1
|
Thomson P, Fragkas N, Kafu LM, Aithal GP, Lucena MI, Terracciano L, Meng X, Pirmohamed M, Brees D, Kullak‐Ublick GA, Odermatt A, Hammond T, Kammüller M, Naisbitt DJ. Patients with naproxen-induced liver injury display T-cell memory responses toward an oxidative (S)-O-desmethyl naproxen metabolite but not the acyl glucuronide. Allergy 2024; 79:200-214. [PMID: 37515456 PMCID: PMC10952231 DOI: 10.1111/all.15830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/30/2023] [Accepted: 06/13/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Exposure to nonsteroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen (IBU) and naproxen (NAP) is associated with idiosyncratic drug-induced liver injury (DILI). Carboxylate bioactivation into reactive metabolites (e.g., acyl glucuronides, AG) and resulting T-cell activation is hypothesized as causal for this adverse event. However, conclusive evidence supporting this is lacking. METHODS In this work, we identify CD4+ and CD8+ T-cell hepatic infiltration in a biopsy from an IBU DILI patient. Lymphocyte transformation test and IFN-γ ELIspot, conducted on peripheral blood mononuclear cells (PBMCs) of patients with NAP-DILI, were used to explore drug-specific T-cell activation. T-cell clones (TCC) were generated and tested for drug specificity, phenotype/function, and pathways of T-cell activation. Cells were exposed to NAP, its oxidative metabolite 6-O-desmethyl NAP (DM-NAP), its AG or synthesized NAP-AG human-serum albumin adducts (NAP-AG adduct). RESULTS CD4+ and CD8+ T-cells from patients expressing a range of different Vβ receptors were stimulated to proliferate and secrete IFN-γ and IL-22 when exposed to DM-NAP, but not NAP, NAP-AG or the NAP-AG adduct. Activation of the CD4+ TCC was HLA-DQ-restricted and dependent on antigen presenting cells (APC); most TCC were activated with DM-NAP-pulsed APC, while fixation of APC blocked the T-cell response. Cross-reactivity was not observed with structurally-related drugs. CONCLUSION Our results confirm hepatic T-cell infiltrations in NSAID-induced DILI, and show a T-cell memory response toward DM-NAP indicating an immune-mediated basis for the adverse event. Whilst bioactivation at the carboxylate group is widely hypothesized to be pathogenic for NSAID associated DILI, we found no evidence of this with NAP.
Collapse
Affiliation(s)
- Paul Thomson
- Molecular& Clinical PharmacologyUniversity of LiverpoolLiverpoolUK
| | - Nik Fragkas
- Novartis Institutes for BioMedical ResearchBaselSwitzerland
| | - Laila M. Kafu
- Molecular& Clinical PharmacologyUniversity of LiverpoolLiverpoolUK
| | - Guruprasad P. Aithal
- NIHR Nottingham Biomedical Research Centre and Nottingham Digestive Diseases Centre, Translational Medical Sciences, West Block, Queen's Medical CentreUniversity of NottinghamNottinghamUK
| | - M. Isabel Lucena
- Unidad de Gestión Clínica de Aparato Digestivo y Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga‐IBIMA, Hospital Universitario Virgen de la VictoriaUniversidad de Málaga, CIBERehdMalagaSpain
| | | | - Xiaoli Meng
- Molecular& Clinical PharmacologyUniversity of LiverpoolLiverpoolUK
| | - Munir Pirmohamed
- Molecular& Clinical PharmacologyUniversity of LiverpoolLiverpoolUK
| | | | - Gerd A. Kullak‐Ublick
- University Hospital ZurichUniversity of ZurichZurichSwitzerland
- Novartis Global Drug DevelopmentBaselSwitzerland
| | - Alex Odermatt
- Division of Molecular & Systems Toxicology, Department of Pharmaceutical SciencesUniversity of BaselBaselSwitzerland
| | - Thomas Hammond
- Division of Molecular & Systems Toxicology, Department of Pharmaceutical SciencesUniversity of BaselBaselSwitzerland
- Oncology Safety, Clinical Pharmacology and Safety Sciences R&DCambridgeUK
| | | | - Dean J. Naisbitt
- Molecular& Clinical PharmacologyUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
2
|
Thomson P, Hammond S, Naisbitt DJ. Pathology of drug hypersensitivity reactions and mechanisms of immune tolerance. Clin Exp Allergy 2022; 52:1379-1390. [PMID: 36177544 DOI: 10.1111/cea.14235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/08/2022] [Accepted: 09/25/2022] [Indexed: 01/26/2023]
Abstract
Immune-mediated type IV adverse drug reactions are idiosyncratic in nature, generally not related to the primary or secondary pharmacology of the drug. Due to their complex nature and rarity, these iatrogenic reactions are seldom predicted or encountered during preclinical/early clinical development stages, and often precipitate upon exposure to wider populations (i.e. phase III onwards). They confer a burden on the healthcare sector in both a clinical and financial sense presenting a severe impediment to the drug discovery and development process. Research over the past 50 years has improved our understanding of these reactions markedly as both in vitro and in vivo studies have placed the role of the immune system, in particular; drug-responsive T cells, firmly in the spotlight as the mediators of these reactions. Indeed, the role of different populations of T cells in adverse events and the interaction of drug molecules with HLA proteins expressed on the surface of antigen-presenting cells is of considerable interest. Herein, this review examines the pathways of immune-mediated adverse events including the various T cell subtypes implicated and the mechanisms of T cell activation. Additionally, we address the enigma of immunological tolerance and explore the role tolerance plays in determination of susceptibility to such adverse events even in individuals carrying immunogenic liabilities.
Collapse
Affiliation(s)
- Paul Thomson
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Sean Hammond
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK.,ApconiX, Alderley Park, Alderley Edge, UK
| | - Dean J Naisbitt
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| |
Collapse
|
3
|
Chen Y, Guan S, Guan Y, Tang S, Zhou Y, Wang X, Bi H, Huang M. Novel clinical biomarkers for drug-induced liver injury. Drug Metab Dispos 2021; 50:671-684. [PMID: 34903588 DOI: 10.1124/dmd.121.000732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022] Open
Abstract
Drug-induced liver injury (DILI) remains a critical clinical issue and has been a treatment challenge nowadays as it was in the past. However, the traditional biomarkers or indicators are insufficient to predict the risks and outcome of patients with DILI due to its poor specificity and sensitivity. Recently, the development of high-throughput technologies, especially omics and multi-omics has sparked growing interests in identification of novel clinical DILI biomarkers, many of which also provide a mechanistic insight. Accordingly, in this mini-review, we summarize recent advances in novel clinical biomarkers for DILI prediction, diagnosis and prognosis and highlight the limitations or challenges involved in biomarker discovery or their clinical translation. Although huge work has been done, most reported biomarkers lack comprehensive information and more specific DILI biomarkers are still needed to complement the traditional biomarkers such as ALT or AST in clinical decision making. Significance Statement The current review outlines an overview of novel clinical biomarkers for DILI identified in clinical retrospective or prospective clinical analysis. Many of these biomarkers provides a mechanistic insight and are promising to complement the traditional DILI biomarkers. This work also highlights the limitations or challenges involved in biomarker discovery or their clinical translation.
