1
|
Yoshizaki K, Frias DP, Maier K, Smelan J, Correia AT, Oliveira LMDS, Amato-Lourenço LF, Santillo BT, Prado CM, Oshiro TM, Barbuto JAM, Mauad T, Macchione M. Exposure of cinnamyl alcohol in co-culture of BEAS-2B and dendritic cells: Interaction between CYP450 and cytokines. J Appl Toxicol 2024; 44:1317-1328. [PMID: 38715282 DOI: 10.1002/jat.4623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 08/16/2024]
Abstract
The prevalence of fragrances in various hygiene products contributes to their sensorial allure. However, fragrances can induce sensitization in the skin or respiratory system, and the mechanisms involved in this process are incompletely understood. This study investigated the intricate mechanisms underlying the fragrance's effects on sensitization response, focusing on the interplay between CYP450 enzymes, a class of drug-metabolizing enzymes, and the adaptive immune system. Specifically, we assessed the expression of CYP450 enzymes and cytokine profiles in culture of BEAS-2B and mature dendritic cells (mDC) alone or in co-culture stimulated with 2 mM of a common fragrance, cinnamyl alcohol (CA) for 20 h. CYP1A1, CYP1A2, CYP1B1, CYP2A6, and CYP2A13 were analyzed by RT-PCR and IL-10, IL-12p70, IL-18, IL-33, and thymic stromal lymphopoietin (TSLP) by Cytometric Bead Array (CBA). Through RT-PCR analysis, we observed that CA increased CYP1A2 and CYP1B1 expression in BEAS-2B, with a further increased in BEAS-2B-mDC co-culture. Additionally, exposure to CA increased IL-12p70 levels in mDC rather than in BEAS-2B-mDC co-culture. In regards to IL-18, level was higher in BEAS-2B than in BEAS-2B-mDC co-culture. A positive correlation between the levels of IL-10 and CYP1B1 was found in mDC-CA-exposed and between IL-12p70 and CYP1A1 was found in BEAS-2B after CA exposure. However, IL-12p70 and CYP1A2 as well as IL-18, IL-33, and CYP1A1 levels were negative, correlated mainly in co-culture control. These correlations highlight potential immunomodulatory interactions and complex regulatory relationships. Overall, exposure to CA enhances CYP450 expression, suggesting that CA can influence immune responses by degrading ligands on xenosensitive transcription factors.
Collapse
Affiliation(s)
- Kelly Yoshizaki
- Laboratory of Experimental Environmental Pathology, Department of Pathology, São Paulo University Medical School, São Paulo, Brazil
| | - Daniela Perroni Frias
- Laboratory of Experimental Environmental Pathology, Department of Pathology, São Paulo University Medical School, São Paulo, Brazil
| | - Kevin Maier
- Laboratory of Experimental Environmental Pathology, Department of Pathology, São Paulo University Medical School, São Paulo, Brazil
| | - Juliana Smelan
- Laboratory of Experimental Environmental Pathology, Department of Pathology, São Paulo University Medical School, São Paulo, Brazil
| | - Aristides Tadeu Correia
- Thoracic Surgery Division, Department of Cardiopneumology, InCor, Clinics Hospital, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Luanda Mara da Silva Oliveira
- Laboratory of Medical Investigation in Dermatology and Immunodeficiences, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Luís Fernando Amato-Lourenço
- Laboratory of Experimental Environmental Pathology, Department of Pathology, São Paulo University Medical School, São Paulo, Brazil
- Institute of Advanced Studies (IEA) Global Cities Program, University of São Paulo, São Paulo, Brazil
| | - Bruna Tereso Santillo
- Laboratory of Medical Investigation in Dermatology and Immunodeficiences, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Telma Miyuki Oshiro
- Laboratory of Medical Investigation in Dermatology and Immunodeficiences, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Jose Alexandre M Barbuto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Thais Mauad
- Laboratory of Experimental Environmental Pathology, Department of Pathology, São Paulo University Medical School, São Paulo, Brazil
| | - Mariangela Macchione
- Laboratory of Experimental Environmental Pathology, Department of Pathology, São Paulo University Medical School, São Paulo, Brazil
| |
Collapse
|
2
|
Gradin R, Tourneix F, Mattson U, Andersson J, Amaral F, Forreryd A, Alépée N, Johansson H. In Vitro Prediction of Skin-Sensitizing Potency Using the GARDskin Dose-Response Assay: A Simple Regression Approach. TOXICS 2024; 12:626. [PMID: 39330554 PMCID: PMC11435491 DOI: 10.3390/toxics12090626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024]
Abstract
Toxicological assessments of skin sensitizers have progressed towards a higher reliance on non-animal methods. Current technological trends aim to extend the utility of non-animal methods to accurately characterize skin-sensitizing potency. The GARDskin Dose-Response assay has previously been described; it was shown that its main readout, cDV0 concentration, is associated with skin-sensitizing potency. The ability to predict potency from cDV0 in the form of NESILs derived from LLNAs or human NOELs was evaluated. The assessment of a dataset of 30 chemicals showed that the cDV0 values still correlated strongly and significantly with both LLNA EC3 and human NOEL values (ρ = 0.645-0.787 [p < 1 × 10-3]). A composite potency value that combined LLNA and human potency data was defined, which aided the performance of the proposed model for the prediction of NESILs. The potency model accurately predicted sensitizing potency, with cross-validation errors of 2.75 and 3.22 fold changes compared with NESILs from LLNAs and humans, respectively. In conclusion, the results suggest that the GARDskin Dose-Response assay may be used to derive an accurate quantitative continuous potency estimate of skin sensitizers.
Collapse
Affiliation(s)
- Robin Gradin
- Senzagen AB, 22381 Lund, Sweden; (U.M.); (J.A.); (A.F.); (H.J.)
| | - Fleur Tourneix
- L’Oréal, Research & Innovation, 93600 Aulnay-sous-Bois, France; (F.T.); (F.A.); (N.A.)
| | - Ulrika Mattson
- Senzagen AB, 22381 Lund, Sweden; (U.M.); (J.A.); (A.F.); (H.J.)
| | - Johan Andersson
- Senzagen AB, 22381 Lund, Sweden; (U.M.); (J.A.); (A.F.); (H.J.)
| | - Frédéric Amaral
- L’Oréal, Research & Innovation, 93600 Aulnay-sous-Bois, France; (F.T.); (F.A.); (N.A.)
| | - Andy Forreryd
- Senzagen AB, 22381 Lund, Sweden; (U.M.); (J.A.); (A.F.); (H.J.)
| | - Nathalie Alépée
- L’Oréal, Research & Innovation, 93600 Aulnay-sous-Bois, France; (F.T.); (F.A.); (N.A.)
| | | |
Collapse
|
3
|
Wang H, Huang Z, Lou S, Li W, Liu G, Tang Y. In Silico Prediction of Skin Sensitization for Compounds via Flexible Evidence Combination Based on Machine Learning and Dempster-Shafer Theory. Chem Res Toxicol 2024; 37:894-909. [PMID: 38753056 DOI: 10.1021/acs.chemrestox.3c00396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Skin sensitization is increasingly becoming a significant concern in the development of drugs and cosmetics due to consumer safety and occupational health problems. In silico methods have emerged as alternatives to traditional in vivo animal testing due to ethical and economic considerations. In this study, machine learning methods were used to build quantitative structure-activity relationship (QSAR) models on five skin sensitization data sets (GPMT, LLNA, DPRA, KeratinoSens, and h-CLAT), achieving effective predictive accuracies (correct classification rates of 0.688-0.764 on test sets). To address the complex mechanisms of human skin sensitization, the Dempster-Shafer theory was applied to merge multiple QSAR models, resulting in an evidence-based integrated decision model. Various evidence combinations and combination rules were explored, with the self-defined Q3 rule showing superior balance. The combination of evidence such as GPMT and KeratinoSens and h-CLAT achieved a correct classification rate (CCR) of 0.880 and coverage of 0.893 while maintaining the competitiveness of other combinations. Additionally, the Shapley additive explanations (SHAP) method was used to interpret important features and substructures related to skin sensitization. A comparative analysis of an external human test set demonstrated the superior performance of the proposed method. Finally, to enhance accessibility, the workflow was implemented into a user-friendly software named HSkinSensDS.
Collapse
Affiliation(s)
- Haoqiang Wang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zejun Huang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Shang Lou
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Weihua Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Guixia Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yun Tang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
4
|
Macchione M, Yoshizaki K, Frias DP, Maier K, Smelan J, Prado CM, Mauad T. Fragrances as a trigger of immune responses in different environments. Toxicol In Vitro 2024; 96:105769. [PMID: 38142785 DOI: 10.1016/j.tiv.2023.105769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Fragrances can cause allergic skin reactions, expressed as allergic contact dermatitis and reactions in the respiratory tract that range from acute temporary upper airway irritation to obstructive lung disease. These adverse health effects may result from the stimulation of a specific (adaptive) immune response. Th1 cells, which essentially produce interleukin-2 (IL-2) and interferon-γ (IFN-γ), play a key role in allergic contact dermatitis and also on allergic sensitization to common allergens (e.g., nickel and fragrance). It has been shown that fragrance allergy leads to Th2/Th22 production of IL-4, IL-5 and IL-13, controlling the development of IgE and mediating hypersensitivity reactions in the lung, such as asthma. Cytokines released during immune response modulate the expression of cytochrome P450 (CYPs) proteins, which can result in alterations of the pharmacological effects of substances in inflammatory diseases. The mechanisms linking environment and immunity are still not completely understood but it is known that aryl hydrocarbon receptor (AhR) is a sensor with conserved ligand-activated transcription factor, highly expressed in cells that controls complex transcriptional programs which are ligand and cell type specific, with CYPs as targeted genes. This review focuses on these important aspects of immune responses of the skin and respiratory tract cells, describing some in vitro models applied to evaluate the mechanisms involved in fragrance-induced allergy.
Collapse
Affiliation(s)
- M Macchione
- Laboratory of Experimental Environmental Pathology, Department of Pathology, Sao Paulo University Medical School, Sao Paulo, Brazil.
| | - K Yoshizaki
- Laboratory of Experimental Environmental Pathology, Department of Pathology, Sao Paulo University Medical School, Sao Paulo, Brazil
| | - D P Frias
- Laboratory of Experimental Environmental Pathology, Department of Pathology, Sao Paulo University Medical School, Sao Paulo, Brazil
| | - K Maier
- Laboratory of Experimental Environmental Pathology, Department of Pathology, Sao Paulo University Medical School, Sao Paulo, Brazil
| | - J Smelan
- Laboratory of Experimental Environmental Pathology, Department of Pathology, Sao Paulo University Medical School, Sao Paulo, Brazil
| | - C M Prado
- Federal University of Sao Paulo, Santos, Brazil
| | - T Mauad
- Laboratory of Experimental Environmental Pathology, Department of Pathology, Sao Paulo University Medical School, Sao Paulo, Brazil
| |
Collapse
|
5
|
Jaylet T, Coustillet T, Smith NM, Viviani B, Lindeman B, Vergauwen L, Myhre O, Yarar N, Gostner JM, Monfort-Lanzas P, Jornod F, Holbech H, Coumoul X, Sarigiannis DA, Antczak P, Bal-Price A, Fritsche E, Kuchovska E, Stratidakis AK, Barouki R, Kim MJ, Taboureau O, Wojewodzic MW, Knapen D, Audouze K. Comprehensive mapping of the AOP-Wiki database: identifying biological and disease gaps. FRONTIERS IN TOXICOLOGY 2024; 6:1285768. [PMID: 38523647 PMCID: PMC10958381 DOI: 10.3389/ftox.2024.1285768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/15/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction: The Adverse Outcome Pathway (AOP) concept facilitates rapid hazard assessment for human health risks. AOPs are constantly evolving, their number is growing, and they are referenced in the AOP-Wiki database, which is supported by the OECD. Here, we present a study that aims at identifying well-defined biological areas, as well as gaps within the AOP-Wiki for future research needs. It does not intend to provide a systematic and comprehensive summary of the available literature on AOPs but summarizes and maps biological knowledge and diseases represented by the already developed AOPs (with OECD endorsed status or under validation). Methods: Knowledge from the AOP-Wiki database were extracted and prepared for analysis using a multi-step procedure. An automatic mapping of the existing information on AOPs (i.e., genes/proteins and diseases) was performed using bioinformatics tools (i.e., overrepresentation analysis using Gene Ontology and DisGeNET), allowing both the classification of AOPs and the development of AOP networks (AOPN). Results: AOPs related to diseases of the genitourinary system, neoplasms and developmental anomalies are the most frequently investigated on the AOP-Wiki. An evaluation of the three priority cases (i.e., immunotoxicity and non-genotoxic carcinogenesis, endocrine and metabolic disruption, and developmental and adult neurotoxicity) of the EU-funded PARC project (Partnership for the Risk Assessment of Chemicals) are presented. These were used to highlight under- and over-represented adverse outcomes and to identify and prioritize gaps for further research. Discussion: These results contribute to a more comprehensive understanding of the adverse effects associated with the molecular events in AOPs, and aid in refining risk assessment for stressors and mitigation strategies. Moreover, the FAIRness (i.e., data which meets principles of findability, accessibility, interoperability, and reusability (FAIR)) of the AOPs appears to be an important consideration for further development.
