1
|
Nene S, Devabattula G, Vambhurkar G, Tryphena KP, Singh PK, Khatri DK, Godugu C, Srivastava S. High mobility group box 1 cytokine targeted topical delivery of resveratrol embedded nanoemulgel for the management of atopic dermatitis. Drug Deliv Transl Res 2025; 15:134-157. [PMID: 38509343 DOI: 10.1007/s13346-024-01565-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2024] [Indexed: 03/22/2024]
Abstract
Resveratrol is a polyphenolic compound showing anti-inflammatory activity by inhibition of high mobility group box 1 cytokine responsible for the activation of nuclear factor-κB pathway in atopic dermatitis. To evaluate the efficacy of resveratrol through topical route we have developed resveratrol-loaded nanoemulgel for the effective management of atopic dermatitis in mice model. The resveratrol-loaded nanoemulsion (0.5%, 0.75% and 1% w/w) was optimized by spontaneous nano-emulsification. The optimized resveratrol-loaded nanoemulsions showed average globule size in the 180-230 nm range and found to be monodispersed. The resveratrol nanoemulgel was prepared with a SEPINEO™ P 600 gel base and propylene glycol. Ex vivo permeation and retention study resulted in significantly higher skin retention of resveratrol from resveratrol-loaded nanoemulgel than free resveratrol-loaded gel. Preclinical efficacy of resveratrol nanoemulgel displayed promising therapeutic outcomes where, western blotting of skin tissues disclosed a significant reduction in the relative expression of high mobility group box 1, the receptor for advanced glycation end products, toll-like receptor-4 and phosphorylated nuclear factor-κB. Further, real-time polymerase chain reaction also disclosed a significant reduction in pro-inflammatory cytokines such as thymic stromal lymphopoietin, interleukin-4, interleukin-13, interleukin-31, tumor necrosis factor-α and interleukin-6. The histopathological examination of skin sections showed improvement in the skin condition. Collectively, the findings from our study showcased the significant improvement in the atopic dermatitis skin condition in mice model after topical application of resveratrol loaded nanoemulgel.
Collapse
Affiliation(s)
- Shweta Nene
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Geetanjali Devabattula
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Kamatham Pushpa Tryphena
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Chandraiah Godugu
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India.
| |
Collapse
|
2
|
Lin YK, Hsiao CY, Chen CJ, Alalaiwe A, Lee C, Huang TH, Fang JY. Systematic establishment of the relationship between skin absorption and toxicity of furanoids via in silico, in vitro, and in vivo assessments. ENVIRONMENTAL RESEARCH 2024; 261:119757. [PMID: 39128665 DOI: 10.1016/j.envres.2024.119757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Furanoids are a class of contaminants prevalent in both airborne and occupational environments, with potential health implications through inhalation, oral ingestion, and skin penetration. Given their diminutive molecular size, there is a presumption that furanoids can readily permeate the skin. To systematically explore this presumption, we investigated the skin absorption and toxicity of a series of furans (furfuryl alcohol, furfuryl acetate, furfural, methyl 2-furoate, and 5-methylfurfural) using in silico, in vitro, and in vivo models. The in vitro permeation test (IVPT) from neat and aqueous suspension (5 mM) of furans demonstrated a facile absorption through pig and nude mouse skins. The lipophilicity of furans significantly influenced skin deposition, with higher lipophilicity displaying greater deposition. However, an opposing trend emerged in the receptor compartment accumulation. In barrier-defective skin simulating atopic dermatitis (AD) and psoriasis, enhanced deposition occurred with more hydrophilic furans but not with the more lipophilic ones. In the cell-based study, furanoids induced the proliferation of keratinocytes and skin fibroblasts except for the compounds with the aldehyde group (furfural and 5-methylfurfural). Both furfuryl acetate and 5-methylfurfural activated keratinocytes via the overexpression of COX-2 and PGE2 by 1.5‒2-fold. This stimulation involved the mitogen-activated protein kinase (MAPK) signaling pathway. For the in vivo mouse skin treatment, we selected furfuryl acetate (hydrophilic) and 5-methylfurfural (lipophilic). Both furans showed different patterns of skin lesions, where repeated application of furfuryl acetate caused epidermal hyperplasia and scaling, while 5-methylfurfural predominantly evoked skin inflammation and barrier disintegration. Toxicokinetics analysis revealed a higher plasma concentration of topically applied furfuryl acetate than that of the 5-methylfurfural (5.04 versus 2.34 nmol/ml), resulting in the mild injury of furfuryl acetate-treated peripheral organs. Conversely, no notable adverse effects on organs were observed for the 5-methylfurfural. This study established the relationship between cutaneous absorption and the toxicity of furans following skin exposure.
Collapse
Affiliation(s)
- Yin-Ku Lin
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Linkou and Keelung, Taiwan; School of Traditional Chinese Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Chien-Yu Hsiao
- Department of Nutrition and Health Sciences, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chih-Jung Chen
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Chin Lee
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Tse-Hung Huang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Linkou and Keelung, Taiwan; School of Traditional Chinese Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Department of Chemical Engineering and Graduate Institute of Biochemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan; Department of Traditional Chinese Medicine, Xiamen Chang Gung Memorial Hospital, Xiamen, China.
| | - Jia-You Fang
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou, Taiwan.
| |
Collapse
|
3
|
Pieper C, Engel N, Wend K, Kneuer C, Martin S. In Vitro Human Dermal Absorption Studies on Pesticides in Complex Mixtures: Investigation of Guidance Criteria and Possible Impact Parameters. TOXICS 2024; 12:248. [PMID: 38668471 PMCID: PMC11054108 DOI: 10.3390/toxics12040248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/29/2024]
Abstract
Pesticides must not pose unacceptable risks to human health, so risk assessments are conducted before products are authorised. Dermal exposure is often the main route of intake, so estimating realistic and trustworthy dermal absorption values is crucial for risk assessment. Although there are agreed test guidelines for in vitro dermal absorption studies, not every product is tested due to cost reasons. The present dataset consists of 945 individual in vitro experiments on the dermal absorption of human skin with 179 active substances of pesticides in 353 different mixtures, including concentrates and dilutions. The dataset was evaluated to identify the possible impacts of experimental conditions and physico-chemical properties on dermal absorption. The dataset was also analysed to assess the appropriateness of the pro rata correction for untested dilutions, and the set concentration cut-off to decide on the dilution status for choosing a default value on dermal absorption. The study found that the implementation of specific guidelines improved the harmonisation of study conduct, with support for approaches such as pro rata correction and default values. Further analysis of the specific co-formulants may identify influencing factors that may be more important than the experimental variables.
Collapse
Affiliation(s)
- Christina Pieper
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany (K.W.)
| | | | | | | | | |
Collapse
|
4
|
Fitoussi R, Faure MO, Beauchef G, Achard S. Human skin responses to environmental pollutants: A review of current scientific models. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119316. [PMID: 35469928 DOI: 10.1016/j.envpol.2022.119316] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Whatever the exposure route, chemical, physical and biological pollutants modify the whole organism response, leading to nerve, cardiac, respiratory, reproductive, and skin system pathologies. Skin acts as a barrier for preventing pollutant modifications. This review aims to present the available scientific models, which help investigate the impact of pollution on the skin. The research question was "Which experimental models illustrate the impact of pollution on the skin in humans?" The review covered a period of 10 years following a PECO statement on in vitro, ex vivo, in vivo and in silico models. Of 582 retrieved articles, 118 articles were eligible. In oral and inhalation routes, dermal exposure had an important impact at both local and systemic levels. Healthy skin models included primary cells, cell lines, co-cultures, reconstructed human epidermis, and skin explants. In silico models estimated skin exposure and permeability. All pollutants affected the skin by altering elasticity, thickness, the structure of epidermal barrier strength, and dermal extracellular integrity. Some specific models concerned wound healing or the skin aging process. Underlying mechanisms were an exacerbated inflammatory skin reaction with the modulation of several cytokines and oxidative stress responses, ending with apoptosis. Pathological skin models revealed the consequences of environmental pollutants on psoriasis, atopic dermatitis, and tumour development. Finally, scientific models were used for evaluating the safety and efficacy of potential skin formulations in preventing the skin aging process or skin irritation after repeated contact. The review gives an overview of scientific skin models used to assess the effects of pollutants. Chemical and physical pollutants were mainly represented while biological contaminants were little studied. In future developments, cell hypoxia and microbiota models may be considered as more representative of clinical situations. Models considering humidity and temperature variations may reflect the impact of these changes.
