb regeneration but not development. Mech Dev 2012; 129:208-18. [DOI: 10.1016/j.mod.2012.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 08/08/2012] [Accepted: 08/15/2012] [Indexed: 01/09/2023]
|
29
|
Sahu SC, O'Donnell MW, Sprando RL. Interactive toxicity of usnic acid and lipopolysaccharides in human liver HepG2 cells. J Appl Toxicol 2012; 32:739-49. [PMID: 22777745 DOI: 10.1002/jat.2768] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 03/21/2012] [Accepted: 03/23/2012] [Indexed: 11/09/2022]
Abstract
Usnic acid (UA), a natural botanical product, is a constituent of some dietary supplements used for weight loss. It has been associated with clinical hepatotoxicity leading to liver failure in humans. The present study was undertaken to evaluate the interactive toxicity, if any, of UA with lipopolysaccarides (LPS), a potential contaminant of food, at low non-toxic concentrations. The human hepatoblastoma HepG2 cells were treated with the vehicle control and test agents, separately and in a binary mixture, for 24 h at 37°C in 5% CO2. After the treatment period, the cells were evaluated by the traditional biochemical endpoints of toxicity in combination with the toxicogenomic endpoints that included cytotoxicity, oxidative stress, mitochondrial injury and changes in pathway-focused gene expression profiles. Compared with the controls, low non-toxic concentrations of UA and LPS separately showed no effect on the cells as determined by the biochemical endpoints. However, the simultaneous mixed exposure of the cells to their binary mixture resulted in increased cytotoxicity, oxidative stress and mitochondrial injury. The pathway-focused gene expression analysis resulted in the altered expression of several genes out of 84 genes examined. Most altered gene expressions induced by the binary mixture of UA and LPS were different from those induced by the individual constituents. The genes affected by the mixture were not modulated by either UA or LPS. The results of the present study suggest that the interactions of low nontoxic concentrations of UA and LPS produce toxicity in HepG2 cells.
Collapse
Affiliation(s)
- Saura C Sahu
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708, USA.
| | | | | |
Collapse
|
30
|
Mallela M, Hrubec T. Reduction in valproic acid-induced neural tube defects by maternal immune stimulation: role of apoptosis. ACTA ACUST UNITED AC 2012; 95:296-303. [PMID: 22767483 DOI: 10.1002/bdrb.21018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 05/23/2012] [Indexed: 11/06/2022]
Abstract
Teratogenic deregulation of apoptosis during development is a possible mechanism for birth defects. Administration of valproic acid (VA) during first trimester of pregnancy causes neural tube defects (NTDs). Nonspecific stimulation of the mother's immune system has been shown to reduce various teratogen-induced fetal malformations including NTDs in rodents. This present study investigated the role of reduced apoptosis by maternal immune stimulation in prevention of VA-induced NTDs in CD-1 mice. Prevention of VA-induced NTDs by nonspecific maternal immune stimulation using IFNγ was employed to evaluate the role of reduced apoptosis by IFNγ in this protective mechanism. Apoptosis was quantified using flow cytometry. Terminal Transferase dUTP Nick End Labeling assay was used to localize the apoptosis. Increased apoptosis, suggesting involvement in VA teratogenicity, was observed along the neural tube in both normal and abnormal embryos from VA-exposed dams. Increased apoptosis in normal VA-exposed embryos suggests that VA may alter other cellular processes such as cell proliferation and differentiation in addition to apoptosis. Apoptotic levels in embryos with closed neural tubes from IFNγ + VA dams were similar to controls indicating resistance to VA-induced apoptosis and protection against teratogenicity of VA. In IFNγ + VA exposed embryos with open neural tubes, maternal immune stimulation failed to regulate apoptosis resulting in an NTD. Overall, these results suggest that VA alters several biological processes including apoptosis in the developing embryos to induce fetal malformations. Resistance to VA-induced apoptosis in embryos resulting from maternal immune stimulation may be involved in protective mechanism.