Collapse
Affiliation(s)
- Thomas Jaylet
- Université Paris Cité, Inserm UMR-S 1124 T3S, Paris, France
| | | | - Nicola M. Smith
- Norwegian Institute of Public Health, Division of Climate and Environment, Oslo, Norway
| | - Barbara Viviani
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Birgitte Lindeman
- Norwegian Institute of Public Health, Division of Climate and Environment, Oslo, Norway
| | - Lucia Vergauwen
- Zebrafishlab, Department of Veterinary Sciences, Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, Belgium
| | - Oddvar Myhre
- Norwegian Institute of Public Health, Division of Climate and Environment, Oslo, Norway
| | - Nurettin Yarar
- Norwegian Institute of Public Health, Division of Climate and Environment, Oslo, Norway
| | - Johanna M. Gostner
- Institute of Medical Biochemistry, Medical University of Innsbruck, Innsbruck, Austria
| | - Pablo Monfort-Lanzas
- Institute of Medical Biochemistry, Medical University of Innsbruck, Innsbruck, Austria
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Henrik Holbech
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Xavier Coumoul
- Université Paris Cité, Inserm UMR-S 1124 T3S, Paris, France
| | - Dimosthenis A. Sarigiannis
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
- National Hellenic Research Foundation, Athens, Greece
- Science, Technology and Society Department, Environmental Health Engineering, University School for Advanced Studies (IUSS), Pavia, Italy
| | - Philipp Antczak
- Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Anna Bal-Price
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Ellen Fritsche
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
- Heinrich-Heine-University, Düsseldorf, Germany
- Swiss Centre for Applied Human Toxicology, Basel, Switzerland
- DNTOX GmbH, Düsseldorf, Germany
| | - Eliska Kuchovska
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Antonios K. Stratidakis
- Science, Technology and Society Department, Environmental Health Engineering, University School for Advanced Studies (IUSS), Pavia, Italy
| | - Robert Barouki
- Université Paris Cité, Inserm UMR-S 1124 T3S, Paris, France
| | - Min Ji Kim
- Inserm UMR-S 1124, Université Sorbonne Paris Nord, Bobigny, Paris, France
| | - Olivier Taboureau
- Université Paris Cité, BFA, Team CMPLI, Inserm U1133, CNRS UMR 8251, Paris, France
| | - Marcin W. Wojewodzic
- Norwegian Institute of Public Health, Division of Climate and Environment, Oslo, Norway
- Cancer Registry of Norway, NIPH, Oslo, Norway
| | - Dries Knapen
- Zebrafishlab, Department of Veterinary Sciences, Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, Belgium
| | - Karine Audouze
- Université Paris Cité, Inserm UMR-S 1124 T3S, Paris, France
| |
Collapse
|
6
|
Corvaro M, Henriquez J, Settivari R, Mattson U, Forreryd A, Gradin R, Johansson H, Gehen S. GARD™skin and GARD™potency: A proof-of-concept study investigating applicability domain for agrochemical formulations. Regul Toxicol Pharmacol 2024; 148:105595. [PMID: 38453128 DOI: 10.1016/j.yrtph.2024.105595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Several New Approach Methodologies (NAMs) for hazard assessment of skin sensitisers have been formally validated. However, data regarding their applicability on certain product classes are limited. The purpose of this project was to provide initial evidence on the applicability domain of GARD™skin and GARD™potency for the product class of agrochemical formulations. For this proof of concept, 30 liquid and 12 solid agrochemical formulations were tested in GARDskin for hazard predictions. Formulations predicted as sensitisers were further evaluated in the GARDpotency assay to determine GHS skin sensitisation category. The selected formulations were of product types, efficacy groups and sensitisation hazard classes representative of the industry's products. The performance of GARDskin was estimated by comparing results to existing in vivo animal data. The overall accuracy, sensitivity, and specificity were 76.2% (32/42), 85.0% (17/20), and 68.2% (15/22), respectively, with the predictivity for liquid formulations being slightly higher compared to the solid formulations. GARDpotency correctly subcategorized 14 out of the 17 correctly predicted sensitisers. Lack of concordance was justifiable by compositional or borderline response analysis. In conclusion, GARDskin and GARDpotency showed satisfactory performance in this initial proof-of-concept study, which supports consideration of agrochemical formulations being within the applicability domain of the test methods.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sean Gehen
- Corteva™ Agriscience LCC, Indianapolis, IN, USA.
| |
Collapse
|
7
|
Battais F, Langonné I, Muller S, Mathiot J, Coiscaud A, Audry A, Remy AM, Sponne I, Mourot-Bousquenaud M. The BMDC model, a performant cell-based test to assess the sensitizing potential and potency of chemicals including pre/pro-haptens. Contact Dermatitis 2024; 90:211-234. [PMID: 37852624 DOI: 10.1111/cod.14439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/07/2023] [Accepted: 10/01/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Chemical-induced allergies at workplace represent a significant occupational health issue. These substances must be properly identified as sensitizers. In previous studies, an original model using mouse bone marrow-derived dendritic cells (BMDC) was developed for this purpose. OBJECTIVES The aim of this study was to evaluate the predictive capacity of the BMDC model with a large panel of sensitizers (including pre- and pro-haptens) and non-sensitizers. METHODS The readout from the BMDC model is based on expression levels of six phenotypic markers measured by flow cytometry. RESULTS The results indicate that 29 of the 37 non-sensitizers, and 81 of the 86 sensitizers were correctly classified compared to the Local Lymph Node Assay (LLNA). Statistical analysis revealed the BMDC model to have a sensitivity of 94%, a specificity of 78%, and an accuracy of 89%. The EC2 (Effective Concentration) values calculated with this model allow sensitizers to be categorized into four classes: extreme, strong, moderate and weak. CONCLUSIONS These excellent predictive performances show that the BMDC model discriminates between sensitizers and non-sensitizers with outstanding precision equal to or better than existing validated alternative models. Moreover, this model allows to predict sensitization potency of chemicals. The BMDC test could therefore be proposed as an additional tool to assess the sensitizing potential and potency of chemicals.
Collapse
Affiliation(s)
- Fabrice Battais
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre les Nancy, France
| | - Isabelle Langonné
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre les Nancy, France
| | - Samuel Muller
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre les Nancy, France
| | - Julianne Mathiot
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre les Nancy, France
| | - Amélie Coiscaud
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre les Nancy, France
| | - Adrien Audry
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre les Nancy, France
| | - Aurélie Martin Remy
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre les Nancy, France
| | - Isabelle Sponne
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre les Nancy, France
| | - Mélanie Mourot-Bousquenaud
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre les Nancy, France
| |
Collapse
|
8
|
Pemberton MA, Arts JH, Kimber I. Identification of true chemical respiratory allergens: Current status, limitations and recommendations. Regul Toxicol Pharmacol 2024; 147:105568. [PMID: 38228280 DOI: 10.1016/j.yrtph.2024.105568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/06/2024] [Accepted: 01/13/2024] [Indexed: 01/18/2024]
Abstract
Asthma in the workplace is an important occupational health issue. It comprises various subtypes: occupational asthma (OA; both allergic asthma and irritant-induced asthma) and work-exacerbated asthma (WEA). Current regulatory paradigms for the management of OA are not fit for purpose. There is therefore an important unmet need, for the purposes of both effective human health protection and appropriate and proportionate regulation, that sub-types of work-related asthma can be accurately identified and classified, and that chemical respiratory allergens that drive allergic asthma can be differentiated according to potency. In this article presently available strategies for the diagnosis and characterisation of asthma in the workplace are described and critically evaluated. These include human health studies, clinical investigations and experimental approaches (structure-activity relationships, assessments of chemical reactivity, experimental animal studies and in vitro methods). Each of these approaches has limitations with respect to providing a clear discrimination between OA and WEA, and between allergen-induced and irritant-induced asthma. Against this background the needs for improved characterisation of work-related asthma, in the context of more appropriate regulation is discussed.
Collapse
Affiliation(s)
| | | | - Ian Kimber
- Faculty of Biology, Medicine and Health, University of Manchester, UK
| |
Collapse
|
9
|
Aleksic M, Rajagopal R, de-Ávila R, Spriggs S, Gilmour N. The skin sensitization adverse outcome pathway: exploring the role of mechanistic understanding for higher tier risk assessment. Crit Rev Toxicol 2024; 54:69-91. [PMID: 38385441 DOI: 10.1080/10408444.2024.2308816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/19/2023] [Indexed: 02/23/2024]
Abstract
For over a decade, the skin sensitization Adverse Outcome Pathway (AOP) has served as a useful framework for development of novel in chemico and in vitro assays for use in skin sensitization hazard and risk assessment. Since its establishment, the AOP framework further fueled the existing efforts in new assay development and stimulated a plethora of activities with particular focus on validation, reproducibility and interpretation of individual assays and combination of assay outputs for use in hazard/risk assessment. In parallel, research efforts have also accelerated in pace, providing new molecular and dynamic insight into key events leading to sensitization. In light of novel hypotheses emerging from over a decade of focused research effort, mechanistic evidence relating to the key events in the skin sensitization AOP may complement the tools currently used in risk assessment. We reviewed the recent advances unraveling the complexity of molecular events in sensitization and signpost the most promising avenues for further exploration and development of useful assays.
Collapse
Affiliation(s)
- Maja Aleksic
- Safety and Environmental Assurance Centre, Unilever, Sharnbrook, UK
| | - Ramya Rajagopal
- Safety and Environmental Assurance Centre, Unilever, Sharnbrook, UK
| | - Renato de-Ávila
- Safety and Environmental Assurance Centre, Unilever, Sharnbrook, UK
| | - Sandrine Spriggs
- Safety and Environmental Assurance Centre, Unilever, Sharnbrook, UK
| | - Nicola Gilmour
- Safety and Environmental Assurance Centre, Unilever, Sharnbrook, UK
| |
Collapse
|
10
|
Gao Y, Ryan CA, Ellingson K, Krutz N, Kern PS. A botanical reference set illustrating a weight of evidence approach for skin sensitization risk assessment. Food Chem Toxicol 2024; 184:114413. [PMID: 38128687 DOI: 10.1016/j.fct.2023.114413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/30/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Recent years have seen an increase in the use of botanicals and natural substances (BNS) in consumer products such as cosmetics and household care products. Most work conducted to date to assess botanicals for human safety has focused their use as dietary supplements and thus on systemic toxicity. However, the induction of skin sensitization is a possible adverse effect of natural products in particular those that come into skin contact, especially for cosmetics that remain on the skin and are not rinsed off following use. Assessments of BNS ingredients are often challenging for a number of reasons: the BNS are complex mixtures that can be of mostly unknown composition; the composition can be highly variable even within the same plant species and dependent on how processed; the physical form of the BNS raw material can vary from a highly concentrated powdered extract to a liquid extract containing only a small percentage of the BNS; testing of the BNS raw materials in New Approach Methods (NAM) has uncertainty as these methods are often not developed or validated for complex mixtures. In this study, a reference set of 14 selected BNS which span the range of skin sensitization potential was complied. These data were used in a Weight of Evidence (WoE) approach to evaluate their skin sensitization potential with each of the data rich BNS being classified as either having strong evidence of inducing skin sensitization based on human topical use history, animal data, clinical data, composition data and NAM data, or having some but more limited (weak) evidence of inducing skin sensitization, or having strong evidence of no skin sensitization potential. When available data have sufficient potency related information, sensitization potency assessment is also provided based on WoE, classifying these BNS as either strong, moderate, or weak sensitizers, or non-sensitizers. An outline for a BNS skin sensitization risk assessment framework is proposed starting with exposure-based waiving and WoE assessment for higher exposures. In addition to demonstrating the application of the WoE approach, the reference set presented here provides a set of 'data rich' botanicals which cover a range of sensitization potencies that could be used for evaluating existing test methods or aid in the development of new predictive models for skin sensitization.