Collapse
Affiliation(s)
| | - Marie-Odile Faure
- Scientific Consulting For You, 266 avenue Daumesnil, 75012, PARIS, France
| | | | - Sophie Achard
- HERA Team (Health Environmental Risk Assessment), INSERM UMR1153, CRESS-INRAE, Université Paris Cité, Faculté de Pharmacie, 4 avenue de l'Observatoire, 75270 CEDEX 06, PARIS, France.
| |
Collapse
|
5
|
A Mathematical Approach Using Strat-M ® to Predict the Percutaneous Absorption of Chemicals under Finite Dose Conditions. Pharmaceutics 2022; 14:pharmaceutics14071370. [PMID: 35890266 PMCID: PMC9318111 DOI: 10.3390/pharmaceutics14071370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022] Open
Abstract
Estimation of the percutaneous absorption is essential for the safety assessment of cosmetic and dermopharmaceutical products. Currently, an artificial membrane, Strat-M®, has been focused on as the tool which could obtain the permeation parameters close to the skin-derived values. Nevertheless, few practical methodologies using the permeation parameters for assessing percutaneous absorption under in-use conditions are available. In the present study, based on Fick's first law of diffusion, a novel mathematical model incorporating the permeation parameters as well as considering the water evaporation (Teva) was constructed. Then, to evaluate the applicability domain of our model in the case where Strat-M®-derived parameters were used, the permeation parameters were compared between the skin from edible porcine and Strat-M®. Regarding chemicals (-0.2 ≤ Log Kow ≤ 2.0), their permeation profiles were equivalent between Strat-M® and porcine skin. Therefore, for these chemicals, the percutaneous absorption was calculated using our model with the permeation parameters obtained using Strat-M® and the Teva determined by measuring the solution weight. The calculated values revealed a good correlation to the values obtained using porcine skin in finite dose experiments, suggesting that our mathematical approach with Strat-M® would be useful for the future safety assessment of cosmetic and dermopharmaceutical products.
Collapse
|
6
|
Tseng CH, Lin CF, Aljuffali IA, Huang JR, Yang SH, Fang JY. The effectiveness of synthetic methoxylated isoflavones in delivering to the skin and alleviating psoriasiform lesions via topical absorption. Int J Pharm 2022; 617:121629. [PMID: 35245633 DOI: 10.1016/j.ijpharm.2022.121629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 11/28/2022]
Abstract
This study was conducted to appraise the possible potential of synthetic isoflavones (SIFs) on psoriasis treatment. A practical and easy-to-operate approach was employed in synthesizing a series of SIFs, considering that acquiring flavonoids from natural resources is usually expensive, time-consuming, and non-eco-friendly. Seven SIFs derived from daidzein were produced with differences in the location of the hydroxyl groups and degree of methoxylation. The in vitro and in vivo skin absorption of topically applied SIFs was estimated. Further, keratinocytes (HaCaT) were employed as the model to investigate the anti-inflammatory activity of the isoflavones. The lipophilicity was increased from SIF-1 to -7. Noteworthily, there was a parabolic relationship between lipophilicity and skin absorption, with SIF-5 (4',7-dihydroxyisoflavone, daidzein) and SIF-6 (7-hydroxy-3',4'-dimethoxyisoflavone, cladrin) demonstrating the highest retention in pig skin. The methoxylated isoflavone SIF-5 showed the greatest permeation into barrier-deficient skin among the compounds tested, with a 6- and 8-fold increase after lipid and protein removal. The cell-based study exhibited the capability of SIFs to restrain the overexpressed IL-6, IL-8, and CXCL1 in stimulated HaCaT. The therapeutic index (TI) predicted the potential candidates of SIF-5 and SIF-6 for topical application to treat psoriatic inflammation. The imiquimod (IMQ)-driven psoriasiform murine model manifested the inhibition of hyperplasia and immune cell infiltration by topically administered SIF-5 and SIF-6. The epidermal thickness of IMQ-treated skin was decreased from 172 to 40 μm by both isoflavones. This effect was comparable with that of betamethasone, the positive control. The topical treatment of SIF-6 significantly reduced cytokine/chemokine upregulation by IMQ. The methoxylated isoflavone with dramatic anti-inflammatory activity is promising for the development of an antipsoriatic agent.
Collapse
Affiliation(s)
- Chih-Hua Tseng
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Pharmacy, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Chwan-Fwu Lin
- Department of Cosmetic Science, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
| | - Ibrahim A Aljuffali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Jhao-Rong Huang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Sien-Hung Yang
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan; Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan.
| | - Jia-You Fang
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan; Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
7
|
Somayaji MR, Das D, Garimella HT, German CL, Przekwas AJ, Simon L. An Integrated Biophysical Model for Predicting the Clinical Pharmacokinetics of Transdermally Delivered Compounds. Eur J Pharm Sci 2021; 167:105924. [PMID: 34289340 DOI: 10.1016/j.ejps.2021.105924] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/01/2021] [Accepted: 06/30/2021] [Indexed: 11/19/2022]
Abstract
The delivery of therapeutic drugs through the skin is a promising alternative to oral or parenteral delivery routes because dermal drug delivery systems (D3S) offer unique advantages such as controlled drug release over sustained periods and a significant reduction in first-pass effects, thus reducing the required dosing frequency and level of patient noncompliance. Furthermore, D3S find applications in multiple therapeutic areas, including drug repurposing. This article presents an integrated biophysical model of dermal absorption for simulating the permeation and absorption of compounds delivered transdermally. The biophysical model is physiologically/biologically inspired and combines a holistic model of healthy skin with whole-body physiology-based pharmacokinetics through dermis microcirculation. The model also includes the effects of chemical penetration enhancers and hair follicles on transdermal transport. The model-predicted permeation and pharmacokinetics of select compounds were validated using in vivo data reported in the literature. We conjecture that the integrated model can be used to gather insights into the permeation and systemic absorption of transdermal formulations (including cosmetic products) released from novel depots and optimize delivery systems. Furthermore, the model can be adapted to diseased skin with parametrization and structural adjustments specific to skin diseases.
Collapse
Affiliation(s)
- Mahadevabharath R Somayaji
- Manager, Computational Medicine and Biology, CFD Research Corporation, Huntsville, AL 35806, United States.
| | - Debarun Das
- Manager, Computational Medicine and Biology, CFD Research Corporation, Huntsville, AL 35806, United States
| | - Harsha Teja Garimella
- Manager, Computational Medicine and Biology, CFD Research Corporation, Huntsville, AL 35806, United States
| | - Carrie L German
- Manager, Computational Medicine and Biology, CFD Research Corporation, Huntsville, AL 35806, United States
| | - Andrzej J Przekwas
- Manager, Computational Medicine and Biology, CFD Research Corporation, Huntsville, AL 35806, United States
| | - Laurent Simon
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| |
Collapse
|
8
|
Almeida RN, Hartz JGM, Costa PF, Rodrigues AE, Vargas RMF, Cassel E. Permeability coefficients and vapour pressure determination for fragrance materials. Int J Cosmet Sci 2021; 43:225-234. [PMID: 33452685 DOI: 10.1111/ics.12686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/30/2023]
Abstract
OBJECTIVE This study aims to correlate new experimental data relevant to the description of the combined evaporation/permeation process of a perfume applied onto the skin. METHODS The vapour pressure data were measured by thermogravimetric analysis (TG-DTA). The Antoine constants and the Clarke and Glew parameters were determined for the same set of fragrance molecules to describe its low vapour pressures at new temperature ranges. The permeability coefficient of a set of 14 fragrance molecules in ethanolic solution was determined by Franz diffusion cell experiments, using porcine skin. The samples were analysed by gas chromatography with a flame ionization detector (GC/FID) and high-performance liquid chromatography with UV visible detector (HPLC/UV). A QSAR model was proposed to correlate the experimental data. RESULTS The Antoine constants were determined and presented low standard deviations. The Clarke and Glew physically significant parameters were obtained along with its statistical analysis. The fitting is good since the magnitude order is in accordance with the literature, associated with the low correlation between the estimated parameters and low standard deviations. The presented correlation, based on a mixture using only ethanol as solvent, showed better results than previous QSAR models with a standard relative deviation ( σ r ) of 0.190, a standard error (SE) of 0.397 and a determination coefficient (R2 ) of 0.7786. CONCLUSION The dataset is still small compared to larger and more general QSAR models; however, it is much more specific as to the type of solvent and class of materials studied. This work represents an advance for the modelling of the perfume diffusion process since it specifies important properties that until then had been treated in a more general way.