Collapse
Affiliation(s)
- Youhao Chen
- School of Pharmaceutical Sciences, Institute of Clinical Pharmacology, Sun Yat-Sen University, China
| | - Shaoxing Guan
- School of Pharmaceutical Sciences, Institute of Clinical Pharmacology, Sun Yat-Sen University, China
| | | | - Siyuan Tang
- School of Pharmaceutical Sciences, Institute of Clinical Pharmacology, Sun Yat-Sen University, China
| | - Yanying Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, China
| | - Xueding Wang
- School of Pharmaceutical Sciences, Institute of Clinical Pharmacology, Sun Yat-Sen University, China
| | - Huichang Bi
- School of Pharmaceutical Sciences, Sun Yat-sen University, China
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, China
| |
Collapse
|
4
|
Jaruthamsophon K, Thomson PJ, Sukasem C, Naisbitt DJ, Pirmohamed M. HLA Allele-Restricted Immune-Mediated Adverse Drug Reactions: Framework for Genetic Prediction. Annu Rev Pharmacol Toxicol 2021; 62:509-529. [PMID: 34516290 DOI: 10.1146/annurev-pharmtox-052120-014115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human leukocyte antigen (HLA) is a hallmark genetic marker for the prediction of certain immune-mediated adverse drug reactions (ADRs). Numerous basic and clinical research studies have provided the evidence base to push forward the clinical implementation of HLA testing for the prevention of such ADRs in susceptible patients. This review explores current translational progress in using HLA as a key susceptibility factor for immune ADRs and highlights gaps in our knowledge. Furthermore, relevant findings of HLA-mediated drug-specific T cell activation are covered, focusing on cellular approaches to link genetic associations to drug-HLA binding as a complementary approach to understand disease pathogenesis. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Kanoot Jaruthamsophon
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, United Kingdom; .,Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Paul J Thomson
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, United Kingdom;
| | - Chonlaphat Sukasem
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, United Kingdom; .,Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine, and Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Dean J Naisbitt
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, United Kingdom;
| | - Munir Pirmohamed
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, United Kingdom;
| |
Collapse
|
5
|
Copaescu A, Choshi P, Pedretti S, Mouhtouris E, Peter J, Trubiano JA. Dose Dependent Antimicrobial Cellular Cytotoxicity-Implications for ex vivo Diagnostics. Front Pharmacol 2021; 12:640012. [PMID: 34447304 PMCID: PMC8383281 DOI: 10.3389/fphar.2021.640012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction:Ex vivo and in vitro diagnostics, such as interferon-γ (IFN-γ) release enzyme linked ImmunoSpot (ELISpot) and flow cytometry, are increasingly employed in the research and diagnostic setting for severe T-cell mediated hypersensitivity. Despite an increasing use of IFN-γ release ELISpot for drug causality assessment and utilization of a range of antimicrobial concentrations ex vivo, data regarding antimicrobial-associated cellular cytotoxicity and implications for assay performance remain scarcely described in the literature. Using the measurement of lactate dehydrogenase (LDH) and the 7-AAD cell viability staining, we aimed via an exploratory study, to determine the maximal antimicrobial concentrations required to preserve cell viability for commonly implicated antimicrobials in severe T-cell mediated hypersensitivity. Method: After an 18-h incubation of patient peripheral blood monocytes (PBMCs) and antimicrobials at varying drug concentrations, the cell cytotoxicity was measured in two ways. A colorimetric based assay that detects LDH activity and by flow cytometry using the 7-AAD cell viability staining. We used the PBMCs collected from three healthy control participants with no known history of adverse drug reaction and two patients with a rifampicin-associated drug reaction with eosinophilia and systemic symptoms (DRESS), confirmed on IFN-γ ELISpot assay. The PBMCs were stimulated for the investigated drugs at the previously published drug maximum concentration (Cmax), and concentrations 10- and 100-fold above. Results: In a human immunodeficiency virus (HIV) negative and a positive rifampicin-associated DRESS with positive ex vivo IFN-γ ELISpot assay, use of 10- and 100-fold Cmax drug concentrations decreased spot forming units/million cells by 32–100%, and this corresponded to cell cytotoxicity of more than 40 and 20% using an LDH assay and 7-AAD cell viability staining, respectively. The other antimicrobials (ceftriaxone, flucloxacillin, piperacillin/tazobactam, and isoniazid) tested in healthy controls showed similar dose-dependent increased cytotoxicity using the LDH assay, but cytotoxicity remained lower than 40% for all Cmax and 10-fold Cmax drug concentrations except flucloxacillin. All 100-fold Cmax concentrations resulted in cell death >40% (median 57%), except for isoniazid. 7-AAD cell viability staining also confirmed an increase in lymphocyte death in PBMCs incubated with 10-fold and 100-fold above Cmax for ceftriaxone, and flucloxacillin; however, piperacillin/tazobactam and isoniazid indicated no differences in percentages of viable lymphocytes across concentrations tested. Conclusion: The LDH cytotoxicity and 7-AAD cell viability staining techniques both demonstrate increased cell death corresponding to a loss in ELISpot sensitivity, with use of higher antimicrobial drug concentrations for ex vivo diagnostic IFN-γ ELISpot assays. For all the antimicrobials evaluated, the use of Cmax and 10-fold Cmax concentrations impacts cell viability and potentially affects ELISpot performance. These findings inform future approaches for ex vivo diagnostics such as IFN-γ release ELISpot.