Collapse
Affiliation(s)
- Yuan Gao
- Procter & Gamble Technology (Beijing) Co., Ltd., Beijing, China.
| | | | - Kim Ellingson
- Procter & Gamble, Mason Business Center, 8700 Mason Montgomery Road, Mason, OH, 45040, USA
| | - Nora Krutz
- Procter & Gamble Services Company NV, Strombeek-Bever, Belgium
| | - Petra S Kern
- Procter & Gamble Services Company NV, Strombeek-Bever, Belgium
| |
Collapse
|
11
|
Delmaar CJE, Schreurs R, Bakker MI, Minnema J, Bokkers BGH. PACEMweb: a tool for aggregate consumer exposure assessment. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:971-979. [PMID: 36522445 PMCID: PMC10733135 DOI: 10.1038/s41370-022-00509-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND To ascertain the safe use of chemicals that are used in multiple consumer products, the aggregate human exposure, arising from combined use of multiple consumer products needs to be assessed. OBJECTIVE In this work the Probabilistic Aggregate Consumer Exposure Model (PACEM) is presented and discussed. PACEM is implemented in the publicly available web tool, PACEMweb, for aggregate consumer exposure assessment. METHODS PACEM uses a person-oriented simulation method that is based on realistic product usage information obtained in surveys from several European countries. PACEM evaluates aggregate exposure in a population considering individual use and co-use patterns as well as variation in product composition. Product usage data is included on personal care products (PCPs) and household cleaning products (HCPs). RESULTS PACEM has been implemented in a web tool that supports broad use in research as well as regulatory risk assessment. PACEM has been evaluated in a number of applications, testing and illustrating the advantage of the person-oriented modeling method. Also, PACEM assessments have been evaluated by comparing its results with biomonitoring information. SIGNIFICANCE PACEM enables the assessment of realistic aggregate exposure to chemicals in consumer products. It provides detailed insight into the distribution of exposure in a population as well as products that contribute the most to exposure. This allows for better informed decision making in the risk management of chemicals. IMPACT Realistic assessment of the total, aggregate exposure of consumers to chemicals in consumer products is necessary to guarantee the safe use of chemicals in these products. PACEMweb provides, for the first time, a publicly available tool to assist in realistic aggregate exposure assessment of consumers to chemicals in consumer products.
Collapse
Affiliation(s)
- Christiaan J E Delmaar
- National Institute for Public Health and the Environment-RIVM, Bilthoven, The Netherlands.
| | - Roel Schreurs
- National Institute for Public Health and the Environment-RIVM, Bilthoven, The Netherlands
| | - Martine I Bakker
- National Institute for Public Health and the Environment-RIVM, Bilthoven, The Netherlands
| | - Jordi Minnema
- National Institute for Public Health and the Environment-RIVM, Bilthoven, The Netherlands
| | - Bas G H Bokkers
- National Institute for Public Health and the Environment-RIVM, Bilthoven, The Netherlands
| |
Collapse
|
12
|
Tanabe I, Yoshida K, Ishikawa S, Ishimori K, Hashizume T, Yoshimoto T, Ashikaga T. Development of an In Vitro Sensitisation Test Using a Coculture System of Human Bronchial Epithelium and Immune Cells. Altern Lab Anim 2023; 51:387-400. [PMID: 37796587 DOI: 10.1177/02611929231204823] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Chemical respiratory sensitisation is a serious health problem. However, to date, there are no validated test methods available for identifying respiratory sensitisers. The aim of this study was to develop an in vitro sensitisation test by modifying the human cell line activation test (h-CLAT) to detect respiratory sensitisers and distinguish them from skin sensitisers. THP-1 cells were exposed to the test chemicals (two skin sensitisers and six respiratory sensitisers), either as monocultures or as cocultures with air-liquid interface-cultured reconstructed human bronchial epithelium. The responses were analysed by measuring the expression levels of surface markers on THP-1 cells (CD86, CD54 and OX40L) and the concentrations of cytokines in the culture media (interleukin (IL)-8, IL-33 and thymic stromal lymphopoietin (TSLP)). The cocultures exhibited increased CD54 expression on THP-1 cells; moreover, in the cocultures but not in the monocultures, exposure to two uronium salts (i.e. respiratory sensitisers) increased CD54 expression on THP-1 cells to levels above the criteria for a positive h-CLAT result. Additionally, exposure to the respiratory sensitiser abietic acid, significantly increased IL-8 concentration in the culture medium, but only in the cocultures. Although further optimisation of the method is needed to distinguish respiratory from skin sensitisers by using these potential markers (OX40L, IL-33 and TSLP), the coculture of THP-1 cells with bronchial epithelial cells offers a potentially useful approach for the detection of respiratory sensitisers.
Collapse
Affiliation(s)
- Ikuya Tanabe
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., Kanagawa, Japan
| | - Kunitaka Yoshida
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., Kanagawa, Japan
| | - Shinkichi Ishikawa
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., Kanagawa, Japan
| | - Kanae Ishimori
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., Kanagawa, Japan
| | - Tsuneo Hashizume
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., Kanagawa, Japan
| | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Takao Ashikaga
- Division of Risk Assessment, National Institute of Health Sciences Center for Biological Safety and Research, Kanagawa, Japan
| |
Collapse
|
13
|
Gibb M, Sayes CM. An In Vitro Alveolar Model Allows for the Rapid Assessment of Particles for Respiratory Sensitization Potential. Int J Mol Sci 2023; 24:10104. [PMID: 37373252 DOI: 10.3390/ijms241210104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/01/2023] [Accepted: 05/09/2023] [Indexed: 06/29/2023] Open
Abstract
Dust, both industrial and household, contains particulates that can reach the most distal aspects of the lung. Silica and nickel compounds are two such particulates and have known profiles of poor health outcomes. While silica is well-characterized, nickel compounds still need to be fully understood for their potential to cause long-term immune responses in the lungs. To assess these hazards and decrease animal numbers used in testing, investigations that lead to verifiable in vitro methods are needed. To understand the implications of these two compounds reaching the distal aspect of the lungs, the alveoli, an architecturally relevant alveolar model consisting of epithelial cells, macrophages, and dendritic cells in a maintained submerged system, was utilized for high throughput testing. Exposures include crystalline silica (SiO2) and nickel oxide (NiO). The endpoints measured included mitochondrial reactive oxygen species and cytostructural changes assessed via confocal laser scanning microscopy; cell morphology evaluated via scanning electron microscopy; biochemical reactions assessed via protein arrays; transcriptome assessed via gene arrays, and cell surface activation markers evaluated via flow cytometry. The results showed that, compared to untreated cultures, NiO increased markers for dendritic cell activation, trafficking, and antigen presentation; oxidative stress and cytoskeletal changes, and gene and cytokine expression of neutrophil and other leukocyte chemoattractants. The chemokines and cytokines CCL3, CCL7, CXCL5, IL-6, and IL-8 were identified as potential biomarkers of respiratory sensitization.
Collapse
Affiliation(s)
- Matthew Gibb
- Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA
| | - Christie M Sayes
- Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| |
Collapse
|
14
|
Pemberton MA, Kreuzer K, Kimber I. Challenges in the classification of chemical respiratory allergens based on human data: Case studies of 2-hydroxyethylmethacrylate (HEMA) and 2-hydroxypropylmethacrylate (HPMA). Regul Toxicol Pharmacol 2023; 141:105404. [PMID: 37105297 DOI: 10.1016/j.yrtph.2023.105404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 04/29/2023]
Abstract
Occupational asthma resulting from workplace exposure to chemical respiratory allergens is an important disease. No widely accepted or formally validated tests for the identification of chemical respiratory sensitizers. Consequently, there is a heavy reliance on human data from clinical examinations. Unfortunately, however, although such investigations are critical for the diagnosis of occupational asthma, and in guiding remedial actions, they do not reliably identify specific chemicals within the workplace that are the causative agents. There are several reasons for this, including the fact that specific inhalation tests conducted as part of clinical investigations are frequently performed with complex mixtures rather than single substances, that sometimes inhalation challenges are conducted at concentrations above the OEL and STEL, where effects may be confounded by irritation, and that involvement of immune mechanisms cannot be assumed from the observation of late asthmatic reactions. Further, caution should be taken when implicating substances on lists of "recognised" asthmagens unless they have undergone a formal weight of evidence assessment. Here the limitations of clinical investigations as currently performed for the purposes of regulatory classification and decision making are explored by reference to previously published case studies that implicate 2-hydroxyethylmethacrylate (HEMA) and/or 2-hydroxypropylmethacrylate (HPMA) as respiratory allergens.
Collapse
Affiliation(s)
| | | | - Ian Kimber
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
15
|
Pemberton MA, Kimber I. Propylene glycol, skin sensitisation and allergic contact dermatitis: A scientific and regulatory conundrum. Regul Toxicol Pharmacol 2023; 138:105341. [PMID: 36702195 DOI: 10.1016/j.yrtph.2023.105341] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/15/2023] [Accepted: 01/21/2023] [Indexed: 01/25/2023]
Abstract
Propylene glycol (PG) has widespread use in pharmaceuticals, cosmetics, fragrances and personal care products. PG is not classified as hazardous under the Globally Harmonised System of Classification and Labelling of Chemicals (GHS) but poses an intriguing scientific and regulatory conundrum with respect to allergic contact dermatitis (ACD), the uncertainty being whether and to what extent PG has the potential to induce skin sensitisation. In this article we review the results of predictive tests for skin sensitisation with PG, and clinical evidence for ACD. Patch testing in humans points to PG having the potential to be a weak allergen under certain conditions, and an uncommon cause of ACD in subjects without underlying/pre-disposing skin conditions. In clear contrast PG is negative in predictive toxicology tests for skin sensitisation, including guinea pig and mouse models (e.g. local lymph node assay), validated in vitro test methods that measure various key events in the pathway leading to skin sensitisation, and predictive methods in humans (Human Repeat Insult Patch and Human Maximisation Tests). We here explore the possible scientific basis for this intriguing inconsistency, recognising there are arguably no known contact allergens that are universally negative in, in vitro, animal and human predictive tests methods.
Collapse
Affiliation(s)
| | - Ian Kimber
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
16
|
Schneeweiss A, Juvigny-Khenafou NPD, Osakpolor S, Scharmüller A, Scheu S, Schreiner VC, Ashauer R, Escher BI, Leese F, Schäfer RB. Three perspectives on the prediction of chemical effects in ecosystems. GLOBAL CHANGE BIOLOGY 2023; 29:21-40. [PMID: 36131639 DOI: 10.1111/gcb.16438] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
The increasing production, use and emission of synthetic chemicals into the environment represents a major driver of global change. The large number of synthetic chemicals, limited knowledge on exposure patterns and effects in organisms and their interaction with other global change drivers hamper the prediction of effects in ecosystems. However, recent advances in biomolecular and computational methods are promising to improve our capacity for prediction. We delineate three idealised perspectives for the prediction of chemical effects: the suborganismal, organismal and ecological perspective, which are currently largely separated. Each of the outlined perspectives includes essential and complementary theories and tools for prediction but captures only part of the phenomenon of chemical effects. Links between the perspectives may foster predictive modelling of chemical effects in ecosystems and extrapolation between species. A major challenge for the linkage is the lack of data sets simultaneously covering different levels of biological organisation (here referred to as biological levels) as well as varying temporal and spatial scales. Synthesising the three perspectives, some central aspects and associated types of data seem particularly necessary to improve prediction. First, suborganism- and organism-level responses to chemicals need to be recorded and tested for relationships with chemical groups and organism traits. Second, metrics that are measurable at many biological levels, such as energy, need to be scrutinised for their potential to integrate across levels. Third, experimental data on the simultaneous response over multiple biological levels and spatiotemporal scales are required. These could be collected in nested and interconnected micro- and mesocosm experiments. Lastly, prioritisation of processes involved in the prediction framework needs to find a balance between simplification and capturing the essential complexity of a system. For example, in some cases, eco-evolutionary dynamics and interactions may need stronger consideration. Prediction needs to move from a static to a real-world eco-evolutionary view.