Collapse
Affiliation(s)
- Rafael N Almeida
- Unit Operations Lab, Polytechnic School, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - João G M Hartz
- Unit Operations Lab, Polytechnic School, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Patrícia F Costa
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Porto, Portugal
| | - Alírio E Rodrigues
- LSRE-Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE/LCM, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Rubem M F Vargas
- Unit Operations Lab, Polytechnic School, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Eduardo Cassel
- Unit Operations Lab, Polytechnic School, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
9
|
Human skin permeation rates ex vivo following exposures to mixtures of glycol ethers. Toxicol Lett 2020; 335:1-10. [PMID: 33007386 DOI: 10.1016/j.toxlet.2020.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/10/2020] [Accepted: 09/23/2020] [Indexed: 11/23/2022]
Abstract
Skin exposure to cleaning products in the general and occupational population are a public health concern. Among the most frequently identified amphiphilic organic solvents in cleaning products are propylene glycol monomethyl ether (PGME) and propylene glycol n-butyl ether (PGBE). Internal dose from skin exposure may be efficiently evaluated using in vitro flow-through diffusion cells with excised human skin. Our aim in this study was two-fold; 1) characterize the permeation rates (J), time lag (Tlag), and permeation coefficients (Kp) of PGME and PGBE in human ex-vivo skin permeation assays, and 2) determine a possible mixture effect on skin permeation characteristics when applied together. Our results showed a short Tlag for PGME and was reduced further depending on the amount of PGBE in the mixture (Tlag was reduced from 2 h to 1-1.7 h) for fresh skin. PGBE Tlag slightly increased when mixed with 50 % or more PGME. Permeation rate decreased to half for both PGME and PGBE in mixture at any concentration. This substantial permeation was greater with previously frozen skin. This mixture effect could favor permeation of other compounds through human skin.
Collapse
|
10
|
Alalaiwe A, Lin YK, Lin CH, Wang PW, Lin JY, Fang JY. The absorption of polycyclic aromatic hydrocarbons into the skin to elicit cutaneous inflammation: The establishment of structure-permeation and in silico-in vitro-in vivo relationships. CHEMOSPHERE 2020; 255:126955. [PMID: 32416390 DOI: 10.1016/j.chemosphere.2020.126955] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) can induce skin toxicity. Although some investigations have been conducted to assess the skin toxicity of different PAHs, few comparisons using a series of PAHs with different ring numbers and arrangements have been done. We aimed to explore the skin absorption of 6 PAH compounds and their effect on cutaneous inflammation. In vitro skin permeation was rated by Franz cell with pig skin. Molecular docking was employed to compute the PAH interaction with stratum corneum (SC) lipids. Cultured keratinocytes were exposed to PAHs for analyzing cytotoxicity, cyclooxygenase (COX)-2, prostaglandin E2 (PGE2), chemokines, and differentiation proteins. The in vivo topical PAH exposure in mice was characterized by skin absorption, transepidermal water loss (TEWL), PGE2 level, and histology. The skin deposition from the aqueous vehicle increased following the increase of PAH lipophilicity and molecular size, with benzo[a]pyrene (5-ring PAH) showing the greatest absorption. Pyrene was the compound showing the highest penetration across the skin (flux). Although the PAHs fluoranthene, pyrene, chrysene, and 1,2-benzanthracene all had 4 rings, the skin permeation was quite different. 1,2-Benzanthracene showed the greatest absorption among the 4-ring compounds. The PAHs with higher absorption exhibited stronger interaction with SC lipids according to the in silico modeling. Chrysene and 1,2-benzanthracene generally showed the highest COX-2 and PGE2 expression, followed by benzo[a]pyrene. The lowest COX-2 and PGE2 upregulation was observed for naphthalene (2-ring PAH). A contrary tendency was detected for the upregulation of chemokines. Filaggrin and integrin β1 in keratinocytes were suppressed at a comparable level by all PAHs. The skin's absorption of PAHs showed strong in vivo-in vitro correlation. 1,2-Benzanthracene and benzo[a]pyrene highly disrupted the skin barrier and elevated the inflammation in vivo. The tendency toward in vivo inflammation caused by various PAHs could be well predicted by the combined estimation using in vitro skin absorption and a keratinocyte bioassay. This study also established the structure-permeation relationship (SPR) of PAHs.
Collapse
Affiliation(s)
- Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Yin-Ku Lin
- School of Traditional Chinese Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan; Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan
| | - Chih-Hung Lin
- Center for General Education, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| | - Pei-Wen Wang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Jie-Yu Lin
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
11
|
Cheng CY, Lin YK, Yang SC, Alalaiwe A, Lin CJ, Fang JY, Lin CF. Percutaneous absorption of resveratrol and its oligomers to relieve psoriasiform lesions: In silico, in vitro and in vivo evaluations. Int J Pharm 2020; 585:119507. [DOI: 10.1016/j.ijpharm.2020.119507] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023]
|
12
|
Tang KW, Lin ZC, Wang PW, Alalaiwe A, Tseng CH, Fang JY. Facile skin targeting of a thalidomide analog containing benzyl chloride moiety alleviates experimental psoriasis via the suppression of MAPK/NF-κB/AP-1 phosphorylation in keratinocytes. J Dermatol Sci 2020; 99:90-99. [PMID: 32622642 DOI: 10.1016/j.jdermsci.2020.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Thalidomide can be a TNF-α inhibitor for treating skin inflammation. This drug exhibits a strong toxicity that limits its application. OBJECTIVE We synthesized a thalidomide analog containing the benzyl chloride group (2-[1-(3-chlorobenzyl)-2,6-dioxopiperidin-3-yl]isoindoline-1,3-dione, CDI) to examine anti-inflammatory activity against psoriasis. METHODS The evaluation was conducted by the experimental platforms of in vitro TNF-α- or imiquimod (IMQ)-stimulated HaCaT cells and in vivo IMQ-induced psoriasiform plaque. RESULTS Using the in vitro keratinocyte model, we demonstrated a greater inhibition of IL-1β, IL-6, and IL-24 by CDI than by thalidomide. No significant cytotoxicity was observed at 100 μM. CDI delivered facilely into the skin with a cutaneous targeting ability 228-fold greater than thalidomide. CDI caused a negligible irritation on healthy mouse skin. We showed that topically applied CDI reduced IMQ-induced red scaly lesions, hyperplasia, microabscesses, and cytokine expression in the mouse model. The skin-barrier function measured by transepidermal water loss (TEWL) could be partially recovered from 50.6-36.3 g/m2/h by CDI. The mechanistic study showed that CDI suppressed cytokine production by inhibiting the phosphorylation of NF-κB and AP-1 via MAPK pathways. CONCLUSION CDI would be beneficial for the development of a therapeutic agent against psoriasis.
Collapse
Affiliation(s)
- Kai-Wei Tang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zih-Chan Lin
- Graduate Institute of Biomedical Sciences, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Pei-Wen Wang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Chih-Hua Tseng
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Pharmacy, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
13
|
Tellechea A, Bai S, Dangwal S, Theocharidis G, Nagai M, Koerner S, Cheong JE, Bhasin S, Shih TY, Zheng Y, Zhao W, Zhang C, Li X, Kounas K, Panagiotidou S, Theoharides T, Mooney D, Bhasin M, Sun L, Veves A. Topical Application of a Mast Cell Stabilizer Improves Impaired Diabetic Wound Healing. J Invest Dermatol 2019; 140:901-911.e11. [PMID: 31568772 DOI: 10.1016/j.jid.2019.08.449] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 02/09/2023]
Abstract
Impaired wound healing in the diabetic foot is a major problem often leading to amputation. Mast cells have been shown to regulate wound healing in diabetes. We developed an indole-carboxamide type mast cell stabilizer, MCS-01, which proved to be an effective mast cell degranulation inhibitor in vitro and can be delivered topically for prolonged periods through controlled release by specifically designed alginate bandages. In diabetic mice, both pre- and post-wounding, topical MCS-01 application accelerated wound healing comparable to that achieved with systemic mast cell stabilization. Moreover, MCS-01 altered the macrophage phenotype, promoting classically activated polarization. Bulk transcriptome analysis from wounds treated with MCS-01 or placebo showed that MCS-01 significantly modulated the mRNA and microRNA profile of diabetic wounds, stimulated upregulation of pathways linked to acute inflammation and immune cell migration, and activated the NF-κB complex along with other master regulators of inflammation. Single-cell RNA sequencing analysis of 6,154 cells from wounded and unwounded mouse skin revealed that MCS-01 primarily altered the gene expression of mast cells, monocytes, and keratinocytes. Taken together, these findings offer insights into the process of diabetic wound healing and suggest topical mast cell stabilization as a potentially successful treatment for diabetic foot ulceration.