Collapse
Affiliation(s)
- Ana Copaescu
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia
| | - Phuti Choshi
- Allergy and Immunology Unit, University of Cape Town Lung Institute, Cape Town, South Africa
| | - Sarah Pedretti
- Allergy and Immunology Unit, University of Cape Town Lung Institute, Cape Town, South Africa
| | - Effie Mouhtouris
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia
| | - Jonathan Peter
- Allergy and Immunology Unit, University of Cape Town Lung Institute, Cape Town, South Africa.,Division of Allergy and Clinical Immunology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Jason A Trubiano
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia.,Department of Oncology, Sir Peter MacCallum Cancer Centre, The University of Melbourne, Parkville, VIC, Australia.,Department of Medicine (Austin Health), The University of Melbourne, Heidelberg, VIC, Australia.,The National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Thomson PJ, Kafu L, Meng X, Snoeys J, De Bondt A, De Maeyer D, Wils H, Leclercq L, Vinken P, Naisbitt DJ. Drug-specific T-cell responses in patients with liver injury following treatment with the BACE inhibitor atabecestat. Allergy 2021; 76:1825-1835. [PMID: 33150583 DOI: 10.1111/all.14652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/01/2020] [Accepted: 10/16/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Atabecestat is an orally administered BACE inhibitor developed to treat Alzheimer's disease. Elevations in hepatic enzymes were detected in a number of in trial patients, which resulted in termination of the drug development programme. Immunohistochemical characterization of liver tissue from an index case of atabecestat-mediated liver injury revealed an infiltration of T-lymphocytes in areas of hepatocellular damage. This coupled with the fact that liver injury had a delayed onset suggests that the adaptive immune system may be involved in the pathogenesis. The aim of this study was to generate and characterize atabecestat(metabolite)-responsive T-cell clones from patients with liver injury. METHODS Peripheral blood mononuclear cells were cultured with atabecestat and its metabolites (diaminothiazine [DIAT], N-acetyl DIAT & epoxide) and cloning was attempted in a number of patients. Atabecestat(metabolite)-responsive clones were analysed in terms of T-cell phenotype, function, pathways of T-cell activation and cross-reactivity with structurally related compounds. RESULTS CD4+ T-cell clones activated with the DIAT metabolite were detected in 5 out of 8 patients (up to 4.5% cloning efficiency). Lower numbers of CD4+ and CD8+ clones displayed reactivity against atabecestat. Clones proliferated and secreted IFN-γ, IL-13 and cytolytic molecules following atabecestat or DIAT stimulation. Certain atabecestat and DIAT-responsive clones cross-reacted with N-acetyl DIAT; however, no cross-reactivity was observed between atabecestat and DIAT. CD4+ clones were activated through a direct, reversible compound-HLA class II interaction with no requirement for protein processing. CONCLUSION The detection of atabecestat metabolite-responsive T-cell clones activated via a pharmacological interactions pathway in patients with liver injury is indicative of an immune-based mechanism for the observed hepatic enzyme elevations.
Collapse
Affiliation(s)
- Paul J. Thomson
- MRC Centre for Drug Safety Science Department of Molecular and Clinical Pharmacology University of Liverpool Liverpool UK
| | - Laila Kafu
- MRC Centre for Drug Safety Science Department of Molecular and Clinical Pharmacology University of Liverpool Liverpool UK
| | - Xiaoli Meng
- MRC Centre for Drug Safety Science Department of Molecular and Clinical Pharmacology University of Liverpool Liverpool UK
| | - Jan Snoeys
- Drug Metabolism and Pharmacokinetics Janssen R&D Beerse Belgium
| | - An De Bondt
- Discovery Sciences Janssen R&D Beerse Belgium
| | | | - Hans Wils
- Discovery Sciences Janssen R&D Beerse Belgium
| | | | | | - Dean J. Naisbitt
- MRC Centre for Drug Safety Science Department of Molecular and Clinical Pharmacology University of Liverpool Liverpool UK
| |
Collapse
|
7
|
Delabeling Delayed Drug Hypersensitivity: How Far Can You Safely Go? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 8:2878-2895.e6. [PMID: 33039012 DOI: 10.1016/j.jaip.2020.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 12/17/2022]
Abstract
Delayed immune-mediated adverse drug reactions (IM-ADRs) are defined as reactions occurring more than 6 hours after dosing. They include heterogeneous clinical phenotypes that are typically T-cell-mediated reactions with distinct mechanisms across a wide spectrum of severity from benign exanthems through to life-threatening cutaneous or organ-specific diseases. For mild reactions such as benign exanthem, considerations for delabeling are similar to immediate reactions and may include a graded or single-dose drug challenge with or without preceding skin or patch testing. Evaluation of challenging cases such as the patient who is on multiple drugs at the time a severe delayed IM-ADR occurs should prioritize clinical ascertainment of the most likely phenotype and implicated drug(s). Although not widely available and validated, procedures such as patch testing, delayed intradermal skin testing, and laboratory-based functional drug assays or genetic (human leukocyte antigen) testing may provide valuable information to further help risk stratify patients and identify the likely implicated and/or cross-reactive drug(s). The decision to use a drug challenge as a diagnostic or delabeling tool in a patient with a severe delayed IM-ADR should weigh the risk-benefit ratio, balancing the severity and priority for the treatment of the underlying, and the availability of alternative efficacious and safe treatments.
Collapse
|
8
|
Porebski G, Piotrowicz-Wojcik K, Spiewak R. ELISpot assay as a diagnostic tool in drug hypersensitivity reactions. J Immunol Methods 2021; 495:113062. [PMID: 33940020 DOI: 10.1016/j.jim.2021.113062] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/17/2022]
Abstract
In patients with drug hypersensitivity reactions, confirmation of causality frequently facilitates decision on a continuation or withdrawal of a given treatment. Unfortunately, identification of the culprit drug often proves difficult. In vivo methods possess well-known disadvantages like low sensitivity of skin tests or the risk of relapse during drug provocation tests. Therefore, laboratory assays are of great interest as they may improve causal diagnosis without putting patients at risk. In this article, the mechanistic principles and methodological issues of the enzyme-linked immunospot (ELISpot) assay were recapped the context of drug hypersensitivity reactions. A review of ELISpot application in causal diagnosis of drug hypersensitivity was based on literature search. The main findings are: (i) ELISpot assay has a good performance in the detection of drug-specific response. (ii) ELISpot results seem to be not substantially impacted by the type of drug or phenotype of the reaction. (iii) Testing within 30 days since the episode of drug hypersensitivity reaction shows a better performance than in later recovery phase. (iv) Data from pediatric population are too scarce to draw any conclusions. (v) Differences in laboratory protocols and in criteria used in the assessment of ELISpot plates along with the issue of the technical feasibility and reproducibility may limit the use of this assay in the routine diagnostic of drug hypersensitivity reactions.