Collapse
Affiliation(s)
- Anke Schneeweiss
- Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| | | | - Stephen Osakpolor
- Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| | - Andreas Scharmüller
- Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
- Institut Terre et Environnement de Strasbourg (ITES), UMR 7063, CNRS-Université de Strasbourg-ENGEES, Strasbourg, France
| | - Sebastian Scheu
- Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| | - Verena C Schreiner
- Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| | - Roman Ashauer
- Syngenta Crop Protection AG, Basel, Switzerland
- Department of Environment and Geography, University of York, York, UK
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Environmental Toxicology, Center for Applied Geoscience, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Florian Leese
- Aquatic Ecosystem Research, University of Duisburg-Essen, Essen, Germany
| | - Ralf B Schäfer
- Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| |
Collapse
|
17
|
Wang X, Li N, Ma M, Han Y, Rao K. Immunotoxicity In Vitro Assays for Environmental Pollutants under Paradigm Shift in Toxicity Tests. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:273. [PMID: 36612599 PMCID: PMC9819277 DOI: 10.3390/ijerph20010273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
With the outbreak of COVID-19, increasingly more attention has been paid to the effects of environmental factors on the immune system of organisms, because environmental pollutants may act in synergy with viruses by affecting the immunity of organisms. The immune system is a developing defense system formed by all metazoans in the course of struggling with various internal and external factors, whose damage may lead to increased susceptibility to pathogens and diseases. Due to a greater vulnerability of the immune system, immunotoxicity has the potential to be the early event of other toxic effects, and should be incorporated into environmental risk assessment. However, compared with other toxicity endpoints, e.g., genotoxicity, endocrine toxicity, or developmental toxicity, there are many challenges for the immunotoxicity test of environmental pollutants; this is due to the lack of detailed mechanisms of action and reliable assay methods. In addition, with the strong appeal for animal-free experiments, there has been a significant shift in the toxicity test paradigm, from traditional animal experiments to high-throughput in vitro assays that rely on cell lines. Therefore, there is an urgent need to build high-though put immunotoxicity test methods to screen massive environmental pollutants. This paper reviews the common methods of immunotoxicity assays, including assays for direct immunotoxicity and skin sensitization. Direct immunotoxicity mainly refers to immunosuppression, for which the assays mostly use mixed immune cells or isolated single cells from animals with obvious problems, such as high cost, complex experimental operation, strong variability and so on. Meanwhile, there have been no stable and standard cell lines targeting immune functions developed for high-throughput tests. Compared with direct immunotoxicity, skin sensitizer screening has developed relatively mature in vitro assay methods based on an adverse outcome pathway (AOP), which points out the way forward for the paradigm shift in toxicity tests. According to the experience of skin sensitizer screening, this paper proposes that we also should seek appropriate nodes and establish more complete AOPs for immunosuppression and other immune-mediated diseases. Then, effective in vitro immunotoxicity assay methods can be developed targeting key events, simultaneously coordinating the studies of the chemical immunotoxicity mechanism, and further promoting the paradigm shift in the immunotoxicity test.
Collapse
Affiliation(s)
- Xinge Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingnan Han
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China
| | - Kaifeng Rao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China
| |
Collapse
|
18
|
An in vitro alveolar model allows for the rapid assessment of chemical respiratory sensitization with modifiable biomarker endpoints. Chem Biol Interact 2022; 368:110232. [DOI: 10.1016/j.cbi.2022.110232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/07/2022] [Accepted: 10/21/2022] [Indexed: 11/23/2022]
|
19
|
Seo JA, Cho SA, Park CE, Seo DH, Choi M, An S, Kim BH. Pre-validation study of spectrophotometric direct peptide reactivity assay (Spectro-DPRA) as a modified in chemico skin sensitization test method. Toxicol Res 2022; 38:531-544. [PMID: 36277359 PMCID: PMC9532475 DOI: 10.1007/s43188-022-00130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/24/2022] [Accepted: 03/14/2022] [Indexed: 10/18/2022] Open
Abstract
Skin sensitization is induced when certain chemicals bind to skin proteins. Direct peptide reactivity assay (DPRA) has been adopted by the OECD as an alternative method to evaluate skin sensitization by assessing a substance's reaction to two model peptides. A modified spectrophotometric method, Spectro-DPRA, can evaluate skin sensitization, in a high throughput fashion, to obviate some limitations of DPRA. Pre-validation studies for Spectro-DPRA were conducted to determine transferability and proficiency, within- and between-laboratory reproducibility, and predictive ability based on GLP principles at three laboratories (AP, KTR, and KCL). All laboratories confirmed high (> 90%) concordance for evaluating the sensitivity induced by ten chemical substances. The concordance among the three tests performed by each laboratory was 90% for AP, 100% for KTR, and 100% for KCL. The mean accuracy of the laboratories was 93.3% [compared to the standard operating procedure (SOP)]. The reproducibility among the three laboratories was as high as 86.7%; the accuracy was 86.7% for AP, 100% for KTR, and 86.7% for KCL (compared to the SOP). An additional 54 substances were assessed in 3 separate labs to verify the prediction rate. Based on the result, 29 out of 33 substances were classified as sensitizers, and 19 out of 21 identified as non-sensitizers; the corresponding sensitivity, specificity, and accuracy values were 87.9%, 90.5%, and 88.9%, respectively. These findings indicate that the Spectro-DPRA can address the molecular initiating event with improved predictability and reproducibility, while saving time and cost compared to DPRA or ADRA.
Collapse
Affiliation(s)
- Jung-Ah Seo
- Department of Public Health, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu, 42601 Republic of Korea
| | - Sun-A Cho
- Safety and Microbiology Lab, Amorepacific Corporation R&D Center, Yongin-si, Republic of Korea
| | - Chang Eon Park
- Korea Testing and Research Institute, Hwasun, Republic of Korea
| | - Dong Hyuk Seo
- Korea Conformity Laboratories, Incheon, Republic of Korea
| | - Myungsuk Choi
- Department of Public Health Science, Korea University, Seoul, Republic of Korea
| | - Susun An
- Safety and Microbiology Lab, Amorepacific Corporation R&D Center, Yongin-si, Republic of Korea
| | - Bae-Hwan Kim
- Department of Public Health, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu, 42601 Republic of Korea
| |
Collapse
|
20
|
Irizar A, Bender H, Griem P, Natsch A, Vey M, Kimber I. Reference Chemical Potency List (RCPL): A new tool for evaluating the accuracy of skin sensitisation potency measurements by New Approach Methodologies (NAMs). Regul Toxicol Pharmacol 2022; 134:105244. [PMID: 35932886 DOI: 10.1016/j.yrtph.2022.105244] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/21/2022] [Accepted: 07/28/2022] [Indexed: 11/24/2022]
Abstract
Considerable progress has been made in the design of New Approach Methodologies (NAMs) for the hazard identification of skin sensitising chemicals. However, effective risk assessment requires accurate measurement of sensitising potency, and this has proven more difficult to achieve without recourse to animal tests. One important requirement for the development and adoption of novel approaches for this purpose is the availability of reliable databases for determining the accuracy with which sensitising potency can be predicted. Some previous approaches have relied on comparisons with potency estimates based on either human or animal (local lymph node assay) data. In contrast, we here describe the development of a carefully curated Reference Chemical Potency List (RCPL) which is based on consideration of the best available human and animal data. The RCPL is comprised of 33 readily available chemicals that span a wide range of chemistry and sensitising potency, and contain examples of both direct and indirect (pre- and pro-) haptens. For each chemical a potency value (PV) was derived, and chemicals ranked according to PV without the use of potency categories. It is proposed that the RCPL provides an effective resource for assessment of the accuracy with which NAMs can measure skin sensitising potency.
Collapse
Affiliation(s)
- Amaia Irizar
- The International Fragrance Association (IFRA), Switzerland.
| | | | | | | | - Matthias Vey
- The International Fragrance Association (IFRA), Switzerland
| | - Ian Kimber
- Faculty of Biology, Medicine and Health, University of Manchester, UK
| |
Collapse
|
21
|
Ponder J, Rajagopal R, Singal M, Baker N, Patlewicz G, Roggen E, Cochrane S, Sullivan K. “In Litero” Screening: Retrospective Evaluation of Clinical Evidence to Establish a Reference List of Human Chemical Respiratory Sensitizers. FRONTIERS IN TOXICOLOGY 2022; 4:916370. [PMID: 35910543 PMCID: PMC9335368 DOI: 10.3389/ftox.2022.916370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Despite decades of investigation, test methods to identify respiratory sensitizers remain an unmet regulatory need. In order to support the evaluation of New Approach Methodologies in development, we sought to establish a reference set of low molecular weight respiratory sensitizers based on case reports of occupational asthma. In this context, we have developed an “in litero” approach to identify cases of low molecular weight chemical exposures leading to respiratory sensitization in clinical literature. We utilized the EPA-developed Abstract Sifter literature review tool to maximize the retrieval of publications relevant to respiratory effects in humans for each chemical in a list of chemicals suspected of inducing respiratory sensitization. The literature retrieved for each of these candidate chemicals was sifted to identify relevant case reports and studies, and then evaluated by applying defined selection criteria. Clinical diagnostic criteria were defined around exposure history, respiratory effects, and specific immune response to conclusively demonstrate occupational asthma as a result of sensitization, rather than irritation. This approach successfully identified 28 chemicals that can be considered as human respiratory sensitizers and used to evaluate the performance of NAMs as part of a weight of evidence approach to identify novel respiratory sensitizers. Further, these results have immediate implications for the development and refinement of predictive tools to distinguish between skin and respiratory sensitizers. A comparison of the protein binding mechanisms of our identified “in litero” clinical respiratory sensitizers shows that acylation is a prevalent protein binding mechanism, in contrast to Michael addition and Schiff base formation common to skin sensitizers. Overall, this approach provides an exemplary method to evaluate and apply human data as part of the weight of evidence when establishing reference chemical lists.
Collapse
Affiliation(s)
- Jessica Ponder
- Physicians Committee for Responsible Medicine, Washington, D.C., DC, United States
| | | | - Madhuri Singal
- AeroTox Consulting Services, LLC, Montvale, NJ, United States
| | - Nancy Baker
- Leidos Contractor to the US EPA, Research Triangle Park, Durham, NC, United States
| | - Grace Patlewicz
- US EPA, Research Triangle Park, Washington, NC, United States
| | | | | | - Kristie Sullivan
- Physicians Committee for Responsible Medicine, Washington, D.C., DC, United States
| |
Collapse
|
22
|
Sadekar N, Boisleve F, Dekant W, Fryer AD, Gerberick GF, Griem P, Hickey C, Krutz NL, Lemke O, Mignatelli C, Panettieri R, Pinkerton KE, Renskers KJ, Sterchele P, Switalla S, Wolter M, Api AM. Identifying a reference list of respiratory sensitizers for the evaluation of novel approaches to study respiratory sensitization. Crit Rev Toxicol 2022; 51:792-804. [PMID: 35142253 DOI: 10.1080/10408444.2021.2024142] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The induction of immunological responses that trigger bio-physiological symptoms in the respiratory tract following repeated exposure to a substance, is known as respiratory sensitization. The inducing compound is known as a respiratory sensitizer. While respiratory sensitization by high molecular weight (HMW) materials is recognized and extensively studied, much less information is available regarding low molecular weight (LMW) materials as respiratory sensitizers. Variability of symptoms presented in humans from such exposures, limited availability of (and access to) documented reports, and the absence of standardized and validated test models, hinders the identification of true respiratory sensitizers. This review aims to sort suspected LMW respiratory sensitizers based on available compelling, reasonable, inadequate, or questionable evidence in humans from occupational exposures and use this information to compose a reference list of reported chemical respiratory sensitizers for scientific research purposes. A list of 97 reported respiratory sensitizers was generated from six sources, and 52 LMW organic chemicals were identified, reviewed, and assigned to the four evidence categories. Less than 10 chemicals were confirmed with compelling evidence for induction of respiratory sensitization in humans from occupational exposures. Here, we propose the reference list for developing novel research on respiratory sensitization.
Collapse
Affiliation(s)
- Nikaeta Sadekar
- Research Institute for Fragrance Materials (RIFM), Woodcliff Lake, NJ, USA
| | | | - Wolfgang Dekant
- Institute of Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - Allison D Fryer
- Division of Pulmonary and Critical Care Medicine, Oregon Health Science University, Portland, OR, USA
| | | | | | | | - Nora L Krutz
- NV Procter & Gamble Services Company SA, Global Product Stewardship, Strombeek-Bever, Belgium
| | | | | | - Reynold Panettieri
- Rutgers Institute for Translational Medicine and Science (RITMS), Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Kent E Pinkerton
- Center for Health and the Environment and Department of Pediatrics, University of California, Davis, CA, USA
| | | | | | | | | | - Anne Marie Api
- Research Institute for Fragrance Materials (RIFM), Woodcliff Lake, NJ, USA
| |
Collapse
|
23
|
Benchmarking performance of SENS-IS assay against weight of evidence skin sensitization potency categories. Regul Toxicol Pharmacol 2022; 130:105128. [DOI: 10.1016/j.yrtph.2022.105128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 11/20/2022]
|
24
|
Basketter DA, Kimber I. Enzymes and sensitization via skin exposure: A critical analysis. Regul Toxicol Pharmacol 2021; 129:105112. [PMID: 34973388 DOI: 10.1016/j.yrtph.2021.105112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/15/2021] [Accepted: 12/27/2021] [Indexed: 10/19/2022]
Abstract
Some proteins, including enzymes, can induce allergic sensitization of various types, including allergic sensitization of the respiratory tract. There is now an increased understanding of the role that the skin plays in the development of IgE-mediated allergy and this prompts the question whether topical exposure to enzymes used widely in consumer cleaning products could result in allergic sensitization. Here, the evidence that proteins can interact with the skin immune system and the way they do so is reviewed, together with a consideration of the experience gained over decades of the use of enzymes in laundry and cleaning products. The conclusion drawn is that although transcutaneous sensitization to proteins can occur (typically through compromised skin) resulting in IgE antibody-mediated allergy, in practice such skin contact with enzymes used in laundry and cleaning products does not appear to pose a significant risk of allergic disease. Further, the evidence summarized in this publication support the view that proteins do not pose a risk of allergic contact dermatitis.