Collapse
Affiliation(s)
- Mural Mallela
- Department of Pediatrics, Yale University, New Haven, CT 06510, USA.
| | | |
Collapse
|
31
|
Balmer NV, Weng MK, Zimmer B, Ivanova VN, Chambers SM, Nikolaeva E, Jagtap S, Sachinidis A, Hescheler J, Waldmann T, Leist M. Epigenetic changes and disturbed neural development in a human embryonic stem cell-based model relating to the fetal valproate syndrome. Hum Mol Genet 2012; 21:4104-14. [DOI: 10.1093/hmg/dds239] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
32
|
Robinson JF, Pennings JLA, Piersma AH. A review of toxicogenomic approaches in developmental toxicology. Methods Mol Biol 2012; 889:347-371. [PMID: 22669676 DOI: 10.1007/978-1-61779-867-2_22] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Over the past decade, the use of gene expression profiling (i.e., toxicogenomics or transcriptomics) has been established as the vanguard "omics" technology to investigate exposure-induced molecular changes that underlie the development of disease. As this technology quickly advances, researchers are striving to keep pace in grasping the complexity of toxicogenomic response while at the same time determine its applicability for the field of developmental toxicology. Initial studies suggest toxicogenomics to be a promising tool for multiple types of study designs, including exposure-response investigations (dose and duration), chemical classification, and model comparisons. In this review, we examine the use of toxicogenomics in developmental toxicology, discussing biological and technical factors that influence response and interpretation. Additionally, we provide a framework to guide toxicogenomic investigations in the field of developmental toxicology.
Collapse
Affiliation(s)
- Joshua F Robinson
- National Institute for Public Health and the Environment-RIVM, Bilthoven, The Netherlands
| | | | | |
Collapse
|
33
|
Theunissen PT, Robinson JF, Pennings JLA, de Jong E, Claessen SMH, Kleinjans JCS, Piersma AH. Transcriptomic concentration-response evaluation of valproic acid, cyproconazole, and hexaconazole in the neural embryonic stem cell test (ESTn). Toxicol Sci 2011; 125:430-8. [PMID: 22045034 DOI: 10.1093/toxsci/kfr293] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Alternative developmental toxicity assays are urgently needed to reduce animal use in regulatory developmental toxicology. We previously designed an in vitro murine neural embryonic stem cell test (ESTn) as a model for neurodevelopmental toxicity testing (Theunissen et al., 2010). Toxicogenomic approaches have been suggested for incorporation into the ESTn to further increase predictivity and to provide mechanistic insights. Therefore, in this study, using a transcriptomic approach, we investigated the concentration-dependent effects of three known (neuro) developmental toxicants, two triazoles, cyproconazole (CYP) and hexaconazole (HEX), and the anticonvulsant valproic acid (VPA). Compound effects on gene expression during neural differentiation and corresponding regulated gene ontology (GO) terms were identified after 24 h of exposure in relation to morphological changes on day 11 of culture. Concentration-dependent responses on individual gene expression and on biological processes were determined for each compound, providing information on mechanism and concentration-response characteristics. All compounds caused enrichment of the embryonic development process. CYP and VPA but not HEX significantly enriched the neuron development process. Furthermore, specific responses for triazole compounds and VPA were observed within the GO-term sterol metabolic process. The incorporation of transcriptomics in the ESTn was shown to enable detection of effects, which precede morphological changes and provide a more sensitive measure of concentration-dependent effects as compared with classical morphological assessments. Furthermore, mechanistic insight can be instrumental in the extrapolation of effects in the ESTn to human hazard assessment.
