1
|
Chari NR, Muratore TJ, Frey SD, Winters CL, Martinez G, Taylor BN. Long-Term Soil Warming Drives Different Belowground Responses in Arbuscular Mycorrhizal and Ectomycorrhizal Trees. GLOBAL CHANGE BIOLOGY 2024; 30:e17550. [PMID: 39563404 DOI: 10.1111/gcb.17550] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 11/21/2024]
Abstract
The ability of trees to acquire soil nutrients under future climate conditions will influence forest composition and function in a warmer world. Rarely are multiple belowground carbon allocation pathways measured simultaneously in large global change experiments, restricting our understanding of how trees may shift their allocation of resources to different nutrient acquisition mechanisms under future climates. Leveraging a 20-year soil warming experiment, we show that ectomycorrhizal (EM) trees reduce mycorrhizal colonization and root exudation while increasing fine root biomass, while arbuscular mycorrhizal (AM) trees largely maintained their belowground carbon allocation patterns in warmer soils. We suggest that AM trees may be better adapted to thrive under global warming due to higher rates of nitrogen mineralization in warmer soils and the ability of their mycorrhizal symbiont to acquire mineralized inorganic nutrients, whereas EM trees may need to alter their belowground carbon allocation patterns to remain competitive as global temperatures rise.
Collapse
Affiliation(s)
- Nikhil R Chari
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Thomas J Muratore
- Department of Natural Resources and the Environment, Center for Soil Biogeochemistry and Microbial Ecology, University of New Hampshire, Durham, New Hampshire, USA
| | - Serita D Frey
- Department of Natural Resources and the Environment, Center for Soil Biogeochemistry and Microbial Ecology, University of New Hampshire, Durham, New Hampshire, USA
| | - Cristina L Winters
- Department of Forest Engineering, Resources & Management, College of Forestry, Oregon State University, Corvallis, Oregon, USA
- Harvard Forest, Harvard University, Petersham, Massachusetts, USA
| | | | - Benton N Taylor
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Zhang C, Cai Y, Zhao Q, He T, Mao T, Zhang T, Zhang L, Su W. The quantification of root exudation by an in-situ method based on root morphology over three incubation periods. FRONTIERS IN PLANT SCIENCE 2024; 15:1423703. [PMID: 39220007 PMCID: PMC11361950 DOI: 10.3389/fpls.2024.1423703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Investigating the quantity and spatiotemporal dynamics of metabolite release from plant roots is essential if we are to understand the ecological significance of root exudates in the rhizosphere; however, this is difficult to quantify. In the present study, we quantified in situ root exudation rates during three incubation periods (0-24, 24-48, and 48-72 h) and fine roots within four diameter ranges (<0.8, 0.8-1.0, 1.0-1.2, and 1.2-2.0 mm), and also measured nine morphological traits in the fine roots of Pinus massoniana. Higher root carbon (C) exudation rates were detected during the 0-24 h period. During the 0-24 h and 24-48 h periods, nitrogen (N) uptake rates were higher than N exudation rates, while during the 48-72 h period, N exudation rates exceeded uptake rates. As C exudation increased during 0-48h incubation period, the uptake of N tended to level out. We concluded that the 24-48 h incubation period was the most suitable for capturing root exudates from P. massoniana. The exudation of C from the roots was positively associated with root mass, length, surface area, volume, the number of root tips, and the root tissue density, when incubated for 0-24 h and 24-48 h. Furthermore, length-specific C exudation rates, along with N exudation and uptake rates, all increased as the diameter of the fine roots increased. The release of root exudates could be efficiently predicted by the fine root morphological traits, although the accuracy of prediction depended on the incubation period. Higher values for fine root morphological traits were generally indicative of higher nutrient requirements and tissue investment, as well as higher C exudation rates.