Collapse
Affiliation(s)
| | - Ian Kimber
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
25
|
Allergic Diseases: A Comprehensive Review on Risk Factors, Immunological Mechanisms, Link with COVID-19, Potential Treatments, and Role of Allergen Bioinformatics. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182212105. [PMID: 34831860 PMCID: PMC8622387 DOI: 10.3390/ijerph182212105] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/02/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022]
Abstract
The prevalence of allergic diseases is regarded as one of the key challenges in health worldwide. Although the precise mechanisms underlying this rapid increase in prevalence are unknown, emerging evidence suggests that genetic and environmental factors play a significant role. The immune system, microbiota, viruses, and bacteria have all been linked to the onset of allergy disorders in recent years. Avoiding allergen exposure is the best treatment option; however, steroids, antihistamines, and other symptom-relieving drugs are also used. Allergen bioinformatics encompasses both computational tools/methods and allergen-related data resources for managing, archiving, and analyzing allergological data. This study highlights allergy-promoting mechanisms, algorithms, and concepts in allergen bioinformatics, as well as major areas for future research in the field of allergology.
Collapse
|
26
|
Gradin R, Forreryd A, Mattson U, Jerre A, Johansson H. Quantitative assessment of sensitizing potency using a dose-response adaptation of GARDskin. Sci Rep 2021; 11:18904. [PMID: 34556744 PMCID: PMC8460622 DOI: 10.1038/s41598-021-98247-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/03/2021] [Indexed: 12/04/2022] Open
Abstract
Hundreds of chemicals have been identified as skin sensitizers. These are chemicals that possess the ability to induce hypersensitivity reactions in humans, giving rise to a condition termed allergic contact dermatitis. The capacity to limit hazardous exposure to such chemicals depends upon the ability to accurately identify and characterize their skin sensitizing potency. This has traditionally been accomplished using animal models, but their widespread use offers challenges from both an ethical and a scientific perspective. Comprehensive efforts have been made by the scientific community to develop new approach methodologies (NAMs) capable of replacing in vivo assays, which have successfully yielded several methods that can identify skin sensitizers. However, there is still a lack of new approaches that can effectively measure skin sensitizing potency. We present a novel methodology for quantitative assessment of skin sensitizing potency, which is founded on the already established protocols of the GARDskin assay. This approach analyses dose–response relationships in the GARDskin assay to identify chemical-specific concentrations that are sufficient to induce a positive response in the assay. We here compare results for 22 skin sensitizers analyzed using this method with both human and LLNA potency reference data and show that the results correlate strongly and significantly with both metrics (rLLNA = 0.81, p = 9.1 × 10–5; rHuman = 0.74, p = 1.5 × 10–3). In conclusion, the results suggest that the proposed GARDskin dose–response methodology provides a novel non-animal approach for quantitative potency assessment, which could represent an important step towards reducing the need for in vivo experiments.
Collapse
Affiliation(s)
- Robin Gradin
- SenzaGen AB, Medicon Village, Scheelevägen 2, 22381, Lund, Sweden
| | - Andy Forreryd
- SenzaGen AB, Medicon Village, Scheelevägen 2, 22381, Lund, Sweden
| | - Ulrika Mattson
- SenzaGen AB, Medicon Village, Scheelevägen 2, 22381, Lund, Sweden
| | - Anders Jerre
- SenzaGen AB, Medicon Village, Scheelevägen 2, 22381, Lund, Sweden
| | - Henrik Johansson
- SenzaGen AB, Medicon Village, Scheelevägen 2, 22381, Lund, Sweden.
| |
Collapse
|
27
|
Krutz NL, Kimber I, Ryan CA, Kern PS, Gerberick GF. Critical Evaluation of Low-Molecular Weight Respiratory Sensitizers and Their Protein Reactivity Potential Toward Lysine Residues. Toxicol Sci 2021; 182:346-354. [PMID: 34003265 DOI: 10.1093/toxsci/kfab055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Interest in the development of methods to evaluate the respiratory sensitization potential of low-molecular weight chemicals continues, but no method has yet been generally accepted or validated. A lack of chemical reference standards, together with uncertainty regarding relevant immunological mechanisms, has hampered method development. The first key event in the development of either skin or respiratory sensitization is the formation of stable adducts of the chemical with host proteins. This event is measured in the Direct Peptide Reactivity Assay using cysteine- and lysine-containing model peptides. It is hypothesized that protein reactivity and subsequent adduct formation may represent the earliest point of divergence in the pathways leading to either skin or respiratory sensitization. Direct Peptide Reactivity Assay data for 200 chemicals were compiled and grouped into respiratory, skin and nonsensitizers. Chemicals grouping was based on extensive literature research and expert judgment. To evaluate if chemical groups represent different peptide reactivity profiles, peptide reactivity data were clustered and compared with information on protein binding mechanisms and chemical categories available via the Organization for Economic Co-operation and Development. Toolbox. Respiratory sensitizers (n = 15) showed a significant (3-fold) higher lysine reactivity than skin sensitizers (n = 129). However, this difference was driven largely by the high representation of acid anhydrides among the respiratory sensitizers that showed clear lysine selectivity. Collectively, these data suggest that preferential reactivity for either cysteine or lysine is associated primarily with chemical structure, and that lysine preference is not a unifying characteristic of chemical respiratory allergens.
Collapse
Affiliation(s)
- Nora L Krutz
- NV Procter & Gamble Services Company SA, Global Product Stewardship, Strombeek-Bever 1853, Belgium
| | - Ian Kimber
- University of Manchester, Faculty of Biology, Medicine and Health, Manchester M13 9PL, UK
| | - Cindy A Ryan
- The Procter & Gamble Company, Global Product Stewardship, Mason, Ohio 45040, USA
| | - Petra S Kern
- NV Procter & Gamble Services Company SA, Global Product Stewardship, Strombeek-Bever 1853, Belgium
| | | |
Collapse
|
28
|
Bailey A, Nicholas B, Darley R, Parkinson E, Teo Y, Aleksic M, Maxwell G, Elliott T, Ardern-Jones M, Skipp P. Characterization of the Class I MHC Peptidome Resulting From DNCB Exposure of HaCaT Cells. Toxicol Sci 2021; 180:136-147. [PMID: 33372950 PMCID: PMC7916740 DOI: 10.1093/toxsci/kfaa184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Skin sensitization following the covalent modification of proteins by low molecular weight chemicals (haptenation) is mediated by cytotoxic T lymphocyte (CTL) recognition of human leukocyte antigen (HLA) molecules presented on the surface of almost all nucleated cells. There exist 3 nonmutually exclusive hypotheses for how haptens mediate CTL recognition: direct stimulation by haptenated peptides, hapten modification of HLA leading to an altered HLA-peptide repertoire, or a hapten altered proteome leading to an altered HLA-peptide repertoire. To shed light on the mechanism underpinning skin sensitization, we set out to utilize proteomic analysis of keratinocyte presented antigens following exposure to 2,4-dinitrochlorobenzene (DNCB). We show that the following DNCB exposure, cultured keratinocytes present cysteine haptenated (dinitrophenylated) peptides in multiple HLA molecules. In addition, we find that one of the DNCB modified peptides derives from the active site of cytosolic glutathione-S transferase-ω. These results support the current view that a key mechanism of skin sensitization is stimulation of CTLs by haptenated peptides. Data are available via ProteomeXchange with identifier PXD021373.
Collapse
Affiliation(s)
- Alistair Bailey
- Centre for Proteomic Research, Biological Sciences and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK.,Centre for Cancer Immunology and Institute for Life Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Ben Nicholas
- Centre for Proteomic Research, Biological Sciences and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK.,Centre for Cancer Immunology and Institute for Life Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Rachel Darley
- Centre for Cancer Immunology and Institute for Life Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Erika Parkinson
- Centre for Proteomic Research, Biological Sciences and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Ying Teo
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Maja Aleksic
- Safety & Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook MK44 1LQ, UK
| | - Gavin Maxwell
- Safety & Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook MK44 1LQ, UK
| | - Tim Elliott
- Centre for Cancer Immunology and Institute for Life Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Michael Ardern-Jones
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Paul Skipp
- Centre for Proteomic Research, Biological Sciences and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
29
|
Zhu F, Jiao J, Zhuang P, Huang M, Zhang Y. Association of exposures to perchlorate, nitrate, and thiocyanate with allergic symptoms: A population-based nationwide cohort study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117068. [PMID: 33892368 DOI: 10.1016/j.envpol.2021.117068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/05/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Allergic diseases have been one of the leading causes of chronic disorders in the United States. Animal studies have suggested that exposures to perchlorate, nitrate, and thiocyanate could induce allergic inflammation. However, the associations have not been examined among general populations. Here, we investigated data of 7030 participants aged ≥6 years from the National Health and Nutritional Examination Survey (NHANES) 2005-2006. Urinary levels of perchlorate, nitrate, and thiocyanate were measured by ion chromatography combined with electrospray tandem mass spectrometry. Information on allergic symptoms (hay fever, allergy, rash, sneeze, wheeze, eczema, and current asthma) was collected by questionnaire. Allergic sensitization was defined by a concentration ≥150 kU/L for total immunoglobulin E (IgE) levels. The associations were estimated using multivariate-adjusted logistic regression models. A positive association was observed for urinary nitrate and eczema (p < 0.001 for the trend). Compared with quartile 1 (lowest quartile), the odds ratios of eczema with 95% confidence intervals [ORs (95% CIs)] from quartiles 2 to 4 were 1.72 (95% CI, 1.41, 2.09), 1.94 (1.53, 2.47) and 2.10 (1.49, 2.97) for urinary nitrate. In addition, urinary thiocyanate was positively related to sneeze (ORQ4 vs. Q1: 1.25, 95% CI: 1.01, 1.55; p = 0.015 for the trend). However, urinary perchlorate was not correlated with any allergic-related outcome. Additionally, the associations were different among subgroups in a four-level polytomous model. Thus, our results suggested that exposures to nitrate and thiocyanate may be associated with allergic symptoms. Further investigations are warranted to concentrate on the practical strategies to monitor exposure levels and the latent mechanisms of the relationship between exposure and allergy.
Collapse
Affiliation(s)
- Fanghuan Zhu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingjing Jiao
- Department of Nutrition and Food Hygiene, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Pan Zhuang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mengmeng Huang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
30
|
Wilm A, Garcia de Lomana M, Stork C, Mathai N, Hirte S, Norinder U, Kühnl J, Kirchmair J. Predicting the Skin Sensitization Potential of Small Molecules with Machine Learning Models Trained on Biologically Meaningful Descriptors. Pharmaceuticals (Basel) 2021; 14:ph14080790. [PMID: 34451887 PMCID: PMC8402010 DOI: 10.3390/ph14080790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023] Open
Abstract
In recent years, a number of machine learning models for the prediction of the skin sensitization potential of small organic molecules have been reported and become available. These models generally perform well within their applicability domains but, as a result of the use of molecular fingerprints and other non-intuitive descriptors, the interpretability of the existing models is limited. The aim of this work is to develop a strategy to replace the non-intuitive features by predicted outcomes of bioassays. We show that such replacement is indeed possible and that as few as ten interpretable, predicted bioactivities are sufficient to reach competitive performance. On a holdout data set of 257 compounds, the best model (“Skin Doctor CP:Bio”) obtained an efficiency of 0.82 and an MCC of 0.52 (at the significance level of 0.20). Skin Doctor CP:Bio is available free of charge for academic research. The modeling strategies explored in this work are easily transferable and could be adopted for the development of more interpretable machine learning models for the prediction of the bioactivity and toxicity of small organic compounds.
Collapse
Affiliation(s)
- Anke Wilm
- Center for Bioinformatics (ZBH), Department of Informatics, Universität Hamburg, 20146 Hamburg, Germany; (A.W.); (C.S.)