Collapse
Affiliation(s)
- Ana Tellechea
- Joslin-Beth Israel Deaconess Foot Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Sha Bai
- Center for Drug Discovery and Translational Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Seema Dangwal
- Joslin-Beth Israel Deaconess Foot Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; Institute for Translational and Therapeutics Strategies, Hannover Medical School, Hannover, Germany
| | - Georgios Theocharidis
- Joslin-Beth Israel Deaconess Foot Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Masa Nagai
- Center for Drug Discovery and Translational Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Steffi Koerner
- Center for Drug Discovery and Translational Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jae Eun Cheong
- Center for Drug Discovery and Translational Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Swati Bhasin
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ting-Yu Shih
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, USA
| | - YongJun Zheng
- Joslin-Beth Israel Deaconess Foot Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Wanni Zhao
- Joslin-Beth Israel Deaconess Foot Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Cuiping Zhang
- Joslin-Beth Israel Deaconess Foot Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaoli Li
- Joslin-Beth Israel Deaconess Foot Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Konstantinos Kounas
- Joslin-Beth Israel Deaconess Foot Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Smaro Panagiotidou
- Laboratory of Immunopharmacology and Drug, Discovery Department of Immunology Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Theoharis Theoharides
- Laboratory of Immunopharmacology and Drug, Discovery Department of Immunology Tufts University School of Medicine, Boston, Massachusetts, USA
| | - David Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, USA
| | - Manoj Bhasin
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| | - Lijun Sun
- Center for Drug Discovery and Translational Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| | - Aristidis Veves
- Joslin-Beth Israel Deaconess Foot Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
14
|
Weng JR, Huang TH, Lin ZC, Alalaiwe A, Fang JY. Cutaneous delivery of [1-(4-chloro-3-nitrobenzenesulfonyl)-1H-indol-3-yl]-methanol, an indole-3-carbinol derivative, mitigates psoriasiform lesion by blocking MAPK/NF-κB/AP-1 activation. Biomed Pharmacother 2019; 119:109398. [PMID: 31493747 DOI: 10.1016/j.biopha.2019.109398] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/20/2019] [Accepted: 08/28/2019] [Indexed: 02/03/2023] Open
Abstract
[1-(4-chloro-3-nitrobenzenesulfonyl)-1H-indol-3-yl]-methanol (CIM) has been used as a bioactive agent for inhibiting tumor growth and angiogenesis via mitogen-activated protein kinase (MAPK) and NF-κB blocking. The present work was undertaken to investigate the potential of CIM against psoriasis using imiquimod (IMQ)-stimulated psoriasis-like mouse and in vitro HaCaT keratinocytes as the models. We demonstrated that topical CIM treatment reduced IMQ-activated scaling, erythema, and barrier dysfunction. This compound also restrained the recruitment of neutrophils. The cytokines, including TNF-α, IL-1β, IL-6, and IL-17 in psoriasiform skin, can be attenuated to normal baseline by CIM. Topically applied CIM can be easily delivered into skin based on the affinity with stratum corneum (SC) ceramides. IMQ intervention increased the permeability by 3-fold as compared to healthy skin. CIM ameliorated psoriatic lesion without incurring overt signs of irritation. Both TNF-α and IMQ were employed as the stimulators to activate HaCaT for reciprocal elucidation of the mechanism of action. CIM inhibited the overexpression of IL-1β, IL-6, and IL-24 in HaCaT. CIM exerted anti-inflammatory activity by suppressing the phosphorylation of NF-κB and activator protein-1 (AP-1) through MAPK pathways. Our results indicate that CIM has potential as the antipsoriatic molecule. The detailed signaling pathways still need further investigation.
Collapse
Affiliation(s)
- Jing-Ru Weng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan; Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Tse-Hung Huang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan; School of Traditional Chinese Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwane; Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwang
| | - Zih-Chan Lin
- Graduate Institute of Biomedical Sciences, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
15
|
Eleftheriadou D, Luette S, Kneuer C. In silico prediction of dermal absorption of pesticides - an evaluation of selected models against results from in vitro testing. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2019; 30:561-585. [PMID: 31535949 DOI: 10.1080/1062936x.2019.1644533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/13/2019] [Indexed: 06/10/2023]
Abstract
Current guidance for the estimation of dermal absorption (DA) of pesticides recommends the use of default values, read-across of information between formulations and in vitro testing. While QSARs exist to estimate percutaneous absorption, their use is currently not encouraged. Therefore, the potential of publicly available models for DA estimation was investigated based on data from 564 human in vitro DA experiments on pesticides. The classic Potts Guy model, the correction of Cleek Bunge for highly lipophilic chemicals, the mechanistic model of Mitragotri, and the COSMOS model were used to estimate the permeability coefficient kp. Different approaches were explored to calculate the percentage of external dose absorbed. IH SkinPerm was examined as stand-alone model. The models generally failed to accurately predict experimental values. For 30-40% of the predictions, there was overestimation by one order of magnitude. Three models underpredicted >10% of the cases, the remaining models <5%. DA of hydrophilic substances was typically underpredicted. Overprediction was more prominent for solid preparations and suspensions. The molecular weight, irritation potential and skin thickness did not correlate with the models' predictivity. Of the models investigated, IH SkinPerm performed best with 38% of the predictions within one order of magnitude and 2% underpredicted cases.
Collapse
Affiliation(s)
- D Eleftheriadou
- Department for Pesticide Safety, German Federal Institute for Risk Assessment , Berlin , Germany
| | - S Luette
- Department for Pesticide Safety, German Federal Institute for Risk Assessment , Berlin , Germany
| | - C Kneuer
- Department for Pesticide Safety, German Federal Institute for Risk Assessment , Berlin , Germany
| |
Collapse
|
16
|
Pecoraro B, Tutone M, Hoffman E, Hutter V, Almerico AM, Traynor M. Predicting Skin Permeability by Means of Computational Approaches: Reliability and Caveats in Pharmaceutical Studies. J Chem Inf Model 2019; 59:1759-1771. [PMID: 30658035 DOI: 10.1021/acs.jcim.8b00934] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The skin is the main barrier between the internal body environment and the external one. The characteristics of this barrier and its properties are able to modify and affect drug delivery and chemical toxicity parameters. Therefore, it is not surprising that permeability of many different compounds has been measured through several in vitro and in vivo techniques. Moreover, many different in silico approaches have been used to identify the correlation between the structure of the permeants and their permeability, to reproduce the skin behavior, and to predict the ability of specific chemicals to permeate this barrier. A significant number of issues, like interlaboratory variability, experimental conditions, data set building rationales, and skin site of origin and hydration, still prevent us from obtaining a definitive predictive skin permeability model. This review wants to show the main advances and the principal approaches in computational methods used to predict this property, to enlighten the main issues that have arisen, and to address the challenges to develop in future research.
Collapse
Affiliation(s)
- Beatrice Pecoraro
- Department of Clinical and Pharmaceutical Sciences , University of Hertfordshire , AL10 9AB Hatfield , United Kingdom
| | - Marco Tutone
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies , University of Palermo , 90123 Palermo , Italy
| | - Ewelina Hoffman
- Department of Clinical and Pharmaceutical Sciences , University of Hertfordshire , AL10 9AB Hatfield , United Kingdom
| | - Victoria Hutter
- Department of Clinical and Pharmaceutical Sciences , University of Hertfordshire , AL10 9AB Hatfield , United Kingdom
| | - Anna Maria Almerico
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies , University of Palermo , 90123 Palermo , Italy
| | - Matthew Traynor
- Department of Clinical and Pharmaceutical Sciences , University of Hertfordshire , AL10 9AB Hatfield , United Kingdom
| |
Collapse
|
17
|
Alalaiwe A, Hung CF, Leu YL, Tahara K, Chen HH, Hu KY, Fang JY. The active compounds derived from Psoralea corylifolia for photochemotherapy against psoriasis-like lesions: The relationship between structure and percutaneous absorption. Eur J Pharm Sci 2018; 124:114-126. [PMID: 30153523 DOI: 10.1016/j.ejps.2018.08.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/07/2018] [Accepted: 08/23/2018] [Indexed: 12/16/2022]
Abstract
8‑Methoxypsoralen (8-MOP) in combination with ultraviolet A (PUVA) is a photochemotherapy for management of psoriasis. 8-MOP is a natural compound from Psoralea corylifolia. The present work was undertaken to evaluate the percutaneous absorption of five compounds derived from P. corylifolia, and to further explore the inhibitory effect on psoriasis-like lesions generated by imiquimod stimulation in a mouse model. 8-MOP, psoralen, isopsoralen, psoralidin, and bakuchiol were comparatively tested for in vitro skin permeation, keratinocyte apoptosis, and in vivo antipsoriatic potency. The pig ear skin deposition of 8-MOP, isopsoralen, and bakuchiol at an equimolar dose was 0.47, 0.58, and 0.50 nmol/mg, respectively, which was comparable and higher than that of psoralen (0.25 nmol/mg) and psoralidin (0.14 nmol/mg). Psoralidin and bakuchiol were absorbed into the skin without further penetration across the skin. Besides experimental data of physicochemical properties, the hydrogen bond number, total polarity surface, and stratum corneum lipid docking calculated could explain the correlation of the penetrant structure with the skin permeability. The antiproliferative activity against keratinocytes was stronger for 8-MOP and isopsoralen than the others. Topical application of PUVA by using 8-MOP and isopsoralen on imiquimod-induced plaque significantly reduced transepidermal water loss from 55 to 33 and 38 g/m2/h, respectively. The epidermal thickening elicited by imiquimod (117 μm) was decreased to 62 and 26 μm by 8-MOP and isopsoralen application. IL-6 expression in psoriasiform skin was downregulated by isopsoralen but not 8-MOP. Isopsoralen may be a potential candidate for PUVA therapy.