Collapse
Affiliation(s)
- Chengfu Zhang
- Guizhou Institute of Mountain Resources, Guizhou Academy of Sciences, Guiyang, Guizhou, China
| | - Yinmei Cai
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Qingxia Zhao
- Institute of New Rural Development, Guizhou University, Guiyang, Guizhou, China
| | - Tengbing He
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Tianxu Mao
- College of Forestry, Guizhou University, Guiyang, Guizhou, China
| | - Tao Zhang
- Institute of New Rural Development, Guizhou University, Guiyang, Guizhou, China
| | - Limin Zhang
- Guizhou Academy of Testing and Analysis, Guizhou Academy of Sciences, Guiyang, Guizhou, China
| | - Weici Su
- Guizhou Institute of Mountain Resources, Guizhou Academy of Sciences, Guiyang, Guizhou, China
| |
Collapse
|
3
|
Gao Y, Wang H, Yang F, Dai X, Meng S, Hu M, Kou L, Fu X. Relationships between root exudation and root morphological and architectural traits vary with growing season. TREE PHYSIOLOGY 2024; 44:tpad118. [PMID: 37738586 PMCID: PMC10849755 DOI: 10.1093/treephys/tpad118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Plants allocate a substantial amount of C belowground for root exudates and for the construction and adjustment of root morphological and architectural traits. What relationships exist between root exudates and other root traits and these relationships change with growing season, however, remain unclear. We quantified the root exudation rate and root morphological traits, including total root length (RL), total root surface area (RS), root diameter (RD), specific root length (SRL), specific root area (SRA) and root tissue density (RTD), and architectural traits, such as branching intensity (BI), and investigated their associations during the rapidly growing season (April and August) and the slowly growing season (December) of three common native tree species, Liquidambar formosana, Michelia maudiae and Schima superba, in subtropical China. We found that the linkages of RD, SRL, SRA, RTD and BI did not change with the growing season, reflecting their highly conservative relationships. The root exudation rate varied significantly with growing season (P < 0.05) and produced various associations with other root traits at different growing seasons. During the rapidly growing season (i.e., April), the exudation rate was the highest and was positively correlated with RL. The exudation rate was the lowest during the slowly growing season (i.e., December) and was negatively associated with RL, RS and RTD. Our findings demonstrate the seasonality of the linkages of root exudation rate with other root traits, which highlights the highly plastic and complex associations of belowground root traits. These findings help to deepen our understanding of plant nutrient acquisition strategies.
Collapse
Affiliation(s)
- Yuqiu Gao
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
- School of Water Conservancy and Environment, University of Jinan, No. 336 West Nanxinzhuang Road, Shizhong District, Jinan 250022, China
| | - Huimin Wang
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, No. 80 Zhongguancun East Road, Haidian District, Beijing 100190, China
| | - Fengting Yang
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, No. 80 Zhongguancun East Road, Haidian District, Beijing 100190, China
| | - Xiaoqin Dai
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, No. 80 Zhongguancun East Road, Haidian District, Beijing 100190, China
| | - Shengwang Meng
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, No. 80 Zhongguancun East Road, Haidian District, Beijing 100190, China
| | - Mingyuan Hu
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, No. 80 Zhongguancun East Road, Haidian District, Beijing 100190, China
| | - Liang Kou
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, No. 80 Zhongguancun East Road, Haidian District, Beijing 100190, China
| | - Xiaoli Fu
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, No. 80 Zhongguancun East Road, Haidian District, Beijing 100190, China
| |
Collapse
|
4
|
Yang H, Zhang P, Wang Q, Deng S, He X, Zhang X, Wang R, Feng Q, Yin H. Temperature rather than N availability determines root exudation of alpine coniferous forests on the eastern Tibetan Plateau along elevation gradients. TREE PHYSIOLOGY 2023; 43:1479-1492. [PMID: 37209171 DOI: 10.1093/treephys/tpad067] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Root exudation fulfills fundamental roles in regulating carbon (C)-nutrient cycling in forest ecosystems, yet the main ecological drivers of root exudation and underlying mechanisms in forests under natural gradients remain poorly understood. Here, we investigated the intraspecific variation of root exudation rates in two alpine coniferous forests (Abies faxoniana Rehder et Wilson and Abies georgei Orr) along two elevation gradients on the eastern Tibetan Plateau. Meanwhile, the fine root traits and associated climate and soil parameters were assessed to examine the effects of elevation-dependent changes in climatic and soil nutrient conditions on root exudation. Results showed that root exudation rates decreased with increasing elevation and were positively correlated with mean air temperature. However, the relationships of root exudation with soil moisture and soil nitrogen availability were not significant. The structural equation model (SEM) further revealed that air temperature affected root exudation both directly and indirectly through the effects on fine root morphology and biomass, implying that the adaption of root C allocation and fine root morphological traits to low temperatures primarily resulted in declined root exudation at higher elevations. These results highlight the perceived importance of temperature in determining the elevational variation of root exudation in alpine coniferous forests, which has foreseeably great implications for the exudate-mediated ecosystem C and nutrient processes in the face of drastic warming on the eastern Tibetan Plateau.