- HITeC e.V., 22527 Hamburg, Germany
| | - Marina Garcia de Lomana
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria; (M.G.d.L.); (S.H.)
| | - Conrad Stork
- Center for Bioinformatics (ZBH), Department of Informatics, Universität Hamburg, 20146 Hamburg, Germany; (A.W.); (C.S.)
| | - Neann Mathai
- Computational Biology Unit (CBU), Department of Chemistry, University of Bergen, N-5020 Bergen, Norway;
| | - Steffen Hirte
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria; (M.G.d.L.); (S.H.)
| | - Ulf Norinder
- MTM Research Centre, School of Science and Technology, Örebro University, SE-70182 Örebro, Sweden;
- Department of Computer and Systems Sciences, Stockholm University, SE-16407 Kista, Sweden
- Department of Pharmaceutical Biosciences, Uppsala University, SE-75124 Uppsala, Sweden
| | - Jochen Kühnl
- Front End Innovation, Beiersdorf AG, 22529 Hamburg, Germany;
| | - Johannes Kirchmair
- Center for Bioinformatics (ZBH), Department of Informatics, Universität Hamburg, 20146 Hamburg, Germany; (A.W.); (C.S.)
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria; (M.G.d.L.); (S.H.)
- Correspondence: ; Tel.: +43-1-4277-55104
| |
Collapse
|
31
|
Gradin R, Johansson A, Forreryd A, Aaltonen E, Jerre A, Larne O, Mattson U, Johansson H. The GARDpotency Assay for Potency-Associated Subclassification of Chemical Skin Sensitizers-Rationale, Method Development, and Ring Trial Results of Predictive Performance and Reproducibility. Toxicol Sci 2021; 176:423-432. [PMID: 32421796 PMCID: PMC7416325 DOI: 10.1093/toxsci/kfaa068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Proactive identification and characterization of hazards attributable to chemicals are central aspects of risk assessments. Current legislations and trends in predictive toxicology advocate a transition from in vivo methods to nonanimal alternatives. For skin sensitization assessment, several OECD validated alternatives exist for hazard identification, but nonanimal methods capable of accurately characterizing the risks associated with sensitizing potency are still lacking. The GARD (Genomic Allergen Rapid Detection) platform utilizes exposure-induced gene expression profiles of a dendritic-like cell line in combination with machine learning to provide hazard classifications for different immunotoxicity endpoints. Recently, a novel genomic biomarker signature displaying promising potency-associated discrimination between weak and strong skin sensitizers was proposed. Here, we present the adaptation of the defined biomarker signature on a gene expression analysis platform suited for routine acquisition, confirm the validity of the proposed biomarkers, and define the GARDpotency assay for prediction of skin sensitizer potency. The performance of GARDpotency was validated in a blinded ring trial, in accordance with OECD guidance documents. The cumulative accuracy was estimated to 88.0% across 3 laboratories and 9 independent experiments. The within-laboratory reproducibility measures ranged between 62.5% and 88.9%, and the between-laboratory reproducibility was estimated to 61.1%. Currently, no direct or systematic cause for the observed inconsistencies between the laboratories has been identified. Further investigations into the sources of introduced variability will potentially allow for increased reproducibility. In conclusion, the in vitro GARDpotency assay constitutes a step forward for development of nonanimal alternatives for hazard characterization of skin sensitizers.
Collapse
|
32
|
Sharma N, Patiyal S, Dhall A, Devi NL, Raghava GPS. ChAlPred: A web server for prediction of allergenicity of chemical compounds. Comput Biol Med 2021; 136:104746. [PMID: 34388468 DOI: 10.1016/j.compbiomed.2021.104746] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Allergy is the abrupt reaction of the immune system that may occur after the exposure to allergens such as proteins, peptides, or chemicals. In the past, various methods have been generated for predicting allergenicity of proteins and peptides. In contrast, there is no method that can predict allergenic potential of chemicals. In this paper, we described a method ChAlPred developed for predicting chemical allergens as well as for designing chemical analogs with desired allergenicity. METHOD In this study, we have used 403 allergenic and 1074 non-allergenic chemical compounds obtained from IEDB database. The PaDEL software was used to compute the molecular descriptors of the chemical compounds to develop different prediction models. All the models were trained and tested on the 80% training data and evaluated on the 20% validation data using the 2D, 3D and FP descriptors. RESULTS In this study, we have developed different prediction models using several machine learning approaches. It was observed that the Random Forest based model developed using hybrid descriptors performed the best, and achieved the maximum accuracy of 83.39% and AUC of 0.93 on validation dataset. The fingerprint analysis of the dataset indicates that certain chemical fingerprints are more abundant in allergens that include PubChemFP129 and GraphFP1014. We have also predicted allergenicity potential of FDA-approved drugs using our best model and identified the drugs causing allergic symptoms (e.g., Cefuroxime, Spironolactone, Tioconazole). Our results agreed with allergenicity of these drugs reported in literature. CONCLUSIONS To aid the research community, we developed a smart-device compatible web server ChAlPred (https://webs.iiitd.edu.in/raghava/chalpred/) that allows to predict and design the chemicals with allergenic properties.
Collapse
Affiliation(s)
- Neelam Sharma
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| | - Sumeet Patiyal
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| | - Anjali Dhall
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| | - Naorem Leimarembi Devi
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| |
Collapse
|
33
|
Thá EL, Canavez ADPM, Schuck DC, Gagosian VSC, Lorencini M, Leme DM. Beyond dermal exposure: The respiratory tract as a target organ in hazard assessments of cosmetic ingredients. Regul Toxicol Pharmacol 2021; 124:104976. [PMID: 34139277 DOI: 10.1016/j.yrtph.2021.104976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 05/30/2021] [Accepted: 06/11/2021] [Indexed: 10/21/2022]
Abstract
Dermal contact is the main route of exposure for most cosmetics; however, inhalation exposure could be significant for some formulations (e.g., aerosols, powders). Current cosmetic regulations do not require specific tests addressing respiratory irritation and sensitisation, and despite the prohibition of animal testing for cosmetics, no alternative methods have been validated to assess these endpoints to date. Inhalation hazard is mainly determined based on existing human and animal evidence, read-across, and extrapolation of data from different target organs or tissues, such as the skin. However, because of mechanistic differences, effects on the skin cannot predict effects on the respiratory tract, which indicates a substantial need for the development of new approach methodologies addressing respiratory endpoints for inhalable chemicals in general. Cosmetics might present a particularly significant need for risk assessments of inhalation exposure to provide a more accurate toxicological evaluation and ensure consumer safety. This review describes the differences in the mechanisms of irritation and sensitisation between the skin and the respiratory tract, the progress that has already been made, and what still needs to be done to fill the gap in the inhalation risk assessment of cosmetic ingredients.
Collapse
Affiliation(s)
- Emanoela Lundgren Thá
- Graduate Program in Genetics, Department of Genetics - Federal University of Paraná (UFPR), Curitiba, PR, Brazil.
| | | | | | | | - Márcio Lorencini
- Grupo Boticário, Product Safety Management- Q&PP, São José dos Pinhais, PR, Brazil
| | - Daniela Morais Leme
- Department of Genetics - Federal University of Paraná (UFPR), Curitiba, PR, Brazil.
| |
Collapse
|
34
|
Safety Testing of Cosmetic Products: Overview of Established Methods and New Approach Methodologies (NAMs). COSMETICS 2021. [DOI: 10.3390/cosmetics8020050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cosmetic products need to have a proven efficacy combined with a comprehensive toxicological assessment. Before the current Cosmetic regulation N°1223/2009, the 7th Amendment to the European Cosmetics Directive has banned animal testing for cosmetic products and for cosmetic ingredients in 2004 and 2009, respectively. An increasing number of alternatives to animal testing has been developed and validated for safety and efficacy testing of cosmetic products and cosmetic ingredients. For example, 2D cell culture models derived from human skin can be used to evaluate anti-inflammatory properties, or to predict skin sensitization potential; 3D human skin equivalent models are used to evaluate skin irritation potential; and excised human skin is used as the gold standard for the evaluation of dermal absorption. The aim of this manuscript is to give an overview of the main in vitro and ex vivo alternative models used in the safety testing of cosmetic products with a focus on regulatory requirements, genotoxicity potential, skin sensitization potential, skin and eye irritation, endocrine properties, and dermal absorption. Advantages and limitations of each model in safety testing of cosmetic products are discussed and novel technologies capable of addressing these limitations are presented.
Collapse
|
35
|
Chipinda I, Anderson SE, Siegel PD. Laboratory Techniques for Identifying Causes of Allergic Dermatitis. Immunol Allergy Clin North Am 2021; 41:423-438. [PMID: 34225898 DOI: 10.1016/j.iac.2021.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This article reviews the laboratory's role in identifying causes of chemical-induced allergic dermatitis. Several topics will be discussed. Allergen hazard identification refers to testing of chemicals for their sensitization potential. Animal-based, in silico, in chemico, and in vitro tests have been developed to identify the skin sensitization hazard of potential chemical allergens, but only a few of these are accepted by regulatory agencies. Laboratory investigations have also evaluated the stability of several commercially available allergic contact dermatitis patch tests. Such studies are considered product testing and are usually conducted in analytical chemistry laboratories.
Collapse
Affiliation(s)
- Itai Chipinda
- Global Product Stewardship & Toxicology, Phillips 66, Bartlesville, OK 74003, USA
| | - Stacey E Anderson
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA.
| | - Paul D Siegel
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| |
Collapse
|
36
|
Shezi B, Naidoo RN, Muttoo S, Mathee A, Alfers L, Dobson R, Ndlovu P, Street RA. Informal-sector occupational hazards: an observational workplace assessment of the traditional medicine trade in South Africa. INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS 2021; 27:562-569. [PMID: 30961442 DOI: 10.1080/10803548.2019.1602329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Informal traditional medicine markets are trading and processing hubs for a range of plant, animal and mineral materials; however, little is known regarding the occupational risks associated with the processing and handling of these products. The aim of this study was to identify the workplace hazards of the traditional medicine trade. A walk-through observation of the workplace was conducted by two independent observers with formal training in workplace risk evaluation. Ergonomic, physical, chemical, biological and environmental hazards were identified from the handling of plant, animal and/or mineral products. The study gives an insight into a unique and diverse sector.
Collapse
Affiliation(s)
- Busisiwe Shezi
- Environment and Health Research Unit, South African Medical Research Council, South Africa
| | - Rajen N Naidoo
- Occupational and Environmental Health, University of KwaZulu-Natal, South Africa
| | - Sheena Muttoo
- Occupational and Environmental Health, University of KwaZulu-Natal, South Africa
| | - Angela Mathee
- Environment and Health Research Unit, South African Medical Research Council, South Africa
| | - Laura Alfers
- Women in Informal Employment: Globalizing and Organizing, South Africa
| | | | | | - Renee A Street
- Environment and Health Research Unit, South African Medical Research Council, South Africa
| |
Collapse
|
37
|
Classification of chemicals as respiratory allergens based on human data: Requirements and practical considerations. Regul Toxicol Pharmacol 2021; 123:104925. [PMID: 33831493 DOI: 10.1016/j.yrtph.2021.104925] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/23/2021] [Accepted: 04/01/2021] [Indexed: 02/01/2023]
Abstract
Occupational asthma is an important health problem that can include exacerbation of existing asthma, or induce new asthma either through allergic sensitisation, or non-immunological mechanisms. While allergic sensitisation of the respiratory tract can be acquired to proteins, or to low molecular weight chemicals (chemical respiratory allergens) this article is on the latter exclusively. Chemical respiratory allergy resulting in occupational asthma is associated with high levels of morbidity and there is a need, therefore, that chemicals which can cause sensitisation of the respiratory tract are identified accurately. However, there are available no validated, or even widely accepted, predictive test methods (in vivo, in vitro or in silico) that have achieved regulatory acceptance for identifying respiratory sensitising hazards. For this reason there is an important reliance on human data for the identification of chemical respiratory allergens, and for distinguishing these from chemicals that cause occupational asthma through non-immunological mechanisms. In this article the reasons why it is important that care is taken in designating chemicals as respiratory allergens are reviewed. The value and limitations of human data that can aid the accurate identification of chemical respiratory allergens are explored, including exposure conditions, response characteristics in specific inhalation challenge tests, and immunological investigations.
Collapse
|
38
|
Blom LH, Elrefaii SA, Zachariae C, Thyssen JP, Poulsen LK, Johansen JD. Memory T helper cells identify patients with nickel, cobalt, and chromium metal allergy. Contact Dermatitis 2021; 85:7-16. [PMID: 33576045 DOI: 10.1111/cod.13809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/07/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Patch testing is the gold standard for identifying culprit allergens in allergic contact dermatitis; however, it is laborious and positive reactions are difficult to quantitate. Development of complementary in vitro tests is, therefore, of great importance. OBJECTIVES This study aimed to improve the in vitro lymphocyte proliferation test (LPT) to detect allergic responses to nickel (Ni), cobalt (Co), and chromium (Cr). METHODS Twenty-one metal allergic patients with a positive patch test to Ni (n=16), Co (n=8), and Cr (n=3) and 13 controls were included. All were tested by a flow cytometric LPT. RESULTS Metal-reactive cells were identified as T helper (Th) cells with high expression of the memory marker CD45RO. Skin-homing (cutaneous lymphocyte-associated antigen positive [CLA+]) Ni-reactive memory Th (Thmem hi ) cells identified individuals with a positive patch test for Ni with 100% sensitivity (95% confidence interval [CI] 81%-100%) and 92% specificity (95% CI 67%-100%). Moreover, Co-specific Thmem hi cells expressing CCR6 identified patients with a positive patch test for Co with 63% sensitivity (95% CI 31%-86%) and 100% specificity (95% CI 77%-100%). In Cr allergic individuals, Cr-reactive Thmem hi cells tended to increased CLA and CCR6 expression. CONCLUSION Metal-reactive Th cells with high expression of CD45RO and coexpression of CLA and CCR6 improved the LPT, making it an attractive supplement to the patch test.