Collapse
Affiliation(s)
- Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan, Taiwan
| | - Yann-Lii Leu
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Kohei Tahara
- Laboratory of Pharmaceutical Engineering, Gifu Pharmaceutical University, Gifu, Japan
| | - Hi-Han Chen
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
| | - Kai-Yin Hu
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
| | - Jia-You Fang
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
18
|
Chuang SY, Lin YK, Lin CF, Wang PW, Chen EL, Fang JY. Elucidating the Skin Delivery of Aglycone and Glycoside Flavonoids: How the Structures Affect Cutaneous Absorption. Nutrients 2017; 9:nu9121304. [PMID: 29189718 PMCID: PMC5748754 DOI: 10.3390/nu9121304] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/21/2017] [Accepted: 11/28/2017] [Indexed: 12/14/2022] Open
Abstract
Flavonoids are bioactive phytochemicals that exhibit protective potential against cutaneous inflammation and photoaging. We selected eight flavonoid aglycones or glycosides to elucidate the chemistry behind their skin absorption capability through experimental and computational approaches. The skin delivery was conducted using nude mouse and pig skins mounted on an in vitro Franz cell assembly. The anti-inflammatory activity was examined using the O2•– and elastase inhibition in activated human neutrophils. In the equivalent dose (6 mM) application on nude mouse skin, the skin deposition of naringenin and kaempferol was 0.37 and 0.11 nM/mg, respectively, which was higher than that of the other flavonoids. Both penetrants were beneficial for targeted cutaneous therapy due to their minimal diffusion across the skin. The absorption was generally greater for topically applied aglycones than glycosides. Although naringenin could be classified as a hydrophilic flavonoid, the flexibility of the chiral center in the C ring of this flavanone could lead to better skin transport than the flavonols and flavones with a planar structure. An optimized hydrophilic and lipophilic balance of the flavonoid structure was important for governing the cutaneous delivery. The hydrogen bond acceptor and stratum corneum lipid docking estimated by molecular modeling showed some relationships with the skin deposition. The interaction with cholesteryl sulfate could be a factor for predicting the cutaneous absorption of aglycone flavonoids (correlation coefficient = 0.97). Baicalin (3 µM) showed the highest activity against oxidative burst with an O2•– inhibition percentage of 77%. Although naringenin displayed an inhibition efficiency of only 20%, this compound still demonstrated an impressive therapeutic index because of the high absorption. Our data are advantageous to providing the information on the structure–permeation relationship for topically applied flavonoids.
Collapse
Affiliation(s)
- Shih-Yi Chuang
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan 333, Taiwan.
| | - Yin-Ku Lin
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung 204, Taiwan.
- School of Traditional Chinese Medicine, Chang Gung University, Kweishan, Taoyuan 333, Taiwan.
| | - Chwan-Fwu Lin
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan 333, Taiwan.
- Department of Cosmetic Science, Chang Gung University of Science and Technology, Kweishan, Taoyuan 333, Taiwan.
| | - Pei-Wen Wang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.
| | - En-Li Chen
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan 333, Taiwan.
| | - Jia-You Fang
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan 333, Taiwan.
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan 333, Taiwan.
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan 333, Taiwan.
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan 333, Taiwan.
| |
Collapse
|
19
|
|
20
|
Toropova AP, Toropov AA. The index of ideality of correlation: A criterion of predictability of QSAR models for skin permeability? THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 586:466-472. [PMID: 28196626 DOI: 10.1016/j.scitotenv.2017.01.198] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/24/2017] [Accepted: 01/29/2017] [Indexed: 06/06/2023]
Abstract
New criterion of the predictive potential of quantitative structure-property/activity relationships (QSPRs/QSARs) is suggested. This criterion is calculated with utilization of the correlation coefficient between experimental and calculated values of endpoint for the calibration set, with taking into account the positive and negative dispersions between experimental and calculated values. The utilization of this criterion improves the predictive potential of QSAR models of dermal permeability coefficient, logKp (cm/h).
Collapse
Affiliation(s)
- Alla P Toropova
- IRCCS, Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milan, Italy.
| | - Andrey A Toropov
- IRCCS, Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milan, Italy
| |
Collapse
|
21
|
Liu KS, Huang TH, Aljuffali IA, Chen EL, Wang JJ, Fang JY. Exploring the structure-permeation relationship of topical tricyclic antidepressants used for skin analgesia. Int J Pharm 2017; 523:386-397. [DOI: 10.1016/j.ijpharm.2017.03.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/06/2017] [Accepted: 03/19/2017] [Indexed: 12/17/2022]
|
22
|
Chittenden JT, Riviere JE. Assessment of penetrant and vehicle mixture properties on transdermal permeability using a mixed effect pharmacokinetic model ofex vivoporcine skin. Biopharm Drug Dispos 2016; 37:387-396. [DOI: 10.1002/bdd.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 05/26/2016] [Accepted: 05/26/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Jason T. Chittenden
- Center for Chemical Toxicology Research and Pharmacokinetics; College of Veterinary Medicine, North Carolina State University; 1060 William Moore Drive Raleigh NC 27607 USA
| | - Jim E. Riviere
- Institute of Computational Comparative Medicine, Mosier P200A; Kansas State University; Manhattan KS 66506-5802 USA
| |
Collapse
|
23
|
Yu J, Li X, Yang J, Wu Y, Li B. Effects of Simazine Exposure on Neuronal Development-Related Factors in MN9D Cells. Med Sci Monit 2016; 22:2831-8. [PMID: 27513680 PMCID: PMC4987066 DOI: 10.12659/msm.896460] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background Simazine is a triazine herbicide used worldwide in both agricultural and non-agricultural fields that is frequently detected in surface water and groundwater. Due to its widespread use, an increasing amount of research has focused on the potentially serious environmental and health risks. Material/Methods We used Western blotting and real-time quantitative PCR to analyze the effects of simazine on dopamine neuronal development-related factors in MN9D dopaminergic cells. Results The expression of tyrosine hydroxylase (TH) mRNA was significantly increased after treatment with 300 and 600 μmol L−1 simazine after 24 and 48 h. Levels of nuclear-related receptor 1 (Nurr1) mRNA after 24- and 48-h exposure were decreased with 50 μmol L−1 simazine, but increased with 600 μmol L−1 simazine. Significant increases in TH and Nurr1 protein were observed in all simazine-treated groups at 24 and 48 h. The expression of neurogenin 2 and LIM homeobox transcription factor 1 beta (Lmx1b) mRNA were significantly increased after exposure to 600 μmol L−1 simazine for 48 h, while the expression of wingless-type MMTV integration site family member 1 (Wnt1) mRNA was increased by all doses of simazine. Conclusions Simazine may have an impact on TH in MN9D cells through 2 mechanisms; one mechanism is through the Lmx1a/Ngn2 pathway, and the other mechanism is through the Lmx1b-pitx3/Wnt1-Nurr1 pathway. These 2 pathways likely do not operate in isolation, but rather together, during the cellular response to simazine exposure.