Collapse
Affiliation(s)
- Han Yang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4 South Renmin Road, Wuhou District, Chengdu, Sichuan 610041, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Peipei Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4 South Renmin Road, Wuhou District, Chengdu, Sichuan 610041, China
| | - Qitong Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4 South Renmin Road, Wuhou District, Chengdu, Sichuan 610041, China
| | - Shaojun Deng
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4 South Renmin Road, Wuhou District, Chengdu, Sichuan 610041, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Xi He
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4 South Renmin Road, Wuhou District, Chengdu, Sichuan 610041, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Xinjun Zhang
- Institute of Tibet Plateau Ecology & Key Laboratory of Forest Ecology in Tibet Plateau, Tibet Agriculture & Animal Husbandry University, No. 8 Xueyuan Road, Bayi District, Nyingchi, Tibet 860000, China
| | - Ruihong Wang
- Institute of Tibet Plateau Ecology & Key Laboratory of Forest Ecology in Tibet Plateau, Tibet Agriculture & Animal Husbandry University, No. 8 Xueyuan Road, Bayi District, Nyingchi, Tibet 860000, China
| | - Qiuhong Feng
- Sichuan Wolong Forest Ecosystem Research Station, Sichuan Academy of Forestry, No. 18 Xinghui West Road, Jinniu District, Chengdu, Sichuan 610081, China
| | - Huajun Yin
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4 South Renmin Road, Wuhou District, Chengdu, Sichuan 610041, China
| |
Collapse
|
5
|
Jiang Z, Fu Y, Zhou L, He Y, Zhou G, Dietrich P, Long J, Wang X, Jia S, Ji Y, Jia Z, Song B, Liu R, Zhou X. Plant growth strategy determines the magnitude and direction of drought-induced changes in root exudates in subtropical forests. GLOBAL CHANGE BIOLOGY 2023; 29:3476-3488. [PMID: 36931867 DOI: 10.1111/gcb.16685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 05/16/2023]
Abstract
Root exudates are an important pathway for plant-microbial interactions and are highly sensitive to climate change. However, how extreme drought affects root exudates and the main components, as well as species-specific differences in response magnitude and direction, are poorly understood. In this study, root exudation rates of total carbon (C) and its components (e.g., sugar, organic acid, and amino acid) were measured under the control and extreme drought treatments (i.e., 70% throughfall reduction) by in situ collection of four tree species with different growth rates in a subtropical forest. We also quantified soil properties, root morphological traits, and mycorrhizal infection rates to examine the driving factors underlying variations in root exudation. Our results showed that extreme drought significantly decreased root exudation rates of total C, sugar, and amino acid by 17.8%, 30.8%, and 35.0%, respectively, but increased root exudation rate of organic acid by 38.6%, which were largely associated with drought-induced changes in tree growth rates, root morphological traits, and mycorrhizal infection rates. Specifically, trees with relatively high growth rates were more responsive to drought for root exudation rates compared with those with relatively low growth rates, which were closely related to root morphological traits and mycorrhizal infection rates. These findings highlight the importance of plant growth strategy in mediating drought-induced changes in root exudation rates. The coordinations among root exudation rates, root morphological traits, and mycorrhizal symbioses in response to drought could be incorporated into land surface models to improve the prediction of climate change impacts on rhizosphere C dynamics in forest ecosystems.