Collapse
Affiliation(s)
- Grzegorz Porebski
- Department of Clinical and Environmental Allergology, Jagiellonian University Medical College, Krakow, Poland.
| | - Katarzyna Piotrowicz-Wojcik
- Department of Clinical and Environmental Allergology, Jagiellonian University Medical College, Krakow, Poland
| | - Radoslaw Spiewak
- Department of Experimental Dermatology and Cosmetology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
9
|
Jee A, Sernoskie SC, Uetrecht J. Idiosyncratic Drug-Induced Liver Injury: Mechanistic and Clinical Challenges. Int J Mol Sci 2021; 22:ijms22062954. [PMID: 33799477 PMCID: PMC7998339 DOI: 10.3390/ijms22062954] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 02/08/2023] Open
Abstract
Idiosyncratic drug-induced liver injury (IDILI) remains a significant problem for patients and drug development. The idiosyncratic nature of IDILI makes mechanistic studies difficult, and little is known of its pathogenesis for certain. Circumstantial evidence suggests that most, but not all, IDILI is caused by reactive metabolites of drugs that are bioactivated by cytochromes P450 and other enzymes in the liver. Additionally, there is overwhelming evidence that most IDILI is mediated by the adaptive immune system; one example being the association of IDILI caused by specific drugs with specific human leukocyte antigen (HLA) haplotypes, and this may in part explain the idiosyncratic nature of these reactions. The T cell receptor repertoire likely also contributes to the idiosyncratic nature. Although most of the liver injury is likely mediated by the adaptive immune system, specifically cytotoxic CD8+ T cells, adaptive immune activation first requires an innate immune response to activate antigen presenting cells and produce cytokines required for T cell proliferation. This innate response is likely caused by either a reactive metabolite or some form of cell stress that is clinically silent but not idiosyncratic. If this is true it would make it possible to study the early steps in the immune response that in some patients can lead to IDILI. Other hypotheses have been proposed, such as mitochondrial injury, inhibition of the bile salt export pump, unfolded protein response, and oxidative stress although, in most cases, it is likely that they are also involved in the initiation of an immune response rather than representing a completely separate mechanism. Using the clinical manifestations of liver injury from a number of examples of IDILI-associated drugs, this review aims to summarize and illustrate these mechanistic hypotheses.
Collapse
Affiliation(s)
- Alison Jee
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | | | - Jack Uetrecht
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada;
- Correspondence:
| |
Collapse
|
10
|
Rao T, Liu YT, Zeng XC, Li CP, Ou-Yang DS. The hepatotoxicity of Polygonum multiflorum: The emerging role of the immune-mediated liver injury. Acta Pharmacol Sin 2021; 42:27-35. [PMID: 32123300 PMCID: PMC7921551 DOI: 10.1038/s41401-020-0360-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023] Open
Abstract
Herbal and dietary supplements (HDS)-induced liver injury has been a great concern all over the world. Polygonum multiflorum Thunb., a well-known Chinese herbal medicine, is recently drawn increasing attention because of its hepatotoxicity. According to the clinical and experimental studies, P. multiflorum-induced liver injury (PM-DILI) is considered to be immune-mediated idiosyncratic liver injury, but the role of immune response and the underlying mechanisms are not completely elucidated. Previous studies focused on the direct toxicity of PM-DILI by using animal models with intrinsic drug-induced liver injury (DILI). However, most epidemiological and clinical evidence demonstrate that PM-DILI is immune-mediated idiosyncratic liver injury. The aim of this review is to assess current epidemiological, clinical and experimental evidence about the possible role of innate and adaptive immunity in the idiosyncratic hepatotoxicity of P. multiflorum. The potential effects of factors associated with immune tolerance, including immune checkpoint molecules and regulatory immune cells on the individual's susceptibility to PM-DILI are also discussed. We conclude by giving our hypothesis of possible immune mechanisms of PM-DILI and providing suggestions for future studies on valuable biomarkers identification and proper immune models establishment.
Collapse
Affiliation(s)
- Tai Rao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, 410008, China.
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, China.
| | - Ya-Ting Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, 410008, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, China
| | - Xiang-Chang Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, 410008, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, China
| | - Chao-Peng Li
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, 410205, China
| | - Dong-Sheng Ou-Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, 410008, China.
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, China.
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, 410205, China.
| |
Collapse
|
11
|
Roth RA, Ganey PE. What have we learned from animal models of idiosyncratic, drug-induced liver injury? Expert Opin Drug Metab Toxicol 2020; 16:475-491. [PMID: 32324077 DOI: 10.1080/17425255.2020.1760246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Idiosyncratic, drug-induced liver injury (IDILI) continues to plague patients and restrict the use of drugs that are pharmacologically effective. Mechanisms of IDILI are incompletely understood, and a better understanding would reduce speculation and could help to identify safer drug candidates preclinically. Animal models have the potential to enhance knowledge of mechanisms of IDILI. AREAS COVERED Numerous hypotheses have emerged to explain IDILI pathogenesis, many of which center on the roles of the innate and/or adaptive immune systems. Animal models based on these hypotheses are reviewed in the context of their contributions to understanding of IDILI and their limitations. EXPERT OPINION Animal models of IDILI based on an activated adaptive immune system have to date failed to reproduce major liver injury that is of most concern clinically. The only models that have so far resulted in pronounced liver injury are based on the multiple determinant hypothesis or the inflammatory stress hypothesis. The liver pathogenesis in IDILI animal models involves various leukocytes and immune mediators such as cytokines. Insights from animal models are changing the way we view IDILI pathogenesis and are leading to better approaches to preclinical prediction of IDILI potential of new drug candidates.
