1
|
Abstract
The quantification of water flow through the stem is vital for date palm (Phoenix dactylifera L.) to promote a good water stress management. The thermal dissipation probe (TDP) method developed by Granier is widely used to evaluate transpiration of forest trees; however, there are contradictory reports regarding its reliability. Considerable errors in estimated sap flux density, which might be due to a lack ofspecies-specific calibrations. The TDP method uses a mathematical model that is based on an empirical equation to estimate sap flux density, which is claimed to be applicable to all tree species, independently of wood structure and anatomy. At the laboratory, we compared the rate of water uptake by cut stems with sap flux estimates derived from the TDP method to assess the validity of the method.Our calibration results were considerably different compared to the Granier’s original equation. Moreover, sap flux density was overestimated by 18.2±0.5% when the original calibration parameters of Granierare employed. However,using new calibration parameters improved the accuracy of sap flow measurements. Our results indicated that it is not appropriate to use a general equation for different species. Therefore, previous estimations of date palm’s water requirement through thermal dissipation probes should be revised.
Collapse
|
2
|
Peters RL, Fonti P, Frank DC, Poyatos R, Pappas C, Kahmen A, Carraro V, Prendin AL, Schneider L, Baltzer JL, Baron-Gafford GA, Dietrich L, Heinrich I, Minor RL, Sonnentag O, Matheny AM, Wightman MG, Steppe K. Quantification of uncertainties in conifer sap flow measured with the thermal dissipation method. THE NEW PHYTOLOGIST 2018; 219:1283-1299. [PMID: 29862531 DOI: 10.1111/nph.15241] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/24/2018] [Indexed: 06/08/2023]
Abstract
Trees play a key role in the global hydrological cycle and measurements performed with the thermal dissipation method (TDM) have been crucial in providing whole-tree water-use estimates. Yet, different data processing to calculate whole-tree water use encapsulates uncertainties that have not been systematically assessed. We quantified uncertainties in conifer sap flux density (Fd ) and stand water use caused by commonly applied methods for deriving zero-flow conditions, dampening and sensor calibration. Their contribution has been assessed using a stem segment calibration experiment and 4 yr of TDM measurements in Picea abies and Larix decidua growing in contrasting environments. Uncertainties were then projected on TDM data from different conifers across the northern hemisphere. Commonly applied methods mostly underestimated absolute Fd . Lacking a site- and species-specific calibrations reduced our stand water-use measurements by 37% and induced uncertainty in northern hemisphere Fd . Additionally, although the interdaily variability was maintained, disregarding dampening and/or applying zero-flow conditions that ignored night-time water use reduced the correlation between environment and Fd . The presented ensemble of calibration curves and proposed dampening correction, together with the systematic quantification of data-processing uncertainties, provide crucial steps in improving whole-tree water-use estimates across spatial and temporal scales.
Collapse
Affiliation(s)
- Richard L Peters
- Landscape Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
- Department of Environmental Sciences - Botany, Basel University, Schönbeinstrasse 6, CH-4056, Basel, Switzerland
| | - Patrick Fonti
- Landscape Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - David C Frank
- Landscape Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
- Laboratory of Tree-Ring Research, 1215 E. Lowell Street, Tucson, AZ, 8572, USA
- Oeschger Centre for Climate Change Research, Falkenplatz 16, CH-3012, Bern, Switzerland
| | - Rafael Poyatos
- CREAF, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Faculty of Bioscience Engineering, Department of Plants and Crops, Laboratory of Plant Ecology, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| | - Christoforos Pappas