Collapse
Affiliation(s)
- Zheng Jiang
- Center for Global Change and Ecological Forecasting, Tiantong National Field Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yuling Fu
- Center for Global Change and Ecological Forecasting, Tiantong National Field Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Lingyan Zhou
- Center for Global Change and Ecological Forecasting, Tiantong National Field Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yanghui He
- Northeast Asia Ecosystem Carbon Sink Research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Guiyao Zhou
- Center for Global Change and Ecological Forecasting, Tiantong National Field Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Peter Dietrich
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Jilan Long
- Center for Global Change and Ecological Forecasting, Tiantong National Field Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Xinxin Wang
- Center for Global Change and Ecological Forecasting, Tiantong National Field Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Shuxian Jia
- Center for Global Change and Ecological Forecasting, Tiantong National Field Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yuhuang Ji
- Center for Global Change and Ecological Forecasting, Tiantong National Field Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Zhen Jia
- Center for Global Change and Ecological Forecasting, Tiantong National Field Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Bingqian Song
- Center for Global Change and Ecological Forecasting, Tiantong National Field Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Ruiqiang Liu
- Northeast Asia Ecosystem Carbon Sink Research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Xuhui Zhou
- Center for Global Change and Ecological Forecasting, Tiantong National Field Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Northeast Asia Ecosystem Carbon Sink Research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|
6
|
Yang T, Yang S, Chen Z, Tan Y, Bol R, Duan H, He J. Global transcriptomic analysis reveals candidate genes associated with different phosphorus acquisition strategies among soybean varieties. FRONTIERS IN PLANT SCIENCE 2022; 13:1080014. [PMID: 36600925 PMCID: PMC9806128 DOI: 10.3389/fpls.2022.1080014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Introduction Soybean adapts to phosphorus-deficient soils through three important phosphorus acquisition strategies, namely altered root conformation, exudation of carboxylic acids, and symbiosis with clumping mycorrhizal fungi. However, the trade-offs and regulatory mechanisms of these three phosphorus acquisition strategies in soybean have not been researched. Methods In this study, we investigated the responses of ten different soybean varieties to low soil phosphorus availability by determining biomass, phosphorus accumulation, root morphology, exudation, and mycorrhizal colonization rate. Furthermore, the molecular regulatory mechanisms underlying root phosphorus acquisition strategies were examined among varieties with different low-phosphorus tolerance using transcriptome sequencing and weighted gene co-expression network analysis. Results and discussion The results showed that two types of phosphorus acquisition strategies-"outsourcing" and "do-it-yourself"-were employed by soybean varieties under low phosphorus availability. The "do-it-yourself" varieties, represented by QD11, Zh30, and Sd, obtained sufficient phosphorus by increasing their root surface area and secreting carboxylic acids. In contrast, the "outsourcing" varieties, represented by Zh301, Zh13, and Hc6, used increased symbiosis with mycorrhizae to obtain phosphorus owing to their large root diameters. Transcriptome analysis showed that the direction of acetyl-CoA metabolism could be the dividing line between the two strategies of soybean selection. ERF1 and WRKY1 may be involved in the regulation of phosphorus acquisition strategies for soybeans grown under low P environments. These findings will enhance our understanding of phosphorus acquisition strategies in soybeans. In addition, they will facilitate the development of breeding strategies that are more flexible to accommodate a variety of production scenarios in agriculture under low phosphorus environments.