Collapse
Affiliation(s)
- Jia Yu
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Xueting Li
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Junwei Yang
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Yanping Wu
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Baixiang Li
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| |
Collapse
|
24
|
Uchida T, Yakumaru M, Nishioka K, Higashi Y, Sano T, Todo H, Sugibayashi K. Evaluation of a Silicone Membrane as an Alternative to Human Skin for Determining Skin Permeation Parameters of Chemical Compounds. Chem Pharm Bull (Tokyo) 2016; 64:1338-46. [DOI: 10.1248/cpb.c16-00322] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Takashi Uchida
- Skin Care Products Research, Kao Corporation
- Faculty of Pharmaceutical Sciences, Josai University
| | | | | | | | | | - Hiroaki Todo
- Faculty of Pharmaceutical Sciences, Josai University
| | | |
Collapse
|
25
|
Quantification of vehicle mixture effects on in vitro transdermal chemical flux using a random process diffusion model. J Control Release 2015; 217:74-81. [DOI: 10.1016/j.jconrel.2015.08.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/04/2015] [Accepted: 08/11/2015] [Indexed: 11/23/2022]
|
26
|
Baba H, Takahara JI, Yamashita F, Hashida M. Modeling and Prediction of Solvent Effect on Human Skin Permeability using Support Vector Regression and Random Forest. Pharm Res 2015; 32:3604-17. [PMID: 26033768 DOI: 10.1007/s11095-015-1720-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/19/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE The solvent effect on skin permeability is important for assessing the effectiveness and toxicological risk of new dermatological formulations in pharmaceuticals and cosmetics development. The solvent effect occurs by diverse mechanisms, which could be elucidated by efficient and reliable prediction models. However, such prediction models have been hampered by the small variety of permeants and mixture components archived in databases and by low predictive performance. Here, we propose a solution to both problems. METHODS We first compiled a novel large database of 412 samples from 261 structurally diverse permeants and 31 solvents reported in the literature. The data were carefully screened to ensure their collection under consistent experimental conditions. To construct a high-performance predictive model, we then applied support vector regression (SVR) and random forest (RF) with greedy stepwise descriptor selection to our database. The models were internally and externally validated. RESULTS The SVR achieved higher performance statistics than RF. The (externally validated) determination coefficient, root mean square error, and mean absolute error of SVR were 0.899, 0.351, and 0.268, respectively. Moreover, because all descriptors are fully computational, our method can predict as-yet unsynthesized compounds. CONCLUSION Our high-performance prediction model offers an attractive alternative to permeability experiments for pharmaceutical and cosmetic candidate screening and optimizing skin-permeable topical formulations.
Collapse
Affiliation(s)
- Hiromi Baba
- Kyoto R&D Center, Maruho Co., Ltd., 93 Awata-cho, Chudoji, Shimogyo-ku, 600-8815, Kyoto, Japan. .,Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29, Yoshida-shimoadachicho, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Jun-ichi Takahara
- Kyoto R&D Center, Maruho Co., Ltd., 93 Awata-cho, Chudoji, Shimogyo-ku, 600-8815, Kyoto, Japan
| | - Fumiyoshi Yamashita
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29, Yoshida-shimoadachicho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Mitsuru Hashida
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29, Yoshida-shimoadachicho, Sakyo-ku, Kyoto, 606-8501, Japan.,Institute for Integrated Cell-Material Sciences, Kyoto University, 46-29, Yoshida-shimoadachicho, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
27
|
Dumont C, Prieto P, Asturiol D, Worth A. Review of the Availability ofIn VitroandIn SilicoMethods for Assessing Dermal Bioavailability. ACTA ACUST UNITED AC 2015. [DOI: 10.1089/aivt.2015.0003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Coralie Dumont
- The European Union Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM), Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Italy
| | - Pilar Prieto
- The European Union Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM), Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Italy
| | - David Asturiol
- The European Union Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM), Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Italy
| | - Andrew Worth
- The European Union Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM), Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Italy
| |
Collapse
|
28
|
Prediction of skin permeation by chemical compounds using the artificial membrane, Strat-M™. Eur J Pharm Sci 2015; 67:113-118. [DOI: 10.1016/j.ejps.2014.11.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/28/2014] [Accepted: 11/06/2014] [Indexed: 11/23/2022]
|
29
|
Ashrafi P, Moss GP, Wilkinson SC, Davey N, Sun Y. The application of machine learning to the modelling of percutaneous absorption: an overview and guide. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2015; 26:181-204. [PMID: 25783869 DOI: 10.1080/1062936x.2015.1018941] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Machine learning (ML) methods have been applied to the analysis of a range of biological systems. This paper reviews the application of these methods to the problem domain of skin permeability and addresses critically some of the key issues. Specifically, ML methods offer great potential in both predictive ability and their ability to provide mechanistic insight to, in this case, the phenomena of skin permeation. However, they are beset by perceptions of a lack of transparency and, often, once a ML or related method has been published there is little impetus from other researchers to adopt such methods. This is usually due to the lack of transparency in some methods and the lack of availability of specific coding for running advanced ML methods. This paper reviews critically the application of ML methods to percutaneous absorption and addresses the key issue of transparency by describing in detail - and providing the detailed coding for - the process of running a ML method (in this case, a Gaussian process regression method). Although this method is applied here to the field of percutaneous absorption, it may be applied more broadly to any biological system.
Collapse
Affiliation(s)
- P Ashrafi
- a School of Computer Science , University of Hertfordshire , Hatfield , UK
| | | | | | | | | |
Collapse
|
30
|
Park S, Kim S, Jin H, Lee K, Bae J. Impaired development of female mouse offspring maternally exposed to simazine. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:845-51. [PMID: 25461544 DOI: 10.1016/j.etap.2014.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 10/07/2014] [Accepted: 10/10/2014] [Indexed: 05/16/2023]
Abstract
Simazine is a suspected endocrine disruptor and the second most commonly detected pesticide in surface and groundwater worldwide. We evaluated the toxicity of simazine in female mouse offspring with in utero and lactational exposure to the agent. Pregnant mice were exposed to environmentally relevant doses (from 5 to 500μg/kg) of simazine via oral administration, and their female offspring were then analyzed. The female offspring showed shortened anogenital distance and decreased whole body, ovarian, and uterine weights. Their ovaries showed increased apoptotic granulosa cells. In addition, expression of critical genes involved in regulation of cellular apoptosis and proliferation was significantly downregulated in the ovaries of simazine-exposed mice. Moreover, in vitro exposure of human granulosa cell-derived KGN cells to simazine (0.003-1nM) resulted in decreased viability and proliferation. Thus, the present study demonstrates that maternal exposure to low doses of simazine impairs normal development of female offspring via disturbance of cellular apoptosis and proliferation.
Collapse
Affiliation(s)
- Seeun Park
- School of Pharmacy, Chung-Ang University, Seoul 156-756, Republic of Korea; Department of Life Science, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Sarang Kim
- School of Pharmacy, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Hong Jin
- School of Pharmacy, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul 156-756, Republic of Korea.
| | - Jeehyeon Bae
- School of Pharmacy, Chung-Ang University, Seoul 156-756, Republic of Korea.
| |
Collapse
|
31
|
Wang L, Lu AP, Yu ZL, Wong RNS, Bian ZX, Kwok HH, Yue PYK, Zhou LM, Chen H, Xu M, Yang Z. The melanogenesis-inhibitory effect and the percutaneous formulation of ginsenoside Rb1. AAPS PharmSciTech 2014; 15:1252-62. [PMID: 24895076 DOI: 10.1208/s12249-014-0138-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 04/24/2014] [Indexed: 11/30/2022] Open
Abstract
Ginsenoside Rb1 (Rb1) is the most predominant ginsenoside isolated from the roots of ginseng (Panax ginseng C. A. Meyer). This compound is active in various human biological pathways that are involved in human collagen synthesis and inhibition of cell apoptosis. In this study, the skin-whitening effects of Rb1 were investigated in B16 melanoma cells. Our results showed that Rb1 inhibited melanogenesis in α-melanocyte-stimulating hormone (α-MSH)-stimulated B16 cells in a dose-dependent manner, which collectively indicated that Rb1 may have skin-whitening effects and may be formulated into skin-whitening products for skin care. Accordingly, a ginsenoside collagen transdermal patch was developed as a vehicle to topically deliver Rb1 into pig skin. The percutaneous permeation, retention within skin, and release in vitro of Rb1 from seven transdermal patch formulas were studied. It was determined that the best formula for ginsenoside collagen transdermal patch is made of protein collagen hydrolysate powder (PCHP) 2.0% (w/w), methyl cellulose (MC) 0.5% (w/w), polyethyleneglycol 6000 (PEG6000) 0.5% (w/w), ginsenoside 0.036% (w/w), azone 0.4% (v/w), menthol 0.20% (w/w), and water.