Collapse
Affiliation(s)
- Robert A Roth
- Department of Pharmacology and Toxicology and Institute for Integrative Toxicology, Michigan State University , East Lansing, MI, USA
| | - Patricia E Ganey
- Department of Pharmacology and Toxicology and Institute for Integrative Toxicology, Michigan State University , East Lansing, MI, USA
| |
Collapse
|
12
|
Naisbitt DJ, Olsson‐Brown A, Gibson A, Meng X, Ogese MO, Tailor A, Thomson P. Immune dysregulation increases the incidence of delayed-type drug hypersensitivity reactions. Allergy 2020; 75:781-797. [PMID: 31758810 DOI: 10.1111/all.14127] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/05/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022]
Abstract
Delayed-type, T cell-mediated, drug hypersensitivity reactions are a serious unwanted manifestation of drug exposure that develops in a small percentage of the human population. Drugs and drug metabolites are known to interact directly and indirectly (through irreversible protein binding and processing to the derived adducts) with HLA proteins that present the drug-peptide complex to T cells. Multiple forms of drug hypersensitivity are strongly linked to expression of a single HLA allele, and there is increasing evidence that drugs and peptides interact selectively with the protein encoded by the HLA allele. Despite this, many individuals expressing HLA risk alleles do not develop hypersensitivity when exposed to culprit drugs suggesting a nonlinear, multifactorial relationship in which HLA risk alleles are one factor. This has prompted a search for additional susceptibility factors. Herein, we argue that immune regulatory pathways are one key determinant of susceptibility. As expression and activity of these pathways are influenced by disease, environmental and patient factors, it is currently impossible to predict whether drug exposure will result in a health benefit, hypersensitivity or both. Thus, a concerted effort is required to investigate how immune dysregulation influences susceptibility towards drug hypersensitivity.
Collapse
Affiliation(s)
- Dean J. Naisbitt
- MRC Centre for Drug Safety Science Department of Clinical and Molecular Pharmacology The University of Liverpool Liverpool UK
| | - Anna Olsson‐Brown
- MRC Centre for Drug Safety Science Department of Clinical and Molecular Pharmacology The University of Liverpool Liverpool UK
| | - Andrew Gibson
- MRC Centre for Drug Safety Science Department of Clinical and Molecular Pharmacology The University of Liverpool Liverpool UK
| | - Xiaoli Meng
- MRC Centre for Drug Safety Science Department of Clinical and Molecular Pharmacology The University of Liverpool Liverpool UK
| | - Monday O. Ogese
- MRC Centre for Drug Safety Science Department of Clinical and Molecular Pharmacology The University of Liverpool Liverpool UK
| | - Arun Tailor
- MRC Centre for Drug Safety Science Department of Clinical and Molecular Pharmacology The University of Liverpool Liverpool UK
| | - Paul Thomson
- MRC Centre for Drug Safety Science Department of Clinical and Molecular Pharmacology The University of Liverpool Liverpool UK
| |
Collapse
|
13
|
Alhilali KA, Al-Attar Z, Gibson A, Tailor A, Meng X, Monshouwer M, Snoeys J, Park BK, Naisbitt DJ. Characterization of Healthy Donor-Derived T-Cell Responses Specific to Telaprevir Diastereomers. Toxicol Sci 2020; 168:597-609. [PMID: 30649540 DOI: 10.1093/toxsci/kfz007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Telaprevir, a protease inhibitor, was used alongside PEGylated interferon-α and ribavirin to treat hepatitis C viral infections. The triple regimen proved successful; however, the appearance of severe skin reactions alongside competition from newer drugs restricted its use. Skin reactions presented with a delayed onset indicative of a T-cell mediated reaction. Thus, the aim of this study was to investigate whether telaprevir and/or its diastereomer, which is generated in humans, activates T-cells. Telaprevir in its S-configured therapeutic form and the R-diastereomer were cultured directly with peripheral blood mononuclear cells from healthy donors prior to the generation of T-cell clones by serial dilution. Drug-specific CD4+ and CD8+ T-cell clones responsive to telaprevir and the R-diastereomer were generated and characterized in terms of phenotype and function. The clones proliferated with telaprevir and diastereomer concentrations of 5-20 µM and secreted IFN-γ, IL-13, and granzyme B. In contrast, the telaprevir M11 metabolite did not stimulate T-cells. The CD8+ T-cell response was MHC I-restricted and dependent on the presence of soluble drug. Flow cytometric analysis showed that clones expressed chemokine receptors CCR4 (skin homing) and CXCR3 (migration to peripheral tissue) and 1 of 3 distinct TCR Vβs; TCR Vβ 2, 5.1, or 22. These data show the propensity of both R- and S-forms of telaprevir to generate skin-homing cytotoxic T-cells that may induce the adverse reactions observed in human patients.
Collapse
Affiliation(s)
- Khetam Ali Alhilali
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool L69 3GE, UK.,Department of Pharmacology, Al-Kindy College of Medicine, University of Baghdad, Al-Nahda District, Baghdad, Iraq
| | - Zaid Al-Attar
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool L69 3GE, UK.,Department of Pharmacology, Al-Kindy College of Medicine, University of Baghdad, Al-Nahda District, Baghdad, Iraq
| | - Andrew Gibson
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool L69 3GE, UK
| | - Arun Tailor
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool L69 3GE, UK
| | - Xiaoli Meng
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool L69 3GE, UK
| | | | - Jan Snoeys
- Janssen Research and Development, Beerse 2340, Belgium
| | - B Kevin Park
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool L69 3GE, UK
| | - Dean J Naisbitt
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool L69 3GE, UK
| |
Collapse
|
14
|
Cao B, Li Q, Huang Z, Huang X, Zhu Y, Xiao K, Huang F, Zhong L. Influence of isoniazid on T lymphocytes, cytokines, and macrophages in rats. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902019000418547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Bianchuan Cao
- The Affiliated Hospital of Southwest Medical University, China
| | - Qiuju Li
- The Affiliated Hospital of Southwest Medical University, China
| | - Zhe Huang
- The Affiliated Hospital of Southwest Medical University, China
| | - Xiufang Huang
- The Affiliated Hospital of Southwest Medical University, China
| | - Yihong Zhu
- The Affiliated Hospital of Southwest Medical University, China
| | - Ke Xiao
- The Affiliated Hospital of Southwest Medical University, China
| | - Fuli Huang
- The Affiliated Hospital of Southwest Medical University, China
| | - Li Zhong
- The Affiliated Hospital of Southwest Medical University, China
| |
Collapse
|
15
|
Managing the challenge of drug-induced liver injury: a roadmap for the development and deployment of preclinical predictive models. Nat Rev Drug Discov 2019; 19:131-148. [DOI: 10.1038/s41573-019-0048-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2019] [Indexed: 12/13/2022]
|
16
|
Hammond S, Thomson PJ, Ogese MO, Naisbitt DJ. T-Cell Activation by Low Molecular Weight Drugs and Factors That Influence Susceptibility to Drug Hypersensitivity. Chem Res Toxicol 2019; 33:77-94. [PMID: 31687800 DOI: 10.1021/acs.chemrestox.9b00327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Drug hypersensitivity reactions adversely affect treatment outcome, increase the length of patients' hospitalization, and limit the prescription options available to physicians. In addition, late stage drug attrition and the withdrawal of licensed drugs cost the pharmaceutical industry billions of dollars. This significantly increases the overall cost of drug development and by extension the price of licensed drugs. Drug hypersensitivity reactions are characterized by a delayed onset, and reactions tend to be more serious upon re-exposure. The role of drug-specific T-cells in the pathogenesis of drug hypersensitivity reactions and definition of the nature of the binding interaction of drugs with HLA and T-cell receptors continues to be the focus of intensive research, primarily because susceptibility is associated with expression of one or a small number of HLA alleles. This review critically examines the mechanisms of T-cell activation by drugs. Specific examples of drugs that activate T-cells via the hapten, the pharmacological interaction with immune receptors and the altered self-peptide repertoire pathways, are discussed. Furthermore, the impacts of drug metabolism, drug-protein adduct formation, and immune regulation on the development of drug antigen-responsive T-cells are highlighted. The knowledge gained from understanding the pathways of T-cell activation and susceptibility factors for drug hypersensitivity will provide the building blocks for the development of predictive in vitro assays that will prevent or help to minimize the incidence of these reactions in clinic.