Collapse
Affiliation(s)
- Tongli Yang
- College of Agriculture, Guizhou University, Guiyang, China
| | - Songhua Yang
- College of Agriculture, Guizhou University, Guiyang, China
- Agricultural Ecological Environment and Resources Protection Station of Bijie Agricultural and Rural Bureau, Guiyang, China
| | - Zhu Chen
- College of Agriculture, Guizhou University, Guiyang, China
| | - Yuechen Tan
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
| | - Roland Bol
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Jülich, Germany
- School of Natural Sciences, Environment Centre Wales, Bangor University, Bangor, United Kingdom
| | - Honglang Duan
- Institute for Forest Resources & Environment of Guizhou, College of Forestry, Guizhou University, Guiyang, China
| | - Jin He
- College of Agriculture, Guizhou University, Guiyang, China
| |
Collapse
|
7
|
Panchal P, Preece C, Peñuelas J, Giri J. Soil carbon sequestration by root exudates. TRENDS IN PLANT SCIENCE 2022; 27:749-757. [PMID: 35606255 DOI: 10.1016/j.tplants.2022.04.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Root exudates are well-known 'labile' sources of soil carbon that can prime microbial activity. Recent investigations suggest that the stability of labile carbon inputs in soil mostly depends upon the physical, chemical, and biological properties of the surroundings. Here, we propose that, in some ecosystems, such as forests and grasslands, root exudates can function as a source of soil organic carbon (SOC) that can be stabilized through various mechanisms leading to long-term sequestration. Increasing soil carbon sequestration is important for capturing atmospheric CO2 and combating climate change issues. Thus, there is an urgent need to preserve existing ecosystems and to adopt strategies such as afforestation, reforestation, and establishment of artificial grasslands to foster carbon sequestration through higher root exudate inputs in the soil.
Collapse
Affiliation(s)
- Poonam Panchal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Catherine Preece
- Plants and Ecosystems (PLECO), Biology Department, University of Antwerp, BE-2610 Wilrijk, Belgium; CREAF, Cerdanyola del Vallès 08193, Catalonia, Spain
| | - Josep Peñuelas
- CREAF, Cerdanyola del Vallès 08193, Catalonia, Spain; CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra 08193, Catalonia, Spain
| | - Jitender Giri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
8
|
Kawakami E, Ataka M, Kume T, Shimono K, Harada M, Hishi T, Katayama A. Root exudation in a sloping Moso bamboo forest in relation to fine root biomass and traits. PLoS One 2022; 17:e0266131. [PMID: 35324979 PMCID: PMC8947071 DOI: 10.1371/journal.pone.0266131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/14/2022] [Indexed: 11/18/2022] Open
Abstract
Exudation by fine roots generally varies with their morphological traits, but the effect of belowground resource availability on the root exudation via root morphological traits and biomass remains unknown. We aimed to determine the effects of morphological and physiological traits on root exudation rates and to estimate stand-scale exudation (Estand) by measuring the mass, length, and surface area of fine roots in a Moso bamboo forest. We measured root exudation as well as morphological and physiological traits in upper and lower plots on a slope with different belowground resource availability. The mean (± S.D.) root exudation rates per mass in the upper and lower slope were 0.049 ± 0.047 and 0.040 ± 0.059 mg C g-1 h-1, respectively, which were in the range of exudation found in woody forest ecosystems. We observed significant relationships between root exudation per mass and root respiration, as well as specific root length and surface area. In contrast, exudation per length and area did not correlate with morphological traits. The morphological traits did not differ between slope positions, resulting in no significant difference in root exudation per mass. Fine root biomass, length, and surface area on a unit ground basis were much higher in the lower than those in the upper slope positions. Estand was higher when estimated by mass than by length and area because the morphological effect on exudation was ignored when scaled using mass. Estand was 1.4–2.0-fold higher in the lower than that in upper slope positions, suggesting that the scaling parameters of mass, length, and area determined the Estand estimate more than the exudation rate per mass, length, and area. Regardless of scaling, Estand was much higher in the Moso bamboo forest than in other forest ecosystems because of a large fine-root biomass.