Collapse
Affiliation(s)
- Peter T Theunissen
- Laboratory for Health Protection Research, National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
34
|
Sahu SC, Amankwa-Sakyi M, O'Donnell MW, Sprando RL. Effects of usnic acid exposure on human hepatoblastoma HepG2 cells in culture. J Appl Toxicol 2011; 32:722-30. [DOI: 10.1002/jat.1721] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 06/30/2011] [Accepted: 06/30/2011] [Indexed: 01/25/2023]
Affiliation(s)
- Saura C. Sahu
- Division of Toxicology; Office of Applied Research and Safety Assessment; Center for Food Safety and Applied Nutrition; US Food and Drug Administration; Laurel; MD; 20708; USA
| | - Margaret Amankwa-Sakyi
- Division of Public Health and Biostatistics; Office of Food Defense; Communication and Emergency Response; Center for Food Safety and Applied Nutrition; US Food and Drug Administration; Laurel; MD; 20708; USA
| | - Michael W. O'Donnell
- Division of Public Health and Biostatistics; Office of Food Defense; Communication and Emergency Response; Center for Food Safety and Applied Nutrition; US Food and Drug Administration; Laurel; MD; 20708; USA
| | - Robert L. Sprando
- Division of Toxicology; Office of Applied Research and Safety Assessment; Center for Food Safety and Applied Nutrition; US Food and Drug Administration; Laurel; MD; 20708; USA
| |
Collapse
|
35
|
Colleoni S, Galli C, Gaspar JA, Meganathan K, Jagtap S, Hescheler J, Sachinidis A, Lazzari G. Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci 2011; 124:370-7. [PMID: 21934132 DOI: 10.1093/toxsci/kfr245] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The aim of this study was the development of an alternative testing method based on human embryonic stem cells for prenatal developmental toxicity with particular emphasis on early neural development. To this purpose, we designed an in vitro protocol based on the generation of neural rosettes, representing the in vitro counterpart of the developing neural plate and neural tube, and we challenged this complex cell model with retinoic acid (RA), a well-known teratogenic agent. The cells were exposed to different concentrations of RA during the process of rosettes formation. Morphological and molecular parameters were evaluated in treated as compared with untreated cells to detect both cytotoxicity and specific neural toxicity. Transcriptomic analysis was performed with microarray Affymetrix platform and validated by quantitative real-time PCR for genes relevant to early neural development such as HoxA1, HoxA3, HoxB1, HoxB4, FoxA2, FoxC1, Otx2, and Pax7. The results obtained demonstrated that neural rosette forming cells respond to RA with clear concentration-dependent morphological, and gene expression changes remarkably similar to those induced in vivo, in the developing neural tube, by RA exposure. This strict correspondence indicates that the neural rosette protocol described is capable of detecting specific teratogenic mechanisms causing perturbations of early neural development and therefore represents a promising alternative test for human prenatal developmental toxicity.
Collapse
Affiliation(s)
- Silvia Colleoni
- Avantea, Laboratory of Reproductive Technologies, 26100 Cremona, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Robinson JF, Theunissen PT, van Dartel DA, Pennings JL, Faustman EM, Piersma AH. Comparison of MeHg-induced toxicogenomic responses across in vivo and in vitro models used in developmental toxicology. Reprod Toxicol 2011; 32:180-8. [DOI: 10.1016/j.reprotox.2011.05.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 05/12/2011] [Accepted: 05/13/2011] [Indexed: 12/14/2022]
|
37
|
Tung EWY, Winn LM. Valproic Acid Increases Formation of Reactive Oxygen Species and Induces Apoptosis in Postimplantation Embryos: A Role for Oxidative Stress in Valproic Acid-Induced Neural Tube Defects. Mol Pharmacol 2011; 80:979-87. [DOI: 10.1124/mol.111.072314] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
38
|
Also-Rallo E, Alías L, Martínez-Hernández R, Caselles L, Barceló MJ, Baiget M, Bernal S, Tizzano EF. Treatment of spinal muscular atrophy cells with drugs that upregulate SMN expression reveals inter- and intra-patient variability. Eur J Hum Genet 2011; 19:1059-65. [PMID: 21610752 DOI: 10.1038/ejhg.2011.89] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a genetic neuromuscular disorder caused by mutations in the SMN1 gene. The homologous copy (SMN2) is always present in SMA patients. SMN1 gene transcripts are usually full-length (FL), but exon 7 is spliced out in a high proportion of SMN2 transcripts (delta7) (Δ7). Advances in drug therapy for SMA have shown that an increase in SMN mRNA and protein levels can be achieved in vitro. We performed a systematic analysis of SMN expression in primary fibroblasts and EBV-transformed lymphoblasts from seven SMA patients with varying clinical severity and different SMN1 genotypes to determine expression differences in two accessible tissues (skin and blood). The basal expression of SMN mRNA FL and Δ7 in fibroblasts and lymphoblasts was analyzed by quantitative real-time PCR. The FL-SMN and FL/Δ7 SMN ratios were higher in control cells than in patients. Furthermore, we investigated the response of these cell lines to hydroxyurea, valproate and phenylbutyrate, drugs previously reported to upregulate SMN2. The response to treatments with these compounds was heterogeneous. We found both intra-patient and inter-patient variability even within haploidentical siblings, suggesting that tissue and individual factors may affect the response to these compounds. To optimize the stratification of patients in clinical trials, in vitro studies should be performed before enrolment so as to define each patient as a responder or non-responder to the compound under investigation.