Collapse
Affiliation(s)
- Sean Hammond
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GE , U.K
| | - Paul J Thomson
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GE , U.K
| | - Monday O Ogese
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GE , U.K
| | - Dean J Naisbitt
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GE , U.K
| |
Collapse
|
17
|
Ali SE, Waddington JC, Park BK, Meng X. Definition of the Chemical and Immunological Signals Involved in Drug-Induced Liver Injury. Chem Res Toxicol 2019; 33:61-76. [PMID: 31682113 DOI: 10.1021/acs.chemrestox.9b00275] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Idiosyncratic drug-induced liver injury (iDILI), which is rare and often recognized only late in drug development, poses a major public health concern and impediment to drug development due to its high rate of morbidity and mortality. The mechanisms of DILI are not completely understood; both non-immune- and immune-mediated mechanisms have been proposed. Non-immune-mediated mechanisms including direct damage to hepatocytes, mitochondrial toxicity, interference with transporters, and alteration of bile ducts are well-known to be associated with drugs such as acetaminophen and diclofenac; whereas immune-mediated mechanisms involving activation of both adaptive and innate immune cells and the interactions of these cells with parenchymal cells have been proposed. The chemical signals involved in activation of both innate and adaptive immune responses are discussed with respect to recent scientific advances. In addition, the immunological signals including cytokine and chemokines that are involved in promoting liver injury are also reviewed. Finally, we discuss how liver tolerance and regeneration can have profound impact on the pathogenesis of iDILI. Continuous research in developing in vitro systems incorporating immune cells with liver cells and animal models with impaired liver tolerance will provide an opportunity for improved prediction and prevention of immune-mediated iDILI.
Collapse
Affiliation(s)
- Serat-E Ali
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GE , United Kingdom
| | - James C Waddington
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GE , United Kingdom
| | - B Kevin Park
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GE , United Kingdom
| | - Xiaoli Meng
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GE , United Kingdom
| |
Collapse
|
18
|
Ogese MO, Jenkins RE, Adair K, Tailor A, Meng X, Faulkner L, Enyindah BO, Schofield A, Diaz‐Nieto R, Ressel L, Eagle GL, Kitteringham NR, Goldring CE, Park BK, Naisbitt DJ, Betts C. Exosomal Transport of Hepatocyte-Derived Drug-Modified Proteins to the Immune System. Hepatology 2019; 70:1732-1749. [PMID: 31070244 PMCID: PMC6899733 DOI: 10.1002/hep.30701] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 04/22/2019] [Indexed: 12/31/2022]
Abstract
Idiosyncratic drug-induced liver injury (DILI) is a rare, often difficult-to-predict adverse reaction with complex pathomechanisms. However, it is now evident that certain forms of DILI are immune-mediated and may involve the activation of drug-specific T cells. Exosomes are cell-derived vesicles that carry RNA, lipids, and protein cargo from their cell of origin to distant cells, and they may play a role in immune activation. Herein, primary human hepatocytes were treated with drugs associated with a high incidence of DILI (flucloxacillin, amoxicillin, isoniazid, and nitroso-sulfamethoxazole) to characterize the proteins packaged within exosomes that are subsequently transported to dendritic cells for processing. Exosomes measured between 50 and 100 nm and expressed enriched CD63. Liquid chromatography-tandem mass spectrometry (LC/MS-MS) identified 2,109 proteins, with 608 proteins being quantified across all exosome samples. Data are available through ProteomeXchange with identifier PXD010760. Analysis of gene ontologies revealed that exosomes mirrored whole human liver tissue in terms of the families of proteins present, regardless of drug treatment. However, exosomes from nitroso-sulfamethoxazole-treated hepatocytes selectively packaged a specific subset of proteins. LC/MS-MS also revealed the presence of hepatocyte-derived exosomal proteins covalently modified with amoxicillin, flucloxacillin, and nitroso-sulfamethoxazole. Uptake of exosomes by monocyte-derived dendritic cells occurred silently, mainly through phagocytosis, and was inhibited by latrunculin A. An amoxicillin-modified 9-mer peptide derived from the exosomal transcription factor protein SRY (sex determining region Y)-box 30 activated naïve T cells from human leukocyte antigen A*02:01-positive human donors. Conclusion: This study shows that exosomes have the potential to transmit drug-specific hepatocyte-derived signals to the immune system and provide a pathway for the induction of drug hapten-specific T-cell responses.