Collapse
Affiliation(s)
- Erika Kawakami
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Nishiku, Fukuoka, Japan
| | - Mioko Ataka
- Research Institute for Sustainable Humanosphere, Uji, Kyoto, Japan
| | - Tomonori Kume
- Shiiba Research Forest, Kyushu University, Shiiba, Miyazaki, Japan
| | - Kohei Shimono
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Nishiku, Fukuoka, Japan
| | - Masayoshi Harada
- Faculty of Agriculture, Kyushu University, Nishiku, Fukuoka, Japan
| | - Takuo Hishi
- Kasuya Research Forest, Kyushu University, Sasaguri, Fukuoka, Japan
| | - Ayumi Katayama
- Shiiba Research Forest, Kyushu University, Shiiba, Miyazaki, Japan
- * E-mail:
| |
Collapse
|
9
|
Sell M, Ostonen I, Rohula-Okunev G, Rusalepp L, Rezapour A, Kupper P. Responses of fine root exudation, respiration and morphology in three early successional tree species to increased air humidity and different soil nitrogen sources. TREE PHYSIOLOGY 2022; 42:557-569. [PMID: 34505158 DOI: 10.1093/treephys/tpab118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/16/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Global climate change scenarios predict an increase in air temperature, precipitation and air humidity for northern latitudes. Elevated air humidity may significantly reduce the water flux through forest canopies and affect interactions between water and nutrient uptake. However, we have limited understanding of how altered transpiration would affect root respiration and carbon (C) exudation as fine root morphology acclimates to different water flux. We investigated the effects of elevated air relative humidity (eRH) and different inorganic nitrogen sources (NO3- and NH4+) on above and belowground traits in hybrid aspen (Populus × wettsteinii Hämet-Ahti), silver birch (Betula pendula Roth.) and Scots pine (Pinus sylvestris L.) grown under controlled climate chamber conditions. The eRH significantly decreased the transpiration flux in all species, decreased root mass-specific exudation in pine, and increased root respiration in aspen. eRH also affected fine root morphology, with specific root area increasing for birch but decreasing in pine. The species comparison revealed that pine had the highest C exudation, whereas birch had the highest root respiration rate. Both humidity and nitrogen treatments affected the share of absorptive and pioneer roots within fine roots; however, the response was species-specific. The proportion of absorptive roots was highest in birch and aspen, the share of pioneer roots was greatest in aspen and the share of transport roots was greatest in pine. Fine roots with lower root tissue density were associated with pioneer root tips and had a higher C exudation rate. Our findings underline the importance of considering species-specific differences in relation to air humidity and soil nitrogen availability that interactively affect the C input-output balance. We highlight the role of changes in the fine root functional distribution as an important acclimation mechanism of trees in response to environmental change.