Collapse
Affiliation(s)
- Eva Also-Rallo
- Department of Genetics and CIBERER U-705 ISCIII, Hospital de Santa Creu i Sant Pau, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
39
|
van Dartel DAM, Piersma AH. The embryonic stem cell test combined with toxicogenomics as an alternative testing model for the assessment of developmental toxicity. Reprod Toxicol 2011; 32:235-44. [PMID: 21575713 DOI: 10.1016/j.reprotox.2011.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 04/20/2011] [Accepted: 04/29/2011] [Indexed: 01/15/2023]
Abstract
One of the most studied in vitro alternative testing methods for identification of developmental toxicity is the embryonic stem cell test (EST). Although the EST has been formally validated, the applicability domain as well as the predictability of the model needs further study to allow successful implementation of the EST as an alternative testing method in regulatory toxicity testing. Genomics technologies have already provided a proof of principle of their value in identification of toxicants such as carcinogenic compounds. Also within the EST, gene expression profiling has shown its value in the identification of developmental toxicity and in the evaluation of factors critical for risk assessment, such as dose and time responses. It is expected that the implementation of genomics into the EST will provide a more detailed end point evaluation as compared to the classical morphological scoring of differentiation cultures. Therefore, genomics may contribute to improvement of the EST, both in terms of definition of its applicability domain as well as its predictive capacity. In the present review, we present the progress that has been made with regard to the prediction of developmental toxicity using the EST combined with transcriptomics. Furthermore, we discuss the developments of additional aspects required for further optimization of the EST, including kinetics, the use of human embryonic stem cells (ESC) and computational toxicology. Finally, the current and future use of the EST model for prediction of developmental toxicity in testing strategies and in regulatory toxicity evaluations is discussed.
Collapse
Affiliation(s)
- Dorien A M van Dartel
- Laboratory for Health Protection Research, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | |
Collapse
|
40
|
Jergil M, Forsberg M, Salter H, Stockling K, Gustafson AL, Dencker L, Stigson M. Short-time gene expression response to valproic acid and valproic acid analogs in mouse embryonic stem cells. Toxicol Sci 2011; 121:328-42. [PMID: 21427059 DOI: 10.1093/toxsci/kfr070] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Prediction of developmental toxicity in vitro could be based on short-time toxicogenomic endpoints in embryo-derived cell lines. Microarray studies in P19 mouse embryocarcinoma cells and mouse embryos have indicated that valproic acid (VPA), an inducer of neural tube defects, deregulates the expression of many genes, including those critically involved in neural tube development. In this study, we exposed undifferentiated R1 mouse embryonic stem cells to VPA and VPA analogs for 6 h and used CodeLink whole-genome expression microarrays to define VPA-responsive genes correlating with teratogenicity. Compared with the nonteratogenic analog 2-ethyl-4-methylpentanoic acid, VPA and the teratogenic VPA analog (S)-2-pentyl-4-pentynoic acid deregulated a much larger number of genes. Five genes (of ∼2500 array probes correlating with the separation) were sufficient to effectively separate teratogens from nonteratogens. A large fraction of the target genes correlating with teratogenicity are functionally related to embryonic development and morphogenesis, including neural tube formation and closure. Similar responses in R1 were found for most genes previously identified as VPA responsive in P19 and embryos. A subset of target genes was evaluated as candidate markers predictive of potential teratogenicity against a range of known teratogens using TaqMan expression arrays. These marker genes showed a positive predictive value for the teratogens butyrate and trichostatin A, which like VPA and (S)-2-pentyl-4-pentynoic acid are known histone deacetylase (HDAC) inhibitors but not for compounds that are likely to act by other mechanisms. This indicates that HDAC inhibition may be a major mechanism by which VPA induces gene deregulation and possibly teratogenicity.
