1
|
Xiang Y, Kagawa A, Nagai S, Yasuda Y, Utsumi Y. Isotope Distribution Analysis in H₂ 18O Pulse-Labeled Trees Frozen with Liquid Nitrogen. PHYSIOLOGIA PLANTARUM 2024; 176:e14292. [PMID: 38685817 DOI: 10.1111/ppl.14292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/24/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024]
Abstract
Tracer injection has long been recognized as a valuable tool for delineating tree hydraulics and assessing water transport pathways. Recently, isotope tracers have emerged as innovative instruments for investigating tree hydraulics, providing new insights into tree water dynamics. Nevertheless, there is a critical need for further research to comprehensively grasp water movement and distribution within trees. A previously introduced technique for analyzing the isotopic ratio of water in wet tissues, offering millimeter-scale resolution for visualizing tracer movement, faces challenges due to its underdeveloped sample preparation techniques. In this study, we introduced an H2 18O tracer into S. gracilistyla samples, exclusively comprising indeterminate roots, stems, and leaves, cultivated through hydroponics and grown within the current year. Our objective was to assess the axial distribution of the tracer in the xylem. Additionally, we devised a novel method for preparing frozen wet tissue samples, enhancing the repeatability and success rate of experiments. The results demonstrated that all frozen wet tissue samples exhibited an average water loss rate of less than 0.6%. Isotopic analysis of these samples unveiled a consistent decline in tracer concentration with increasing height in all Salix specimens, with three out of five samples revealing a significant isotope gradient. Our findings affirm the efficacy and practicality of combining isotopic labeling with freezing, stabilization, and preparation techniques. Looking ahead, our isotopic labeling and analysis methods are poised to transcend woody plants, finding extensive applications in plant physiology and ecohydrology.
Collapse
Affiliation(s)
- Yan Xiang
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Akira Kagawa
- Forestry and Forest Products Research Institute, Wood Anatomy and Quality Laboratory, Ibaraki, Japan
| | - Satoshi Nagai
- Forestry Technology Institute, Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries, Hyogo, Japan
| | - Yuko Yasuda
- Department of Environmental Sciences and Technology, Faculty of Agriculture, Kagoshima University, Kagoshima City Kagoshima, Japan
| | | |
Collapse
|
2
|
Beckett HAA, Bryant C, Neeman T, Mencuccini M, Ball MC. Plasticity in branch water relations and stem hydraulic vulnerability enhances hydraulic safety in mangroves growing along a salinity gradient. PLANT, CELL & ENVIRONMENT 2024; 47:854-870. [PMID: 37975319 DOI: 10.1111/pce.14764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/05/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Coping with water stress depends on maintaining cellular function and hydraulic conductance. Yet measurements of vulnerability to drought and salinity do not often focus on capacitance in branch organs that buffer hydraulic function during water stress. The relationships between branch water relations, stem hydraulic vulnerability and stem anatomy were investigated in two co-occurring mangroves Aegiceras corniculatum and Rhizophora stylosa growing at low and high salinity. The dynamics of branch water release acted to conserve water content in the stem at the expense of the foliage during extended drying. Hydraulic redistribution from the foliage to the stem increased stem relative water content by up to 21%. The water potentials at which 12% and 50% loss of stem hydraulic conductivity occurred decreased by ~1.7 MPa in both species between low and high salinity sites. These coordinated tissue adjustments increased hydraulic safety despite declining turgor safety margins at higher salinity sites. Our results highlight the complex interplay of plasticity in organ-level water relations with hydraulic vulnerability in the maintenance of stem hydraulic function in mangroves distributed along salinity gradients. These results emphasise the importance of combining water relations and hydraulic vulnerability parameters to understand vulnerability to water stress across the whole plant.