Collapse
|
32
|
Riviere JE, Brooks JD, Collard WT, Deng J, de Rose G, Mahabir SP, Merritt DA, Marchiondo AA. Prediction of formulation effects on dermal absorption of topically applied ectoparasiticides dosed in vitro on canine and porcine skin using a mixture-adjusted quantitative structure permeability relationship. J Vet Pharmacol Ther 2014; 37:435-44. [PMID: 24649911 DOI: 10.1111/jvp.12121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 01/26/2014] [Indexed: 11/29/2022]
Abstract
Topical application of ectoparasiticides for flea and tick control is a major focus for product development in animal health. The objective of this work was to develop a quantitative structure permeability relationship (QSPeR) model sensitive to formulation effects for predicting absorption and skin deposition of five topically applied drugs administered in six vehicle combinations to porcine and canine skin in vitro. Saturated solutions (20 μL) of (14) C-labeled demiditraz, fipronil, permethrin, imidacloprid, or sisapronil were administered in single or binary (50:50 v/v) combinations of water, ethanol, and transcutol (6 formulations, n = 4-5 replicates per treatment) nonoccluded to 0.64 cm(2) disks of dermatomed pig or dog skin mounted in flow-through diffusion cells. Perfusate flux over 24 h and skin deposition at termination were determined. Permeability (logKp), absorption, and penetration endpoints were modeled using a four-term Abrahams and Martin (hydrogen-bond donor acidity and basicity, dipolarity/polarizability, and excess molar refractivity) linear free energy QSPeR equation with a mixture factor added to compensate for formulation ingredient interactions. Goodness of fit was judged by r(2) , cross-validation coefficient, coefficients (q(2) s), and Williams Plot to visualize the applicability domain. Formulation composition was the primary determinant of permeation. Compounds generally penetrated dog skin better than porcine skin. The vast majority of permeated penetrant was deposited within the dosed skin relative to transdermal flux, an attribute for ectoparasiticides. The best QSPeR logKp model for pig skin permeation (r(2) = 0.86, q(2) s = 0.85) included log octanol/water partition coefficient as the mixture factor, while for dogs (r(2) = 0.91, q(2) s = 0.90), it was log water solubility. These studies clearly showed that the permeation of topical ectoparasiticides could be well predicted using QSPeR models that account for both the physical-chemical properties of the penetrant and formulation components.
Collapse
Affiliation(s)
- J E Riviere
- Institute of Computational Comparative Medicine, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Center for Chemical Toxicology Research and Pharmacokinetics, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Chittenden JT, Brooks JD, Riviere JE. Development of a Mixed-Effect Pharmacokinetic Model for Vehicle Modulated In Vitro Transdermal Flux of Topically Applied Penetrants. J Pharm Sci 2014; 103:1002-12. [DOI: 10.1002/jps.23862] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 12/27/2013] [Accepted: 01/03/2014] [Indexed: 11/06/2022]
|
34
|
Nair A, Jacob S, Al-Dhubiab B, Attimarad M, Harsha S. Basic considerations in the dermatokinetics of topical formulations. BRAZ J PHARM SCI 2013. [DOI: 10.1590/s1984-82502013000300004] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Assessing the bioavailability of drug molecules at the site of action provides better insight into the efficiency of a dosage form. However, determining drug concentration in the skin layers following topical application of dermatological formulations is a great challenge. The protocols followed in oral formulations could not be applied for topical dosage forms. The regulatory agencies are considering several possible approaches such as tape stripping, microdialysis etc. On the other hand, the skin bioavailability assessment of xenobiotics is equally important for topical formulations in order to evaluate the toxicity. It is always possible that drug molecules applied on the skin surface may transport thorough the skin and reaches systemic circulation. Thus the real time measurement of molecules in the skin layer has become obligatory. In the last two decades, quite a few investigations have been carried out to assess the skin bioavailability and toxicity of topical/dermatological products. This review provides current understanding on the basics of dermatokinetics, drug depot formation, skin metabolism and clearance of drug molecules from the skin layers following application of topical formulations.
Collapse
Affiliation(s)
- Anroop Nair
- King Faisal University, Kingdom of Saudi Arabia
| | - Shery Jacob
- Gulf Medical University, United Arab Emirates
| | | | | | - Sree Harsha
- King Faisal University, Kingdom of Saudi Arabia
| |
Collapse
|
35
|
Bogen KT. Dermal uptake of 18 dilute aqueous chemicals: in vivo disappearance-method measures greatly exceed in vitro-based predictions. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2013; 33:1334-1352. [PMID: 23051616 DOI: 10.1111/j.1539-6924.2012.01901.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Average rates of total dermal uptake (Kup ) from short-term (e.g., bathing) contact with dilute aqueous organic chemicals (DAOCs) are typically estimated from steady-state in vitro diffusion-cell measures of chemical permeability (Kp ) through skin into receptor solution. Widely used ("PCR-vitro") methods estimate Kup by applying diffusion theory to increase Kp predictions made by a physico-chemical regression (PCR) model that was fit to a large set of Kp measures. Here, Kup predictions for 18 DAOCs made by three PCR-vitro models (EPA, NIOSH, and MH) were compared to previous in vivo measures obtained by methods unlikely to underestimate Kup . A new PCR model fit to all 18 measures is accurate to within approximately threefold (r = 0.91, p < 10(-5) ), but the PCR-vitro predictions (r > 0.63) all tend to underestimate the Kup measures by mean factors (UF, and p value for testing UF = 1) of 10 (EPA, p < 10(-6) ), 11 (NIOSH, p < 10(-8) ), and 6.2 (MH, p = 0.018). For all three PCR-vitro models, log(UF) correlates negatively with molecular weight (r(2) = 0.31 to 0.84, p = 0.017 to < 10(-6) ) but not with log(vapor pressure) as an additional predictor (p > 0.05), so vapor pressure appears not to explain the significant in vivo/PCR-vitro discrepancy. Until this discrepancy is explained, careful in vivo measures of Kup should be obtained for more chemicals, the expanded in vivo database should be compared to in vitro-based predictions, and in vivo data should be considered in assessing aqueous dermal exposure and its uncertainty.
Collapse
Affiliation(s)
- Kenneth T Bogen
- Exponent, Inc., 475 14th Street, Suite 400, Oakland, CA 94612, USA.
| |
Collapse
|
36
|
Xu G, Hughes-Oliver JM, Brooks JD, Baynes RE. Predicting skin permeability from complex chemical mixtures: incorporation of an expanded QSAR model. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2013; 24:711-731. [PMID: 23767783 DOI: 10.1080/1062936x.2013.792875] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Quantitative structure-activity relationship (QSAR) models have been widely used to study the permeability of chemicals or solutes through skin. Among the various QSAR models, Abraham's linear free-energy relationship (LFER) model is often employed. However, when the experimental conditions are complex, it is not always appropriate to use Abraham's LFER model with a single set of regression coefficients. In this paper, we propose an expanded model in which one set of partial slopes is defined for each experimental condition, where conditions are defined according to solvent: water, synthetic oil, semi-synthetic oil, or soluble oil. This model not only accounts for experimental conditions but also improves the ability to conduct rigorous hypothesis testing. To more adequately evaluate the predictive power of the QSAR model, we modified the usual leave-one-out internal validation strategy to employ a leave-one-solute-out strategy and accordingly adjust the Q(2) LOO statistic. Skin permeability was shown to have the rank order: water > synthetic > semi-synthetic > soluble oil. In addition, fitted relationships between permeability and solute characteristics differ according to solvents. We demonstrated that the expanded model (r(2) = 0.70) improved both the model fit and the predictive power when compared with the simple model (r(2) = 0.21).
Collapse
Affiliation(s)
- G Xu
- Department of Statistics, North Carolina State University, Raleigh, USA
| | | | | | | |
Collapse
|
37
|
Chen L, Han L, Lian G. Recent advances in predicting skin permeability of hydrophilic solutes. Adv Drug Deliv Rev 2013; 65:295-305. [PMID: 22580335 DOI: 10.1016/j.addr.2012.05.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 05/02/2012] [Accepted: 05/02/2012] [Indexed: 11/24/2022]
Abstract
Understanding the permeation of hydrophilic molecules is of relevance to many applications including transdermal drug delivery, skin care as well as risk assessment of occupational, environmental, or consumer exposure. This paper reviews recent advances in modeling skin permeability of hydrophilic solutes, including quantitative structure-permeability relationships (QSPR) and mechanistic models. A dataset of measured human skin permeability of hydrophilic and low hydrophobic solutes has been compiled. Generally statistically derived QSPR models under-estimate skin permeability of hydrophilic solutes. On the other hand, including additional aqueous pathway is necessary for mechanistic models to improve the prediction of skin permeability of hydrophilic solutes, especially for highly hydrophilic solutes. A consensus yet has to be reached as to how the aqueous pathway should be modeled. Nevertheless it is shown that the contribution of aqueous pathway can constitute to more than 95% of the overall skin permeability. Finally, future prospects and needs in improving the prediction of skin permeability of hydrophilic solutes are discussed.