Collapse
Affiliation(s)
- Måns Jergil
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala SE-751 24, Sweden.
| | | | | | | | | | | | | |
Collapse
|
41
|
Gupta A, Schulze TG, Nagarajan V, Akula N, Corona W, Jiang XY, Hunter N, McMahon FJ, Detera-Wadleigh SD. Interaction networks of lithium and valproate molecular targets reveal a striking enrichment of apoptosis functional clusters and neurotrophin signaling. THE PHARMACOGENOMICS JOURNAL 2011; 12:328-41. [PMID: 21383773 PMCID: PMC3134562 DOI: 10.1038/tpj.2011.9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The overall neurobiological mechanisms by which lithium and valproate stabilize mood in bipolar disorder patients have yet to be fully defined. The therapeutic efficacy and dissimilar chemical structures of these medications suggest that they perturb both shared and disparate cellular processes. To investigate key pathways and functional clusters involved in the global action of lithium and valproate, we generated interaction networks formed by well-supported drug targets. Striking functional similarities emerged. Intersecting nodes in lithium and valproate networks highlighted a strong enrichment of apoptosis clusters and neurotrophin signaling. Other enriched pathways included MAPK, ErbB, insulin, VEGF, Wnt and long-term potentiation indicating a widespread effect of both drugs on diverse signaling systems. MAPK1/3 and AKT1/2 were the most preponderant nodes across pathways suggesting a central role in mediating pathway interactions. The convergence of biological responses unveils a functional signature for lithium and valproate that could be key modulators of their therapeutic efficacy.
Collapse
Affiliation(s)
- A Gupta
- Human Genetics Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sha K, Winn LM. Characterization of valproic acid-initiated homologous recombination. ACTA ACUST UNITED AC 2010; 89:124-32. [PMID: 20437471 DOI: 10.1002/bdrb.20236] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Valproic acid (VPA) is a frequently used antiepileptic agent and known teratogen. Previous research suggests that inhibition of histone deacetylases (HDACs) may play a role in VPA-induced teratogenicity. We have also shown that VPA exposure leads to both an increase in reactive oxygen species (ROS) production and increased frequency of homologous recombination (HR). METHODS In the present study, we evaluated the role of HDAC inhibition in VPA-initiated HR to determine if HDAC inhibition could alter repair activity and/or cause DNA double-strand breaks (DSBs), which would then initiate repair. Histone acetylation status was assessed to determine if VPA exposure led to HDAC inhibition in CHO 33 cells. RESULTS Our results demonstrate that VPA (5 mM) exposure leads to increased acetylated histone H3 and H4 protein levels after 10 to 24 hr. Secondly, in our recombination assay where an artificial DNA DSB was induced in CHO 33 cells to assess repair activity, VPA exposure did not affect the repair activity of VPA-initiated HR. Subsequently, to determine if VPA could increase susceptibility to DNA DSBs, the number of gamma-H2AX foci was assessed using immunocytochemistry and results revealed an increase in gamma-H2AX foci after 10- to 24-hr exposure to VPA. CONCLUSIONS Although we demonstrated the protective effect of polyethylene glycol-catalase against VPA-induced HR and the generation of intracellular ROS within 24 hr, we did not observed an increase in DNA oxidation. These studies suggest that HDAC inhibition and ROS signaling may play roles in DNA maintenance and cell-cycle arrest in initiating DNA damage and repair.