Collapse
Affiliation(s)
- Holly A A Beckett
- Plant Science Division, Research School of Biology, Australian National University, Canberra, Australia
| | - Callum Bryant
- Plant Science Division, Research School of Biology, Australian National University, Canberra, Australia
| | - Teresa Neeman
- Biological Data Science Institute, Australian National University, Canberra, Australia
| | - Maurizio Mencuccini
- Ecological and Forestry Applications Research Centre (CREAF), Barcelona, Bellaterra, Spain
| | - Marilyn C Ball
- Plant Science Division, Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
3
|
Słupianek A, Myśkow E, Kasprowicz-Maluśki A, Dolzblasz A, Żytkowiak R, Turzańska M, Sokołowska K. Seasonal dynamics of cell-to-cell transport in angiosperm wood. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1331-1346. [PMID: 37996075 PMCID: PMC10901208 DOI: 10.1093/jxb/erad469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/22/2023] [Indexed: 11/25/2023]
Abstract
This study describes the seasonal changes in cell-to-cell transport in three selected angiosperm tree species, Acer pseudoplatanus (maple), Fraxinus excelsior (ash), and Populus tremula × tremuloides (poplar), with an emphasis on the living wood component, xylem parenchyma cells (XPCs). We performed anatomical studies, dye loading through the vascular system, measurements of non-structural carbohydrate content, immunocytochemistry, inhibitory assays and quantitative real-time PCR to analyse the transport mechanisms and seasonal variations in wood. The abundance of membrane dye in wood varied seasonally along with seasonally changing tree phenology, cambial activity, and non-structural carbohydrate content. Moreover, dyes internalized in vessel-associated cells and 'trapped' in the endomembrane system are transported farther between other XPCs via plasmodesmata. Finally, various transport mechanisms based on clathrin-mediated and clathrin-independent endocytosis, and membrane transporters, operate in wood, and their involvement is species and/or season dependent. Our study highlights the importance of XPCs in seasonally changing cell-to-cell transport in both ring-porous (ash) and diffuse-porous (maple, poplar) tree species, and demonstrates the involvement of both endocytosis and plasmodesmata in intercellular communication in angiosperm wood.
Collapse
Affiliation(s)
- Aleksandra Słupianek
- Department of Plant Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland
| | - Elżbieta Myśkow
- Department of Plant Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland
| | - Anna Kasprowicz-Maluśki
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznań 61-614, Poland
| | - Alicja Dolzblasz
- Department of Plant Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland
| | - Roma Żytkowiak
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Magdalena Turzańska
- Department of Plant Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland
| | - Katarzyna Sokołowska
- Department of Plant Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland
| |
Collapse
|
4
|
Beckett HAA, Webb D, Turner M, Sheppard A, Ball MC. Bark water uptake through lenticels increases stem hydration and contributes to stem swelling. PLANT, CELL & ENVIRONMENT 2024; 47:72-90. [PMID: 37811590 DOI: 10.1111/pce.14733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Foliar water uptake can recharge water storage tissue and enable greater hydration than through access to soil water alone; however, few studies have explored the role of the bark in facilitating water uptake. We investigated pathways and dynamics of bark water uptake (BWU) in stems of the mangrove Avicennia marina. We provide novel evidence that specific entry points control dynamics of water uptake through the outer bark surface. Furthermore, using a fluorescent symplastic tracer dye we provide the first evidence that lenticels on the outer bark surface facilitate BWU, thus increasing stem water content by up to 3.7%. X-ray micro-computed tomography showed that BWU was sufficient to cause measurable swelling of stem tissue layers increasing whole stem cross-sectional area by 0.83 mm2 or 2.8%, implicating it as a contributor to the diel patterns of water storage recharge that buffer xylem water potential and maintain hydration of living tissue.