Collapse
Affiliation(s)
- Lars H Blom
- Department of Dermatology and Allergy, Allergy Clinic, Copenhagen University Hospital Herlev and Gentofte, Herlev, Denmark
| | - Sali A Elrefaii
- Department of Dermatology and Allergy, Allergy Clinic, Copenhagen University Hospital Herlev and Gentofte, Herlev, Denmark
| | - Claus Zachariae
- Department of Dermatology and Allergy, Copenhagen University Hospital Herlev and Gentofte, Herlev, Denmark
| | - Jacob P Thyssen
- Department of Dermatology and Allergy, Copenhagen University Hospital Herlev and Gentofte, Herlev, Denmark
| | - Lars K Poulsen
- Department of Dermatology and Allergy, Allergy Clinic, Copenhagen University Hospital Herlev and Gentofte, Herlev, Denmark
| | - Jeanne D Johansen
- Department of Dermatology and Allergy, National Allergy Research Centre, Copenhagen University Hospital Herlev and Gentofte, Herlev, Denmark
| |
Collapse
|
39
|
Wilm A, Norinder U, Agea MI, de Bruyn Kops C, Stork C, Kühnl J, Kirchmair J. Skin Doctor CP: Conformal Prediction of the Skin Sensitization Potential of Small Organic Molecules. Chem Res Toxicol 2020; 34:330-344. [PMID: 33295759 PMCID: PMC7887802 DOI: 10.1021/acs.chemrestox.0c00253] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Skin sensitization potential or potency is an important end point in the safety assessment of new chemicals and new chemical mixtures. Formerly, animal experiments such as the local lymph node assay (LLNA) were the main form of assessment. Today, however, the focus lies on the development of nonanimal testing approaches (i.e., in vitro and in chemico assays) and computational models. In this work, we investigate, based on publicly available LLNA data, the ability of aggregated, Mondrian conformal prediction classifiers to differentiate between non- sensitizing and sensitizing compounds as well as between two levels of skin sensitization potential (weak to moderate sensitizers, and strong to extreme sensitizers). The advantage of the conformal prediction framework over other modeling approaches is that it assigns compounds to activity classes only if a defined minimum level of confidence is reached for the individual predictions. This eliminates the need for applicability domain criteria that often are arbitrary in their nature and less flexible. Our new binary classifier, named Skin Doctor CP, differentiates nonsensitizers from sensitizers with a higher reliability-to-efficiency ratio than the corresponding nonconformal prediction workflow that we presented earlier. When tested on a set of 257 compounds at the significance levels of 0.10 and 0.30, the model reached an efficiency of 0.49 and 0.92, and an accuracy of 0.83 and 0.75, respectively. In addition, we developed a ternary classification workflow to differentiate nonsensitizers, weak to moderate sensitizers, and strong to extreme sensitizers. Although this model achieved satisfactory overall performance (accuracies of 0.90 and 0.73, and efficiencies of 0.42 and 0.90, at significance levels 0.10 and 0.30, respectively), it did not obtain satisfying class-wise results (at a significance level of 0.30, the validities obtained for nonsensitizers, weak to moderate sensitizers, and strong to extreme sensitizers were 0.70, 0.58, and 0.63, respectively). We argue that the model is, in consequence, unable to reliably identify strong to extreme sensitizers and suggest that other ternary models derived from the currently accessible LLNA data might suffer from the same problem. Skin Doctor CP is available via a public web service at https://nerdd.zbh.uni-hamburg.de/skinDoctorII/.
Collapse
Affiliation(s)
- Anke Wilm
- Center for Bioinformatics (ZBH), Department of Informatics, Universität Hamburg, 20146 Hamburg, Germany.,HITeC e.V., 22527 Hamburg, Germany
| | - Ulf Norinder
- Department of Computer and Systems Sciences, Stockholm University, SE-16407 Kista, Sweden.,Department of Pharmaceutical Biosciences, Uppsala University, SE-75124 Uppsala, Sweden.,MTM Research Centre, School of Science and Technology, Örebro University, SE-70182 Örebro, Sweden
| | - M Isabel Agea
- Department of Informatics and Chemistry, University of Chemistry and Technology Prague, 16628 Prague, Czech Republic
| | - Christina de Bruyn Kops
- Center for Bioinformatics (ZBH), Department of Informatics, Universität Hamburg, 20146 Hamburg, Germany
| | - Conrad Stork
- Center for Bioinformatics (ZBH), Department of Informatics, Universität Hamburg, 20146 Hamburg, Germany
| | - Jochen Kühnl
- Front End Innovation, Beiersdorf AG, 22529 Hamburg, Germany
| | - Johannes Kirchmair
- Center for Bioinformatics (ZBH), Department of Informatics, Universität Hamburg, 20146 Hamburg, Germany.,Department of Pharmaceutical Chemistry, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
40
|
Kimber I. The activity of methacrylate esters in skin sensitisation test methods II. A review of complementary and additional analyses. Regul Toxicol Pharmacol 2020; 119:104821. [PMID: 33186628 DOI: 10.1016/j.yrtph.2020.104821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 01/13/2023]
Abstract
Allergic contact dermatitis is an important occupational health issue, and there is a need to identify accurately those chemicals that have the potential to induce skin sensitisation. Hazard identification was performed initially using animal (guinea pig and mouse) models. More recently, as a result of the drive towards non-animal methods, alternative in vitro and in silico approaches have been developed. Some of these new in vitro methods have been formally validated and have been assigned OECD Test Guideline status. The performance of some of these recently developed in vitro methods, and of 2 quantitative structure-activity relationships (QSAR) approaches, with a series of methacrylate esters has been reviewed and reported previously. In this article that first review has been extended further with additional data and complementary analyses. Results obtained using in vitro methods (Direct Peptide Reactivity Assay, DPRA; ARE-Nrf2 luciferase test methods, KeratinoSens and LuSens; Epidermal Sensitisation Assay, EpiSensA; human Cell Line Activation Test, h-CLAT, and the myeloid U937 Skin Sensitisation test, U-SENS), and 2 QSAR approaches (DEREK™-nexus and TIMES-SS), with 11 methacrylate esters and methacrylic acid are reported here, and compared with existing data from the guinea pig maximisation test and the local lymph node assay. With this series of chemicals it was found that some in vitro tests (DPRA and ARE-Nrf2 luciferase) performed well in comparison with animal test results and available human skin sensitisation data. Other in vitro tests (EpiSensA and h-CLAT) proved rather more problematic. Results with DEREK™-nexus and TIMES-SS failed to reflect accurately the skin sensitisation potential of the methacrylate esters. The implications for assessment of skin sensitising activity are discussed.
Collapse
Affiliation(s)
- Ian Kimber
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
41
|
Nishijo T, Api AM, Gerberick GF, Miyazawa M, Roberts DW, Safford RJ, Sakaguchi H. Application of the dermal sensitization threshold concept to chemicals classified as high potency category for skin sensitization assessment of ingredients for consumer products. Regul Toxicol Pharmacol 2020; 117:104732. [PMID: 32795584 DOI: 10.1016/j.yrtph.2020.104732] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/16/2020] [Accepted: 07/06/2020] [Indexed: 11/16/2022]
Abstract
Skin sensitization evaluation is a key part of the safety assessment of ingredients in consumer products, which may have skin sensitizing potential. The dermal sensitization threshold (DST) concept, which is based on the concept of the thresholds of toxicological concern, has been proposed for the risk assessment of chemicals to which skin exposure is very low level. There is negligible risk of skin sensitization if a skin exposure level for the substance of interest was below the reactive DST which would protect against 95% of protein-reactive chemicals. For the remaining 5%, the substance with the defined knowledge of chemical structure (i.e., High Potency Category (HPC) rules) needs to be excluded from the application. However, the DST value for HPC chemicals has not yet been proposed. In this study, we calculated the 95th percentile probabilities estimate from distributions of skin sensitization potency data and derived a novel DST for HPC chemicals (HPC DST) of 1.5 μg/cm2. This value presents a useful default approach for unidentified substances in ingredients considering, as a worst-case scenario, that the unidentified compound may be a potent skin sensitizer. Finally, we developed a novel risk assessment workflow incorporating the HPC DST along with the previously published DSTs.
Collapse
Affiliation(s)
- Taku Nishijo
- Safety Science Research Laboratories, Kao Corporation, 2606 Akabane, Ichikai, Haga, Tochigi 321-3497, Japan.
| | - Anne Marie Api
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, United States
| | - G Frank Gerberick
- GF3 Consultancy, LLC, 6592 Pullman Court, West Chester, OH 45069, United States
| | - Masaaki Miyazawa
- Safety Science Research Laboratories, Kao Corporation, 2606 Akabane, Ichikai, Haga, Tochigi 321-3497, Japan
| | - David W Roberts
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, United Kingdom
| | - Robert J Safford
- B-Safe Toxicology Consulting, 31 Hayway, Rushden, Northants, NN10 6AG, United Kingdom
| | - Hitoshi Sakaguchi
- Safety Science Research Laboratories, Kao Corporation, 2606 Akabane, Ichikai, Haga, Tochigi 321-3497, Japan
| |
Collapse
|
42
|
Krutz NL, Kimber I, Maurer-Stroh S, Gerberick GF. Determination of the relative allergenic potency of proteins: hurdles and opportunities. Crit Rev Toxicol 2020; 50:521-530. [DOI: 10.1080/10408444.2020.1793895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nora L. Krutz
- Procter & Gamble Services Company SA, Strombeek-Bever, Belgium
| | - Ian Kimber
- University of Manchester, Faculty of Biology, Medicine and Health, Manchester, UK
| | - Sebastian Maurer-Stroh
- Biomolecular Function Discovery Division, Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | | |
Collapse
|
43
|
Johansson H, Gradin R, Johansson A, Adriaens E, Edwards A, Zuckerstätter V, Jerre A, Burleson F, Gehrke H, Roggen EL. Validation of the GARD™skin Assay for Assessment of Chemical Skin Sensitizers: Ring Trial Results of Predictive Performance and Reproducibility. Toxicol Sci 2020; 170:374-381. [PMID: 31099396 PMCID: PMC6657565 DOI: 10.1093/toxsci/kfz108] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Proactive identification of chemicals with skin sensitizing properties is a key toxicological endpoint within chemical safety assessment, as required by legislation for registration of chemicals. In order to meet demands of increased animal welfare and facilitate increased testing efficiency also in nonregulatory settings, considerable efforts have been made to develop nonanimal approaches to replace current animal testing. Genomic Allergen Rapid Detection (GARD™) is a state-of-the-art technology platform, the most advanced application of which is the assay for assessment of skin sensitizing chemicals, GARD™skin. The methodology is based on a dendritic cell (DC)-like cell line, thus mimicking the mechanistic events leading to initiation and modulation of downstream immunological responses. Induced transcriptional changes are measured following exposure to test chemicals, providing a detailed evaluation of cell activation. These changes are associated with the immunological decision-making role of DCs in vivo and include among other phenotypic modifications, up-regulation of co-stimulatory molecules, induction of cellular and oxidative stress pathways and xenobiotic responses, and provide a holistic readout of substance-induced DC activation. Here, results from an inter-laboratory ring trial of GARD™skin, conducted in compliance with OECD guidance documents and comprising a blinded chemical test set of 28 chemicals, are summarized. The assay was found to be transferable to naïve laboratories, with an inter-laboratory reproducibility of 92.0%. The within-laboratory reproducibility ranged between 82.1% and 88.9%, whereas the cumulative predictive accuracy across the 3 laboratories was 93.8%. It was concluded that GARD™skin is a robust and reliable method for the identification of skin sensitizing chemicals and suitable for stand-alone use or as a constituent of integrated testing. These data form the basis for the regulatory validation of GARD™skin.