Collapse
Affiliation(s)
- Kevin Sha
- Department of Pharmacology and Toxicology, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
43
|
Komada M, Fujiyama F, Yamada S, Shiota K, Nagao T. Methylnitrosourea induces neural progenitor cell apoptosis and microcephaly in mouse embryos. ACTA ACUST UNITED AC 2010; 89:213-22. [PMID: 20549696 DOI: 10.1002/bdrb.20245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Prenatal exposure to methylnitrosourea (MNU), an alkylating agent, induces microcephaly in mice. However, its pathogenetic mechanism has not been clarified, especially that in the development of the cerebral cortex. METHODS ICR mice were treated with MNU at 10 mg/kg intraperitoneally on day 13.5 or 15.5 of gestation, and the embryos were observed histologically 24 hr after treatment with MNU or at term. To clarify the pathogenesis of microcephaly and histological changes, especially apoptosis, neurogenesis, and neural migration/positioning, we performed histological analysis employing a cell-specific labeling experiment using thymidine-like substances (BrdU, CldU, and IdU) and markers of neurons/neural stem cells. RESULTS Histological abnormalities of the dorsal telencephalon, and the excessive cell death of proliferative neural progenitor/stem cells were noted in the MNU-treated embryos. The highest frequencies of cell death occurred at 36 hr after MNU treatment, and little or no neurogenesis was observed in the ventricular zone of the dorsal telencephalon. Abnormality of the radial migration was caused by the reduction of radial fibers in the radial glias. Birth-date analysis revealed the abnormal positioning of neurons and aberrant lamination of the cerebral cortex. CONCLUSIONS Our data suggest that prenatal exposure to MNU induces the excessive cell death of neural precursor/stem cells, and the defective development of the cerebral cortex, resulting in microcephalic abnormalities.
Collapse
Affiliation(s)
- Munekazu Komada
- Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | | | | | | | | |
Collapse
|
44
|
van Dartel DAM, Pennings JLA, de la Fonteyne LJJ, van Herwijnen MH, van Delft JH, van Schooten FJ, Piersma AH. Monitoring developmental toxicity in the embryonic stem cell test using differential gene expression of differentiation-related genes. Toxicol Sci 2010; 116:130-9. [PMID: 20421339 DOI: 10.1093/toxsci/kfq127] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The embryonic stem cell test (EST) has been designed to predict developmental toxicity based upon compound-induced inhibition of embryonic stem cell (ESC) differentiation. The end point scoring, the test duration, and the definition of the predictivity and the applicability domain require improvements to facilitate implementation of the EST into regulatory testing strategies. The use of transcriptomics to study compound-induced differentiation modulation may improve the EST in each of these aspects. ESC differentiation was induced, and cell samples were collected after 0, 24, and 48 h of differentiation. Additionally, samples were collected that were 24 h exposed to one of five developmentally toxic compounds or a nondevelopmentally toxic compound. All samples were hybridized to Affymetrix GeneChips, and analyses revealed that 26 genes were significantly regulated both during ESC differentiation and by exposure to each of the developmentally toxic compounds tested. Using principal component analysis, we defined a "differentiation track" on the basis of this gene list, which represents ESC differentiation. We showed that significant deviation from the differentiation track was in line with the developmental toxic properties of the compounds. The significance of deviation was analyzed using the leave-one-out cross-validation, which showed a favorable prediction of toxicity in the system. Our findings show that gene expression signatures can be used to identify developmental toxicant-induced differentiation modulation. In addition, studying compound-induced effects at an early stage of differentiation combined with transcriptomics leads to increased objectivity in determining differentiation inhibition and to a reduction of the test duration. Furthermore, this approach may improve the predictivity and applicability domain of the EST.