Collapse
|
38
|
Karadzovska D, Brooks JD, Riviere JE. Modeling the effect of experimental variables on the in vitro permeation of six model compounds across porcine skin. Int J Pharm 2013; 443:58-67. [DOI: 10.1016/j.ijpharm.2013.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 12/10/2012] [Accepted: 01/02/2013] [Indexed: 11/26/2022]
|
39
|
Karadzovska D, Brooks JD, Monteiro-Riviere NA, Riviere JE. Predicting skin permeability from complex vehicles. Adv Drug Deliv Rev 2013; 65:265-77. [PMID: 22342772 DOI: 10.1016/j.addr.2012.01.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 01/23/2012] [Accepted: 01/31/2012] [Indexed: 11/17/2022]
Abstract
It is now widely accepted that vehicle and formulation components influence the rate and extent of passive chemical absorption through skin. Significant progress, over the last decades, has been made in predicting dermal absorption from a single vehicle; however the effect of a complex, realistic mixture has not received its due attention. Recent studies have aimed to bridge this gap by extending the use of quantitative structure-permeation relationship (QSPR) models based on linear free energy relationships (LFER) to predict dermal absorption from complex mixtures with the inclusion of significant molecular descriptors such as a mixture factor that accounts for the physicochemical properties of the vehicle/mixture components. These models have been compiled and statistically validated using the data generated from in vitro or ex vivo experimental techniques. This review highlights the progress made in predicting skin permeability from complex vehicles.
Collapse
Affiliation(s)
- Daniela Karadzovska
- Center for Chemical Toxicology Research and Pharmacokinetics, North Carolina State University, Raleigh, NC 27607, USA
| | | | | | | |
Collapse
|
40
|
Park HO, Bae J. Disturbed relaxin signaling pathway and testicular dysfunction in mouse offspring upon maternal exposure to simazine. PLoS One 2012; 7:e44856. [PMID: 22984576 PMCID: PMC3440368 DOI: 10.1371/journal.pone.0044856] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 08/08/2012] [Indexed: 02/01/2023] Open
Abstract
Simazine is a triazine herbicide that is being widely applied worldwide and commonly detected in surface and groundwater. Despite its popular use in controlling weeds and algae, very limited information is available regarding its toxicity. In the present study, pregnant mice were orally exposed to low doses (0, 5, 50, or 500 µg/kg body weight per day) of simazine during gestation and lactation, during which no overt maternal toxic response was detected, and their offspring was assessed. Simazine-exposed male offspring showed decreased body, testicular, and epididymis weight, increased testicular apoptosis, and decreased sperm concentrations. Differentially-expressed genes in the testes of male offspring exposed to simazine were identified by DNA microarray, revealing 775 upregulated and 791 downregulated genes; among these, the relaxin-family peptide receptor 1 (Rxfp1), which is the receptor for relaxin hormone, was significantly downregulated. In addition, the expression of target genes in the relaxin pathway, including nitric oxide synthase 2 (Nos2) and Nos3, was significantly decreased in simazine-exposed F1 testes. Moreover, simazine inhibited NO release, and knockdown of Rxfp1 blocked the inhibitory action of simazine on NO production in testicular Leydig cells. Therefore, the present study provides a better understanding of the toxicities associated with the widely used herbicide simazine at environmentally relevant doses by demonstrating that maternal exposure interferes with the pleotropic relaxin-NO signaling pathway, impairing normal development and reproductive activity of male offspring.
Collapse
Affiliation(s)
- Ho-Oak Park
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | | |
Collapse
|
41
|
Samaras EG, Riviere JE, Ghafourian T. The effect of formulations and experimental conditions on in vitro human skin permeation—Data from updated EDETOX database. Int J Pharm 2012; 434:280-91. [DOI: 10.1016/j.ijpharm.2012.05.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 05/03/2012] [Indexed: 10/28/2022]
|
42
|
Cordoba Diaz D, Losa Iglesias ME, Cordoba Diaz M, Becerro de Bengoa Vallejo R. Enhanced removal of phenol with saline solution over alcohol: an in vitro study. Dermatol Surg 2012; 38:1296-301. [PMID: 22861059 DOI: 10.1111/j.1524-4725.2012.02459.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Phenol cauterization is a chemical equivalent often chosen for treatment of ingrown toenails. Many reports describe intraoperative irrigation, or lavage, of the wound with various types of alcohol to neutralize any remaining phenol. There are conflicting reports in the literature as to whether true neutralization or merely effective removal of excess phenol is needed. OBJECTIVE The aim of our study was to analyze the suitability and effectiveness of ethyl alcohol versus sterile saline when used in a lavage step after phenol application in the treatment of ingrown toenails. METHODS We performed an in vitro study using human skin and a diffusion cell apparatus to measure the amount of phenol recovered after lavage with ethyl alcohol or sterile saline. RESULTS When the wound was irrigated with ethyl alcohol, the total phenol recovered after two irrigation washes was 55.7% of the original amount initially used in treatment, compared with 80.4% when sterile saline solution was used for irrigation. CONCLUSION Alcohol and sterile saline solution do not neutralize phenol but dilute it and aid in its removal. We found that saline solution recovered more phenol than when washing with alcohol and recommend its use instead of alcohol for irrigation purposes after chemical matrixectomy.
Collapse
Affiliation(s)
- Damian Cordoba Diaz
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | |
Collapse
|
43
|
Baynes R, Riviere J, Franz T, Monteiro-Riviere N, Lehman P, Peyrou M, Toutain PL. Challenges obtaining a biowaiver for topical veterinary dosage forms. J Vet Pharmacol Ther 2012; 35 Suppl 1:103-14. [PMID: 22413798 DOI: 10.1111/j.1365-2885.2012.01381.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Obtaining a biowaiver for topical drugs used in veterinary species faces many of the same challenges associated with human topicals. However, the skin of domestic animals varies anatomically and biochemically and experimental approaches to assess bioequivalence (BE) in veterinary species have challenges that are not often encountered with human skin. This is especially the situation with locally acting drugs. The focus of this paper is to address several of the challenges associated with (i) determining the BE of these locally acting drugs and (ii) critically examine the current technological advances that can act as a surrogate for clinical trials.
Collapse
Affiliation(s)
- R Baynes
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Polak S, Ghobadi C, Mishra H, Ahamadi M, Patel N, Jamei M, Rostami-Hodjegan A. Prediction of Concentration–Time Profile and its Inter-Individual Variability following the Dermal Drug Absorption. J Pharm Sci 2012; 101:2584-95. [DOI: 10.1002/jps.23155] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/09/2012] [Accepted: 03/29/2012] [Indexed: 01/08/2023]
|
45
|
Gold nanoparticle penetration and reduced metabolism in human skin by toluene. Pharm Res 2011; 28:2931-44. [PMID: 21833791 DOI: 10.1007/s11095-011-0561-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Accepted: 08/03/2011] [Indexed: 10/17/2022]
Abstract
PURPOSE To measure penetration and metabolic effects of ion-stabilized, polar, 15 nm gold nanoparticles in aqueous solution (AuNP-Aq) and sterically stabilized, non-polar, 6 nm gold nanoparticles in toluene (AuNP-TOL) on excised human skin. METHODS Gold nanoparticles were characterized with dynamic light scattering and transmission electron microscopy (TEM). Skin penetration studies were done on frozen or fresh excised skin using static Franz diffusion cells. Viable treated skin was assessed by dermoscopy, reflectance confocal microscopy (RCM), multiphoton tomography (MPT) with fluorescence lifetime imaging microscopy (FLIM), and TEM. RESULTS Dermoscopy and RCM showed large aggregates in the furrows of AuNP-Aq-treated skin. Treatment of thawed and viable skin only showed enhanced permeability to nanoparticles in the AuNP-TOL group with MPT and FLIM imaging to stratum spinosum of epidermis. TEM analysis revealed gold nanoparticles within AuNP-treated stratum corneum. FLIM analysis of NAD(P)H showed a significant decrease in total NAD(P)H in all toluene-treated groups. CONCLUSIONS Gold nanoparticles, 15 nm, in aqueous solution aggregated on the skin surface. Toluene treatment eliminated skin metabolism; skin treated with toluene/gold nanoparticles (6 nm) for 24 h, but not at 4 h, showed increased nanoparticle permeability. These results are of value to nanotoxicology.
Collapse
|
46
|
Maximum transepidermal flux for similar size phenolic compounds is enhanced by solvent uptake into the skin. J Control Release 2011; 154:50-7. [DOI: 10.1016/j.jconrel.2011.04.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 03/22/2011] [Accepted: 04/17/2011] [Indexed: 11/19/2022]
|