- Département de géographie and Centre d'études nordiques, Université de Montréal, Montréal, QC, H2V 2B8, Canada
| | - Ansgar Kahmen
- Department of Environmental Sciences - Botany, Basel University, Schönbeinstrasse 6, CH-4056, Basel, Switzerland
| | - Vinicio Carraro
- Department TeSAF Territorio e Sistemi Agro-Forestali, Università degli Studi di Padova, Viale dell'Università 16, I-35020, Legnaro, PD, Italy
| | - Angela Luisa Prendin
- Department TeSAF Territorio e Sistemi Agro-Forestali, Università degli Studi di Padova, Viale dell'Università 16, I-35020, Legnaro, PD, Italy
- Department of Bioscience, Ecoinformatic & Biodiversity, Aarhus University, Ny Munkegade 116, Building 1540, DK-8000, Aarhus C, Denmark
| | - Loïc Schneider
- Landscape Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Jennifer L Baltzer
- Biology Department, Wilfrid Laurier University, 75 University Ave. W, Waterloo, ON, N2L 3C5, Canada
| | - Greg A Baron-Gafford
- School of Geography and Development, University of Arizona, 1064 E Lowell St, Tucson, AZ, 85719, USA
| | - Lars Dietrich
- Department of Environmental Sciences - Botany, Basel University, Schönbeinstrasse 6, CH-4056, Basel, Switzerland
| | - Ingo Heinrich
- Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Climate Dynamics and Landscape Evolution, Telegrafenberg, 14473, Potsdam, Germany
| | - Rebecca L Minor
- School of Geography and Development, University of Arizona, 1064 E Lowell St, Tucson, AZ, 85719, USA
| | - Oliver Sonnentag
- Département de géographie and Centre d'études nordiques, Université de Montréal, Montréal, QC, H2V 2B8, Canada
| | - Ashley M Matheny
- Department of Geological Sciences, Jackson School of Geosciences, 2305 Speedway Stop, C1160, Austin, TX, USA
| | - Maxwell G Wightman
- College of Forestry, Oregon State University, 1500 SW Jefferson St, Corvallis, OR, 97331, USA
| | - Kathy Steppe
- Faculty of Bioscience Engineering, Department of Plants and Crops, Laboratory of Plant Ecology, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| |
Collapse
|
3
|
Tor-Ngern P, Oren R, Oishi AC, Uebelherr JM, Palmroth S, Tarvainen L, Ottosson-Löfvenius M, Linder S, Domec JC, Näsholm T. Ecophysiological variation of transpiration of pine forests: synthesis of new and published results. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2017; 27:118-133. [PMID: 28052502 DOI: 10.1002/eap.1423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 07/06/2016] [Accepted: 08/01/2016] [Indexed: 06/06/2023]
Abstract
Canopy transpiration (EC ) is a large fraction of evapotranspiration, integrating physical and biological processes within the energy, water, and carbon cycles of forests. Quantifying EC is of both scientific and practical importance, providing information relevant to questions ranging from energy partitioning to ecosystem services, such as primary productivity and water yield. We estimated EC of four pine stands differing in age and growing on sandy soils. The stands consisted of two wide-ranging conifer species: Pinus taeda and Pinus sylvestris, in temperate and boreal zones, respectively. Combining results from these and published studies on all soil types, we derived an approach to estimate daily EC of pine forests, representing a wide range of conditions from 35° S to 64° N latitude. During the growing season and under moist soils, maximum daily EC (ECm ) at day-length normalized vapor pressure deficit of 1 kPa (ECm-ref ) increased by 0.55 ± 0.02 (mean ± SE) mm/d for each unit increase of leaf area index (L) up to L = ~5, showing no sign of saturation within this range of quickly rising mutual shading. The initial rise of ECm with atmospheric demand was linearly related to ECm-ref . Both relations were unaffected by soil type. Consistent with theoretical prediction, daily EC was sensitive to decreasing soil moisture at an earlier point of relative extractable water in loamy than sandy soils. Our finding facilitates the estimation of daily EC of wide-ranging pine forests using remotely sensed L and meteorological data. We advocate an assembly of worldwide sap flux database for further evaluation of this approach.