Collapse
Affiliation(s)
- Dorien A M van Dartel
- Laboratory for Health Protection Research, National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
45
|
Alm H, Scholz B, Kultima K, Nilsson A, Andrén PE, Savitski MM, Bergman Å, Stigson M, Fex-Svenningsen Å, Dencker L. In Vitro Neurotoxicity of PBDE-99: Immediate and Concentration-Dependent Effects on Protein Expression in Cerebral Cortex Cells. J Proteome Res 2009; 9:1226-35. [DOI: 10.1021/pr900723c] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Henrik Alm
- Department of Pharmaceutical Biosciences, Division of Toxicology, Uppsala University, Sweden, Laboratory for Biological and Medical Mass Spectrometry, Uppsala University, Sweden, Department of Cellular and Molecular Biology, Uppsala University, Sweden, Department of Environmental Chemistry, Stockholm University, Sweden, and Institute of Medical Biology, Anatomy and Neurobiology, University of Southern Denmark, Denmark
| | - Birger Scholz
- Department of Pharmaceutical Biosciences, Division of Toxicology, Uppsala University, Sweden, Laboratory for Biological and Medical Mass Spectrometry, Uppsala University, Sweden, Department of Cellular and Molecular Biology, Uppsala University, Sweden, Department of Environmental Chemistry, Stockholm University, Sweden, and Institute of Medical Biology, Anatomy and Neurobiology, University of Southern Denmark, Denmark
| | - Kim Kultima
- Department of Pharmaceutical Biosciences, Division of Toxicology, Uppsala University, Sweden, Laboratory for Biological and Medical Mass Spectrometry, Uppsala University, Sweden, Department of Cellular and Molecular Biology, Uppsala University, Sweden, Department of Environmental Chemistry, Stockholm University, Sweden, and Institute of Medical Biology, Anatomy and Neurobiology, University of Southern Denmark, Denmark
| | - Anna Nilsson
- Department of Pharmaceutical Biosciences, Division of Toxicology, Uppsala University, Sweden, Laboratory for Biological and Medical Mass Spectrometry, Uppsala University, Sweden, Department of Cellular and Molecular Biology, Uppsala University, Sweden, Department of Environmental Chemistry, Stockholm University, Sweden, and Institute of Medical Biology, Anatomy and Neurobiology, University of Southern Denmark, Denmark
| | - Per E. Andrén
- Department of Pharmaceutical Biosciences, Division of Toxicology, Uppsala University, Sweden, Laboratory for Biological and Medical Mass Spectrometry, Uppsala University, Sweden, Department of Cellular and Molecular Biology, Uppsala University, Sweden, Department of Environmental Chemistry, Stockholm University, Sweden, and Institute of Medical Biology, Anatomy and Neurobiology, University of Southern Denmark, Denmark
| | - Mikhail M. Savitski
- Department of Pharmaceutical Biosciences, Division of Toxicology, Uppsala University, Sweden, Laboratory for Biological and Medical Mass Spectrometry, Uppsala University, Sweden, Department of Cellular and Molecular Biology, Uppsala University, Sweden, Department of Environmental Chemistry, Stockholm University, Sweden, and Institute of Medical Biology, Anatomy and Neurobiology, University of Southern Denmark, Denmark
| | - Åke Bergman
- Department of Pharmaceutical Biosciences, Division of Toxicology, Uppsala University, Sweden, Laboratory for Biological and Medical Mass Spectrometry, Uppsala University, Sweden, Department of Cellular and Molecular Biology, Uppsala University, Sweden, Department of Environmental Chemistry, Stockholm University, Sweden, and Institute of Medical Biology, Anatomy and Neurobiology, University of Southern Denmark, Denmark
| | - Michael Stigson
- Department of Pharmaceutical Biosciences, Division of Toxicology, Uppsala University, Sweden, Laboratory for Biological and Medical Mass Spectrometry, Uppsala University, Sweden, Department of Cellular and Molecular Biology, Uppsala University, Sweden, Department of Environmental Chemistry, Stockholm University, Sweden, and Institute of Medical Biology, Anatomy and Neurobiology, University of Southern Denmark, Denmark
| | - Åsa Fex-Svenningsen
- Department of Pharmaceutical Biosciences, Division of Toxicology, Uppsala University, Sweden, Laboratory for Biological and Medical Mass Spectrometry, Uppsala University, Sweden, Department of Cellular and Molecular Biology, Uppsala University, Sweden, Department of Environmental Chemistry, Stockholm University, Sweden, and Institute of Medical Biology, Anatomy and Neurobiology, University of Southern Denmark, Denmark
| | - Lennart Dencker
- Department of Pharmaceutical Biosciences, Division of Toxicology, Uppsala University, Sweden, Laboratory for Biological and Medical Mass Spectrometry, Uppsala University, Sweden, Department of Cellular and Molecular Biology, Uppsala University, Sweden, Department of Environmental Chemistry, Stockholm University, Sweden, and Institute of Medical Biology, Anatomy and Neurobiology, University of Southern Denmark, Denmark
| |
Collapse
|
46
|
Hogberg HT, Kinsner-Ovaskainen A, Coecke S, Hartung T, Bal-Price AK. mRNA Expression is a Relevant Tool to Identify Developmental Neurotoxicants Using an In Vitro Approach. Toxicol Sci 2009; 113:95-115. [DOI: 10.1093/toxsci/kfp175] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|