Collapse
Affiliation(s)
- Monday O. Ogese
- New Modality Safety, Clinical Pharmacology and Safety Sciences, R&D BiopharmaceuticalsAstraZenecaCambridgeUnited Kingdom,MRC Centre for Drug Safety Science, Department of Molecular and Clinical PharmacologyUniversity of LiverpoolLiverpoolUnited Kingdom
| | - Rosalind E. Jenkins
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical PharmacologyUniversity of LiverpoolLiverpoolUnited Kingdom
| | - Kareena Adair
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical PharmacologyUniversity of LiverpoolLiverpoolUnited Kingdom
| | - Arun Tailor
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical PharmacologyUniversity of LiverpoolLiverpoolUnited Kingdom
| | - Xiaoli Meng
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical PharmacologyUniversity of LiverpoolLiverpoolUnited Kingdom
| | - Lee Faulkner
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical PharmacologyUniversity of LiverpoolLiverpoolUnited Kingdom
| | - Bright O. Enyindah
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical PharmacologyUniversity of LiverpoolLiverpoolUnited Kingdom
| | - Amy Schofield
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical PharmacologyUniversity of LiverpoolLiverpoolUnited Kingdom
| | - Rafael Diaz‐Nieto
- North Western Hepatobiliary UnitAintree University Hospital NHS Foundation TrustLiverpoolUnited Kingdom
| | - Lorenzo Ressel
- Department of Veterinary Pathology and Public Health, Institute of Veterinary ScienceUniversity of Liverpool, Leahurst CampusNestonUnited Kingdom
| | - Gina L. Eagle
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical PharmacologyUniversity of LiverpoolLiverpoolUnited Kingdom
| | - Neil R. Kitteringham
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical PharmacologyUniversity of LiverpoolLiverpoolUnited Kingdom
| | - Chris E. Goldring
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical PharmacologyUniversity of LiverpoolLiverpoolUnited Kingdom
| | - B. Kevin Park
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical PharmacologyUniversity of LiverpoolLiverpoolUnited Kingdom
| | - Dean J. Naisbitt
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical PharmacologyUniversity of LiverpoolLiverpoolUnited Kingdom
| | - Catherine Betts
- New Modality Safety, Clinical Pharmacology and Safety Sciences, R&D BiopharmaceuticalsAstraZenecaCambridgeUnited Kingdom
| |
Collapse
|
19
|
Devarbhavi H, Raj S. Drug-induced liver injury with skin reactions: Drugs and host risk factors, clinical phenotypes and prognosis. Liver Int 2019; 39:802-811. [PMID: 30515930 DOI: 10.1111/liv.14004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/30/2018] [Accepted: 11/07/2018] [Indexed: 02/13/2023]
Abstract
While dermatologic manifestations of adverse drug reactions are frequent, drug-induced liver injury is rare. Numerous drugs are implicated in either Drug-Induced Liver Injury or Drug-Induced Skin Injury. However, concomitant Drug-Induced Liver Injury and Drug-Induced Skin Injury are uncommon, not well characterized and appear to be caused by a limited number of drugs. These are often associated with immuno-allergic or hypersensitivity features such as fever, skin rash, blisters or peeling of skin, eosinophilia, lymphadenopathy and mucositis. Liver injury can range from asymptomatic elevation of liver biochemical tests to severe hepatitis and acute liver failure needing liver transplantation. Severe cutaneous adverse reaction, particularly drug reaction with eosinophilia and systemic symptoms is commonly associated with internal organ involvement, the liver being the most frequently involved in approximately 90% of the cases. In Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis, abnormalities in liver biochemistry tests are common but severe liver disease is rare. There is a strong association of Human Leukocyte Antigen genotype with both drug reaction with eosinophilia and systemic symptoms and Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis. It is likely that the delayed immune-mediated reaction triggering skin reaction is also responsible for hepatitis. Drug-specific lymphocytes are found in the organs involved and also in circulating blood, which along with the cytokines and chemokines play a role in pathogenesis. Anti-epileptic drugs, allopurinol, sulfonamides, antibiotics and nevirapine are the top five causes of concomitant liver and skin injury. This review will focus on drug and host factors causing concomitant Drug-Induced Skin Injury and Drug-Induced Liver Injury and discuss the characteristics of liver involvement in patients with severe cutaneous adverse reaction.
Collapse
Affiliation(s)
- Harshad Devarbhavi
- Department of Gastroenterology and Hepatology, St. John's Medical College Hospital, Bangalore, India
| | - Sujata Raj
- Department of Dermatology, St. John's Medical College Hospital, Bangalore, India
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Tuberculosis (TB) is the commonest infectious cause of death globally. Adverse reactions to first-line tuberculosis antibiotics are common and have a major impact on the outcomes of patients as second-line antibiotics are less effective and more toxic. The present review addresses the most recent literature regarding epidemiology, investigating reactions, and reintroducing treatment in patients who have had their treatment interrupted. RECENT FINDINGS Studies have demonstrated that up to 60% of patients experience adverse reactions to TB treatment; around a third of these are idiosyncratic and may relate to immune sensitization. There is an increased risk in patients with HIV. For patients with severe cutaneous reactions patch testing has an important role; however, systemic reactions to patch testing are common in patients with HIV. In-vitro testing remains limited to specialist centers but studies have identified drug-specific lymphocyte responses in patients with cutaneous and liver reactions. Desensitization of patients with severe cutaneous reactions have been demonstrated to be possible, albeit at high risk. SUMMARY Management of these patients remains suboptimal. Better identification of predisposing factors, such as HLA alleles, are needed to identify patients at risk. Improved in-vitro diagnostics will reduce the need to re-expose the patient to the drug and optimized desensitization regimens will improve patient safety when drugs have to be re-introduced.
Collapse
|
21
|
Church RJ, Watkins PB. Serum biomarkers of drug-induced liver injury: Current status and future directions. J Dig Dis 2019; 20:2-10. [PMID: 30378260 DOI: 10.1111/1751-2980.12684] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022]
Abstract
Drug-induced liver injury (DILI), which is caused by drugs and herbal or dietary supplements, remains a serious concern for drug developers, regulators, and clinicians; however, serum biomarkers utilized to detect and monitor DILI have not changed in decades and have limitations. Data-driven mathematical modeling that incorporates the release and clearance kinetics of traditional biomarkers has improved their use in the prediction of liver safety liabilities for new drug candidates. Several newer biomarkers have shown promise in terms of liver specificity, predicting the outcome of DILI events, and providing insight into its underlying mechanisms. For these new biomarkers to be qualified for regulatory acceptance, it will require their assessment in large numbers of patients who are receiving a wide range of compounds and who develop a broad spectrum of liver injuries. The ongoing and evolving international biomarker consortia should play a major role in this effort, which is likely to transform the assessment of liver safety in clinical trials and in the clinic.