Collapse
Affiliation(s)
- Pantana Tor-Ngern
- Nicholas School of the Environment and Earth Sciences, Duke University, Durham, North Carolina, 27708, USA
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, SE-901 83, Sweden
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ram Oren
- Nicholas School of the Environment and Earth Sciences, Duke University, Durham, North Carolina, 27708, USA
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, SE-901 83, Sweden
- Hydrospheric-Atmospheric Research Center, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Andrew C Oishi
- USDA Forest Service Coweeta Hydrologic Laboratory, 3160 Coweeta Lab Road, Otto, North Carolina, 28763, USA
| | - Joshua M Uebelherr
- School of Public Affairs, Arizona State University, Phoenix, Arizona, 85004, USA
| | - Sari Palmroth
- Nicholas School of the Environment and Earth Sciences, Duke University, Durham, North Carolina, 27708, USA
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, SE-901 83, Sweden
| | - Lasse Tarvainen
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, SE-901 83, Sweden
| | - Mikaell Ottosson-Löfvenius
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, SE-901 83, Sweden
| | - Sune Linder
- Southern Swedish Forest Research Centre, SLU, P.O. Box 49, Alnarp, SE-230 53, Sweden
| | - Jean-Christophe Domec
- Nicholas School of the Environment and Earth Sciences, Duke University, Durham, North Carolina, 27708, USA
- UMR 1391 ISPA INRA, Bordeaux Sciences AGRO, 1 Cours du général de Gaulle, Gradignan Cedex, 33175, France
| | - Torgny Näsholm
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, SE-901 83, Sweden
| |
Collapse
|
4
|
Comparing ∆T max Determination Approaches for Granier-Based Sapflow Estimations. SENSORS 2016; 16:s16122042. [PMID: 27916949 PMCID: PMC5191023 DOI: 10.3390/s16122042] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/22/2016] [Accepted: 11/28/2016] [Indexed: 11/19/2022]
Abstract
Granier-type thermal dissipation probes are common instruments for quantifying tree water use in forest hydrological studies. Estimating sapflow using Granier-type sapflow sensors requires determining the maximum temperature gradient (∆Tmax) between the heated probe and the reference probe below. ∆Tmax represents a state of zero sap flux, which was originally assumed to occur each night leading to a ∆Tmax determination on a daily basis. However, researchers have proven that, under certain conditions, sapflow may continue throughout the night. Therefore alternative approaches to determining ∆Tmax have been developed. Multiple ∆Tmax approaches are now in use; however, sapflow estimates remain imprecise because the empirical equation that transfers the raw temperature signal (∆T) to sap flux density (Fd) is strongly sensitive to ∆Tmax. In this study, we analyze the effects of different ∆Tmax determination approaches on sub-daily, daily and (intra-)seasonal Fd estimations. On this basis, we quantify the uncertainty of sapflow calculations, which is related to the raw signal processing. We show that the ∆Tmax determination procedure has a major influence on absolute ∆Tmax values and the respective sap flux density computations. Consequently, the choice of the ∆Tmax determination approach may be a significant source of uncertainty in sapflow estimations.
Collapse
|
6
|
López-Bernal Á, Alcántara E, Testi L, Villalobos FJ. Spatial sap flow and xylem anatomical characteristics in olive trees under different irrigation regimes. TREE PHYSIOLOGY 2010; 30:1536-44. [PMID: 21081652 DOI: 10.1093/treephys/tpq095] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The compensation heat pulse (CHP) method is widely used to estimate sap flow and transpiration in conducting organs of woody plants. Previous studies have reported a natural azimuthal variability in sap flow, which could have practical implications in locating the CHP probes and integrating their output. Sap flow of several olive trees (Olea europaea L. cv. 'Arbequina') previously grown under different irrigation treatments were monitored by the CHP method, and their xylem anatomical characteristics were analyzed from wood samples taken at the same location in which the probes were installed. A significant azimuthal variability in the sap flow was found in a well-irrigated olive tree monitored by eight CHP probes. The azimuthal variability was well related to crown architecture, but poorly to azimuthal differences in the xylem anatomical characteristics. Well-irrigated and deficit-irrigated olive trees showed similar xylem anatomical characteristics, but they differed in xylem growth and in the ratio of nocturnal-to-diurnal sap flow (N/D index). The results of this work indicate that transpiration cannot be accurately estimated by the CHP method in olive trees if a small number of sensors are employed and that the N/D index could be used as a sensitive water status indicator.
Collapse
Affiliation(s)
- Álvaro López-Bernal
- Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo, s/n, 14004 Córdoba, Spain.
| | | | | | | |
Collapse
|