Collapse
Affiliation(s)
- Marili Sell
- University of Tartu, Institute of Ecology and Earth Sciences, Vanemuise 46, 51003, Tartu, Estonia
| | - Ivika Ostonen
- University of Tartu, Institute of Ecology and Earth Sciences, Vanemuise 46, 51003, Tartu, Estonia
| | - Gristin Rohula-Okunev
- University of Tartu, Institute of Ecology and Earth Sciences, Vanemuise 46, 51003, Tartu, Estonia
| | - Linda Rusalepp
- University of Tartu, Institute of Ecology and Earth Sciences, Vanemuise 46, 51003, Tartu, Estonia
| | - Azadeh Rezapour
- University of Tartu, Institute of Ecology and Earth Sciences, Vanemuise 46, 51003, Tartu, Estonia
| | - Priit Kupper
- University of Tartu, Institute of Ecology and Earth Sciences, Vanemuise 46, 51003, Tartu, Estonia
| |
Collapse
|
10
|
Wen Z, White PJ, Shen J, Lambers H. Linking root exudation to belowground economic traits for resource acquisition. THE NEW PHYTOLOGIST 2022; 233:1620-1635. [PMID: 34761404 DOI: 10.1111/nph.17854] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
The concept of a root economics space (RES) is increasingly adopted to explore root trait variation and belowground resource-acquisition strategies. Much progress has been made on interactions of root morphology and mycorrhizal symbioses. However, root exudation, with a significant carbon (C) cost (c. 5-21% of total photosynthetically fixed C) to enhance resource acquisition, remains a missing link in this RES. Here, we argue that incorporating root exudation into the structure of RES is key to a holistic understanding of soil nutrient acquisition. We highlight the different functional roles of root exudates in soil phosphorus (P) and nitrogen (N) acquisition. Thereafter, we synthesize emerging evidence that illustrates how root exudation interacts with root morphology and mycorrhizal symbioses at the level of species and individual plant and argue contrasting patterns in species evolved in P-impoverished vs N-limited environments. Finally, we propose a new conceptual framework, integrating three groups of root functional traits to better capture the complexity of belowground resource-acquisition strategies. Such a deeper understanding of the integrated and dynamic interactions of root morphology, root exudation, and mycorrhizal symbioses will provide valuable insights into the mechanisms underlying species coexistence and how to explore belowground interactions for sustainable managed systems.
Collapse
Affiliation(s)
- Zhihui Wen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, 100193, Beijing, China
| | - Philip J White
- Ecological Science Group, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Jianbo Shen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, 100193, Beijing, China
| | - Hans Lambers
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, 100193, Beijing, China
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
| |
Collapse
|
11
|
An N, Lu N, Fu B, Chen W, Keyimu M, Wang M. Evidence of Differences in Covariation Among Root Traits Across Plant Growth Forms, Mycorrhizal Types, and Biomes. FRONTIERS IN PLANT SCIENCE 2022; 12:785589. [PMID: 35154176 PMCID: PMC8836870 DOI: 10.3389/fpls.2021.785589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/22/2021] [Indexed: 06/02/2023]
Abstract
Fine roots play an important role in plant ecological strategies, adaptation to environmental constraints, and ecosystem functions. Covariation among root traits influence the physiological and ecological processes of plants and ecosystems. Root trait covariation in multiple dimensions at the global scale has been broadly discussed. How fine-root traits covary at the regional scale and whether the covariation is generalizable across plant growth forms, mycorrhizal types, and biomes are largely unknown. Here, we collected six key traits - namely root diameter (RD), specific root length (SRL), root tissue density (RTD), root C content (RCC), root N content (RNC), and root C:N ratio (RCN) - of first- and second-order roots of 306 species from 94 sampling sites across China. We examined the covariation in root traits among different plant growth forms, mycorrhizal types, and biomes using the phylogenetic principal component analysis (pPCA). Three independent dimensions of the covariation in root traits were identified, accounting for 39.0, 26.1, and 20.2% of the total variation, respectively. The first dimension was represented by SRL, RNC, RTD, and RCN, which was in line with the root economics spectrum (RES). The second dimension described a negative relationship between RD and SRL, and the third dimension was represented by RCC. These three main principal components were mainly influenced by biome and mycorrhizal type. Herbaceous and ectomycorrhizal species showed a more consistent pattern with the RES, in which RD, RTD, and RCN were negatively correlated with SRL and RNC within the first axis compared with woody and arbuscular mycorrhizal species, respectively. Our results highlight the roles of plant growth form, mycorrhizal type, and biome in shaping root trait covariation, suggesting that root trait relationships in specific regions may not be generalized from global-scale analyses.
Collapse
Affiliation(s)
- Nannan An
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Nan Lu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bojie Fu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Weiliang Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
| | - Maierdang Keyimu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
| | - Mengyu Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|