Collapse
Affiliation(s)
- Rachel J Church
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina, USA.,Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Paul B Watkins
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina, USA.,Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| |
Collapse
|
22
|
Usui T, Tailor A, Faulkner L, Meng X, Farrell J, Daly AK, Dear GJ, Park BK, Naisbitt DJ. HLA-A*33:03-Restricted Activation of Ticlopidine-Specific T-Cells from Human Donors. Chem Res Toxicol 2018; 31:1022-1024. [PMID: 30179004 DOI: 10.1021/acs.chemrestox.8b00163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The HLA class I allele HLA-A*33:03 is a risk factor for ticlopidine-induced liver injury. Herein, we show HLA class I-restricted ticlopidine-specific CD8+ T-cell activation in healthy donors expressing HLA-A*33:03. Cloned CD8+ T-cells proliferated and secreted IFN-γ in the presence of ticlopidine and autologous antigen presenting cells. A reduction of the T-cell response after blocking with HLA-class I and HLA-A*33 antibodies indicates that the interaction between drugs and the HLA allele detected in genetic association studies may be important for T-cell activation.
Collapse
Affiliation(s)
- Toru Usui
- MRC Center for Drug Safety Science, Department of Molecular and Clinical Pharmacology , University of Liverpool , Sherrington Building, Ashton Street , Liverpool , L69 3GE , England
| | - Arun Tailor
- MRC Center for Drug Safety Science, Department of Molecular and Clinical Pharmacology , University of Liverpool , Sherrington Building, Ashton Street , Liverpool , L69 3GE , England
| | - Lee Faulkner
- MRC Center for Drug Safety Science, Department of Molecular and Clinical Pharmacology , University of Liverpool , Sherrington Building, Ashton Street , Liverpool , L69 3GE , England
| | - Xiaoli Meng
- MRC Center for Drug Safety Science, Department of Molecular and Clinical Pharmacology , University of Liverpool , Sherrington Building, Ashton Street , Liverpool , L69 3GE , England
| | - John Farrell
- MRC Center for Drug Safety Science, Department of Molecular and Clinical Pharmacology , University of Liverpool , Sherrington Building, Ashton Street , Liverpool , L69 3GE , England
| | - Ann K Daly
- Institute of Cellular Medicine, Medical School , Newcastle University , Newcastle NE2 4HH , United Kingdom
| | - Gordon J Dear
- GlaxoSmithKline , Park Road , Ware , Hertfordshire SG12 7BB , United Kingdom
| | - B Kevin Park
- MRC Center for Drug Safety Science, Department of Molecular and Clinical Pharmacology , University of Liverpool , Sherrington Building, Ashton Street , Liverpool , L69 3GE , England
| | - Dean J Naisbitt
- MRC Center for Drug Safety Science, Department of Molecular and Clinical Pharmacology , University of Liverpool , Sherrington Building, Ashton Street , Liverpool , L69 3GE , England
| |
Collapse
|
23
|
Waddington JC, Meng X, Naisbitt DJ, Park BK. Immune drug-induced liver disease and drugs. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2017.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Abstract
Purpose of this Review In order to combat the development of drug resistance, the clinical treatment of tuberculosis requires the combined use of several anti-tuberculosis (anti-TB) drugs, including isoniazid and rifampicin. Combinational treatment approaches are suggested by the World Health Organization (WHO) and are widely accepted throughout the world. Unfortunately, a major side effect of the treatment is the development of anti-tuberculosis drug-induced liver injury (AT-DILI). Many factors contribute to isoniazid- and rifampicin-mediated AT-DILI and genetic variations are among the most common factors. The purpose of this review is to provide information on genetic variations associated with isoniazid- and rifampicin-mediated AT-DILI. Recent Findings The genetic variations associated with AT-DILI have been identified in the genomic regions within or near genes encoding proteins in the following pathways: drug metabolizing enzymes (NAT2, CYP2E1, and GSTs), accumulation of bile acids, lipids, and heme metabolites (CYP7A1, BSEP, UGTs, and PXR), immune adaptation (HLAs and TNF-α), and oxidant challenge (TXNRD1, SOD1, BACH1, and MAFK). Summary The information summarized in this review considers the genetic bases of risk factors contributing to AT-DILI and provides information that may help for future studies. Some of the implicated genetic variations can be used in the design of genetic tests and serve as biomarkers for the prediction of isoniazid- and rifampicin-mediated AT-DILI risk in personalized medicine.
Collapse
|
25
|
Osanlou O, Pirmohamed M, Daly AK. Pharmacogenetics of Adverse Drug Reactions. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2018; 83:155-190. [PMID: 29801574 DOI: 10.1016/bs.apha.2018.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Adverse drug reactions (ADRs) are an important cause of morbidity and mortality. Genetic factors predispose to many ADRs, affecting susceptibility to both type A and type B reactions. The overall contribution of genetics will vary according to drug and ADR, and should be considered when attempting to predict and prevent ADRs. Genetic risk factors are considered in detail for a number of type A ADRs, especially those relating to warfarin and thiopurines, and type B ADRs affecting skin, the liver, and the heart. As the availability of whole genome sequencing increases, it is likely that prospective genotype for particular ADRs prior to drug prescription will become more common in the future. Current examples of genetic testing to prevent ADRs which have already been implemented and future prospects for developments in the field are discussed in detail.
Collapse
Affiliation(s)
- Orod Osanlou
- Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool, United Kingdom
| | - Munir Pirmohamed
- Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool, United Kingdom
| | - Ann K Daly
- Institute of Cellular Medicine, Newcastle University, Medical School, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
26
|
Usui T, Whitaker P, Meng X, Watson J, Antoine DJ, French NS, Park BK, Naisbitt DJ. Detection of Drug-Responsive T-Lymphocytes in a Case of Fatal Antituberculosis Drug-Related Liver Injury. Chem Res Toxicol 2016; 29:1793-1795. [DOI: 10.1021/acs.chemrestox.6b00393] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Toru Usui
- Department
of Molecular and Clinical Pharmacology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, England
| | - Paul Whitaker
- Department
of Respiratory Medicine, St James’s Hospital, Beckett Street, Leeds LS9 7TF, England
| | - Xiaoli Meng
- Department
of Molecular and Clinical Pharmacology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, England
| | - John Watson
- Department
of Respiratory Medicine, St James’s Hospital, Beckett Street, Leeds LS9 7TF, England
| | - Daniel J. Antoine
- Department
of Molecular and Clinical Pharmacology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, England
| | - Neil S. French
- Department
of Molecular and Clinical Pharmacology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, England
| | - B. Kevin Park
- Department
of Molecular and Clinical Pharmacology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, England
| | - Dean J. Naisbitt
- Department
of Molecular and Clinical Pharmacology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, England
| |
Collapse
|