Collapse
Affiliation(s)
| | | | | | | | - Amber Edwards
- Burleson Research Technologies, Morrisville, North Carolina 27560
| | | | | | | | - Helge Gehrke
- Eurofins BioPharma Product Testing Munich GmbH, 82152 Planegg, Germany
| | | |
Collapse
|
44
|
Kang JC, Valerio LG. Investigating DNA adduct formation by flavor chemicals and tobacco byproducts in electronic nicotine delivery system (ENDS) using in silico approaches. Toxicol Appl Pharmacol 2020; 398:115026. [PMID: 32353386 DOI: 10.1016/j.taap.2020.115026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 01/04/2023]
Abstract
The presence of flavors is one of the commonly cited reasons for use of e-cigarettes by youth; however, the potential harms from inhaling these chemicals and byproducts have not been extensively studied. One mechanism of interest is DNA adduct formation, which may lead to carcinogenesis. We identified two chemical classes of flavors found in tobacco products and byproducts, alkenylbenzenes and aldehydes, documented to form DNA adducts. Using in silico toxicology approaches, we identified structural analogs to these chemicals without DNA adduct information. We conducted a structural similarity analysis and also generated in silico model predictions of these chemicals for genotoxicity, mutagenicity, carcinogenicity, and skin sensitization. The empirical and in silico data were compared, and we identified strengths and limitations of these models. Good concordance (80-100%) was observed between DNA adduct formation and models predicting mammalian mutagenicity (mouse lymphoma sassy L5178Y) and skin sensitization for both chemical classes. On the other hand, different prediction profiles were observed for the two chemical classes for the modeled endpoints, unscheduled DNA synthesis and bacterial mutagenicity. These results are likely due to the different mode of action between the two chemical classes, as aldehydes are direct acting agents, while alkenylbenzenes require bioactivation to form electrophilic intermediates, which form DNA adducts. The results of this study suggest that an in silico prediction for the mouse lymphoma assay L5178Y, may serve as a surrogate endpoint to help predict DNA adduct formation for chemicals found in tobacco products such as flavors and byproducts.
Collapse
Affiliation(s)
- Jueichuan Connie Kang
- United States Food and Drug Administration, Center for Tobacco Products, Office of Science, Division of Nonclinical Science, 11785 Beltsville Drive, Calverton, MD 20705, USA; US Public Health Service Commissioned Corps, Rockville, MD, USA.
| | - Luis G Valerio
- United States Food and Drug Administration, Center for Tobacco Products, Office of Science, Division of Nonclinical Science, 11785 Beltsville Drive, Calverton, MD 20705, USA
| |
Collapse
|
45
|
Nishikawa MU, Iwaki M, Tashiro K, Kurose K. Identification of gene expression markers and development of evaluation method using cell-based and RT-PCR-based assay for skin sensitising potential of chemicals. Xenobiotica 2020; 50:1359-1369. [PMID: 32394774 DOI: 10.1080/00498254.2020.1767320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Recently, alternatives to animal testing have been used to evaluate skin sensitisers in cosmetic products. However, testing is still complicated and expensive. To develop a simpler, cost-effective and more accurate evaluation method for the skin sensitising chemicals, we employed cell-based and RT-PCR-based assay. Representative sensitiser specific gene expression in THP-1 cells was analysed by microarray. Gene ontology (GO) analysis revealed that 26 genes induced by the sensitisers were associated with immune function. First, seven of the 26 genes were chosen arbitrarily as candidate markers for our sensitisation assay. Then, THP-1 cells were exposed to 13 reference chemicals with known sensitising potential, and real-time RT-PCR assays targeting the candidate marker genes were performed. Among them, six markers were able to properly evaluate the sensitisation potential by classifying the gene induction rates with appropriate criteria. Especially, the results of the assay using TREM1 and TNFRSF12A gene markers showed 100% sensitivity and specificity. An existing test method, h-CLAT, requires a flow cytometer and is complicated to operate. In contrast, our method is relatively simpler and more cost-effective. Therefore, our method is a promising one to evaluate sensitising chemicals.
Collapse
Affiliation(s)
- Maho Ukaji Nishikawa
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Megumi Iwaki
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Kosuke Tashiro
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Kouichi Kurose
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
46
|
Kobayashi T, Maeda Y, Kondo H, Takeyoshi M. Applicability of the proposed GHS subcategorization criterion for LLNA:BrdU-ELISA (OECD TG442B) to the CBA/J strain mouse. J Appl Toxicol 2020; 40:1435-1439. [PMID: 32372462 DOI: 10.1002/jat.3996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 11/10/2022]
Abstract
The Globally Harmonized System of Classification and Labelling of Chemicals (GHS) is a hazard classification and communication system for providing information on the safe handling of chemicals worldwide. In this study, we evaluated the applicability of the newly proposed GHS subcategorization criterion for murine local lymph node assay:2-bromodeoxyuridine enzyme-linked immunosorbent assay (LLNA:BrdU-ELISA), Category 1A:EC1.6 ≤6%, Category 1B:EC1.6 >6%, to data derived from LLNA:BrdU-ELISA performed in the CBA/J strain mouse. Fifteen chemicals categorized in GHS hazard Category 1 sensitizers listed in the LLNA performance standard were tested by LLNA:BrdU-ELISA in the CBA/J strain mouse and were classified according to the new criterion. The results revealed that all of the GHS 1A or 1B category chemicals classified according to the EC3 values derived from radioisotopic LLNA (LLNA-RI) could be correctly assigned into the respective 1A and 1B categories using the newly proposed GHS subclassification criterion. In addition, analysis of the correlation between the reported EC3 values and EC1.6 values derived from the LLNA:BrdU-ELISA performed in the CBA/J strain mouse confirmed the existence of a strong correlation (r = 0.9076, P < .0001). These findings suggest that the newly proposed GHS subcategorization criterion for LLNA:BrdU-ELISA is potentially applicable for practical use in GHS subcategorization.
Collapse
Affiliation(s)
- Toshio Kobayashi
- CERI Hita, Chemicals Evaluation and Research Institute, Ishii-machi, Hita-shi, Oita, Japan.,The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi-shi, Yamaguchi, Japan
| | - Yosuke Maeda
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi-shi, Yamaguchi, Japan.,Chemicals Assessment and Research Center, Chemicals Evaluation and Research Institute, Shimotakano, Sugito-machi, Kitakatsushika-gun, Saitama, Japan
| | - Haruka Kondo
- Chemicals Assessment and Research Center, Chemicals Evaluation and Research Institute, Shimotakano, Sugito-machi, Kitakatsushika-gun, Saitama, Japan
| | - Masahiro Takeyoshi
- Chemicals Assessment and Research Center, Chemicals Evaluation and Research Institute, Shimotakano, Sugito-machi, Kitakatsushika-gun, Saitama, Japan
| |
Collapse
|
47
|
Arts J. How to assess respiratory sensitization of low molecular weight chemicals? Int J Hyg Environ Health 2020; 225:113469. [PMID: 32058937 DOI: 10.1016/j.ijheh.2020.113469] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/29/2019] [Accepted: 01/27/2020] [Indexed: 12/13/2022]
Abstract
There are no validated and regulatory accepted (animal) models to test for respiratory sensitization of low molecular weight (LMW) chemicals. Since several decades such chemicals are classified as respiratory sensitizers almost exclusively based on observations in workers. However, both respiratory allergens (in which process the immune system is involved) as well as asthmagens (no involvement of the immune system) may induce the same type of respiratory symptoms. Correct classification is very important from a health's perspective point of view. On the other hand, over-classification is not preferable in view of high costs to overdue workplace engineering controls or the chemical ultimately being banned due to Authorities' decisions. It would therefore be very beneficial if respiratory sensitizers can be correctly identified and distinguished from skin sensitizers and non-sensitizers/respiratory irritants. The purpose of this paper is to consider whether LMW chemicals can be correctly identified based on the currently available screening methods in workers, and/or via in silico, in vitro and/or in vivo testing. Collectively, based on the available information further effort is still needed to be able to correctly identify respiratory sensitizers and to distinguish these from skin sensitizers and irritants, not at least because of the far-reaching consequences once a chemical is classified as a respiratory sensitizer.
Collapse
Affiliation(s)
- Josje Arts
- Nouryon, Velperweg 76, 6824 BM Arnhem, the Netherlands.
| |
Collapse
|
48
|
Parkinson E, Aleksic M, Arthur R, Regufe Da Mota S, Cubberley R, Skipp PJ. Proteomic analysis of haptenation by skin sensitisers: Diphencyprone and ethyl acrylate. Toxicol In Vitro 2020; 62:104697. [DOI: 10.1016/j.tiv.2019.104697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/16/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023]
|
49
|
Otsubo Y, Nishijo T, Mizumachi H, Saito K, Miyazawa M, Sakaguchi H. Adjustment of a no expected sensitization induction level derived from Bayesian network integrated testing strategy for skin sensitization risk assessment. J Toxicol Sci 2020; 45:57-67. [PMID: 31932558 DOI: 10.2131/jts.45.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Skin sensitization is a key adverse effect to be addressed during hazard identification and risk assessment of chemicals, because it is the first step in the development of allergic contact dermatitis. Multiple non-animal testing strategies incorporating in vitro tests and in silico tools have achieved good predictivities when compared with murine local lymph node assay (LLNA). The binary test battery of KeratinoSensTM and h-CLAT could be used to classify non-sensitizers as the first part of bottom-up approach. However, the quantitative risk assessment for sensitizing chemicals requires a No Expected Sensitization Induction Level (NESIL), the dose not expected to induce skin sensitization in humans. We used Bayesian network integrated testing strategy (BN ITS-3) for chemical potency classification. BN ITS-3 predictions were performed without a pre-processing step (selecting data from their physic-chemical applicability domains) or post-processing step (Michael acceptor chemistry correction), neither of which necessarily improve prediction accuracy. For chemicals within newly defined applicability domain, all under-predictions fell within one potency class when compared with LLNA results, indicating no chemicals that were incorrectly classified by more than one class. Considering the potential under-prediction by one class, a worst case value to each class from BN ITS-3 was used to derive a NESIL. When in vivo and human data from suitable analogs cannot be used to estimate the uncertainty, adjusting the NESIL derived from BN ITS-3 may help perform skin sensitization risk assessment. The overall workflow for risk assessment was demonstrated by incorporating the binary test battery of KeratinoSensTM and h-CLAT.
Collapse
Affiliation(s)
- Yuki Otsubo
- Safety Science Research Laboratories, Kao Corporation
| | - Taku Nishijo
- Safety Science Research Laboratories, Kao Corporation
| | | | | | | | | |
Collapse
|
50
|
Cho SA, Choi M, Park SR, An S, Park JH. Application of Spectro-DPRA, KeratinoSens™ and h-CLAT to estimation of the skin sensitization potential of cosmetics ingredients. J Appl Toxicol 2019; 40:300-312. [PMID: 31680285 DOI: 10.1002/jat.3904] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 08/17/2019] [Accepted: 08/26/2019] [Indexed: 12/21/2022]
Abstract
Ethical issues in animal toxicity testing have led to the search for alternative methods to determine the skin sensitization potential of cosmetic products. The emergence of ethical testing issues has led to the development of many alternative methods that can reliably estimate skin sensitization potentials. However, a single alternative method may not be able to achieve high predictivity due to the complexity of the skin sensitization mechanism. Therefore, several prediction assays, including both in chemico and in vitro test methods, were investigated and integrated based on the skin sensitization adverse outcome pathway. In this study, we evaluated three different integrated approaches to predict a human skin sensitization hazard using data from in vitro assays (KeratinoSens™ and human cell line activation test [h-CLAT]), and a newly developed in chemico assay (spectrophotometric direct peptide reactivity assay [Spectro-DPRA]). When the results of the in chemico and in vitro assays were combined, the predictivity of human data increased compared with that of a single assay. The highest predictivity was obtained for the approach in which sensitization potential was determined by Spectro-DPRA followed by final determination using the result of KeratinoSens™ and h-CLAT assays (96.3% sensitivity, 87.1% specificity, 86.7% positive predictive value, 96.4% negative predictive value and 91.4% accuracy compared with human data). While further optimization is needed, we believe this integrated approach may provide useful predictive data when determining the human skin sensitization potential of chemicals.
Collapse
Affiliation(s)
- Sun-A Cho
- Safety & Microbiology Research Lab, AmorePacific Corporation R&D Unit, Yongin-si, Republic of Korea.,Department of Laboratory Animal Medicine, Research Institute for Veterinary Science, BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Minseok Choi
- Safety & Microbiology Research Lab, AmorePacific Corporation R&D Unit, Yongin-si, Republic of Korea
| | - Sae-Ra Park
- Safety & Microbiology Research Lab, AmorePacific Corporation R&D Unit, Yongin-si, Republic of Korea
| | - Susun An
- Safety & Microbiology Research Lab, AmorePacific Corporation R&D Unit, Yongin-si, Republic of Korea
| | - Jae-Hak Park
- Department of Laboratory Animal Medicine, Research Institute for Veterinary Science, BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|