Collapse
Affiliation(s)
- Holly A A Beckett
- Plant Science Division, Research School of Biology, Australian National University, Canberra, Australia
| | - Daryl Webb
- Centre for Advanced Microscopy, Australian National University, Canberra, Australia
| | - Michael Turner
- Department of Applied Mathematics, Research School of Physics, Australian National University, Canberra, Australia
| | - Adrian Sheppard
- Department of Applied Mathematics, Research School of Physics, Australian National University, Canberra, Australia
| | - Marilyn C Ball
- Plant Science Division, Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
5
|
Martínez-Sancho E, Cernusak LA, Fonti P, Gregori A, Ullrich B, Pannatier EG, Gessler A, Lehmann MM, Saurer M, Treydte K. Unenriched xylem water contribution during cellulose synthesis influenced by atmospheric demand governs the intra-annual tree-ring δ 18 O signature. THE NEW PHYTOLOGIST 2023; 240:1743-1757. [PMID: 37753542 DOI: 10.1111/nph.19278] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/16/2023] [Indexed: 09/28/2023]
Abstract
The oxygen isotope composition (δ18 O) of tree-ring cellulose is used to evaluate tree physiological responses to climate, but their interpretation is still limited due to the complexity of the isotope fractionation pathways. We assessed the relative contribution of seasonal needle and xylem water δ18 O variations to the intra-annual tree-ring cellulose δ18 O signature of larch trees at two sites with contrasting soil water availability in the Swiss Alps. We combined biweekly δ18 O measurements of soil water, needle water, and twig xylem water with intra-annual δ18 O measurements of tree-ring cellulose, xylogenesis analysis, and mechanistic and structural equation modeling. Intra-annual cellulose δ18 O values resembled source water δ18 O mean levels better than needle water δ18 O. Large parts of the rings were formed under high proportional exchange with unenriched xylem water (pex ). Maximum pex values were achieved in August and imprinted on sections at 50-75% of the ring. High pex values were associated with periods of high atmospheric evaporative demand (VPD). While VPD governed needle water δ18 O variability, we estimated a limited Péclet effect at both sites. Due to a variable pex , source water has a strong influence over large parts of the intra-annual tree-ring cellulose δ18 O variations, potentially masking signals coming from needle-level processes.
Collapse
Affiliation(s)
- Elisabet Martínez-Sancho
- Research Unit Forest Dynamics, Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
- Department of Biological Evolution, Ecology and Environmental Sciences, University of Barcelona, Diagonal 643, Barcelona, 08028, Spain
| | - Lucas A Cernusak
- College of Science and Engineering, James Cook University, Cairns, QLD, 4878, Australia
| | - Patrick Fonti
- Research Unit Forest Dynamics, Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Alessandro Gregori
- Research Unit Forest Dynamics, Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Bastian Ullrich
- Research Unit Forest Dynamics, Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Elisabeth Graf Pannatier
- Research Unit Forest Dynamics, Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Arthur Gessler
- Research Unit Forest Dynamics, Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Marco M Lehmann
- Research Unit Forest Dynamics, Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Matthias Saurer
- Research Unit Forest Dynamics, Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Kerstin Treydte
- Research Unit Forest Dynamics, Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| |
Collapse
|
6
|
Kühnhammer K, van Haren J, Kübert A, Bailey K, Dubbert M, Hu J, Ladd SN, Meredith LK, Werner C, Beyer M. Deep roots mitigate drought impacts on tropical trees despite limited quantitative contribution to transpiration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 893:164763. [PMID: 37308023 PMCID: PMC10331952 DOI: 10.1016/j.scitotenv.2023.164763] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
Deep rooting is considered a central drought-mitigation trait with vast impact on ecosystem water cycling. Despite its importance, little is known about the overall quantitative water use via deep roots and dynamic shifts of water uptake depths with changing ambient conditions. Knowledge is especially sparse for tropical trees. Therefore, we conducted a drought, deep soil water labeling and re-wetting experiment at Biosphere 2 Tropical Rainforest. We used in situ methods to determine water stable isotope values in soil and tree water in high temporal resolution. Complemented by soil and stem water content and sap flow measurements we determined percentages and quantities of deep-water in total root water uptake dynamics of different tree species. All canopy trees had access to deep-water (max. uptake depth 3.3 m), with contributions to transpiration ranging between 21 % and 90 % during drought, when surface soil water availability was limited. Our results suggest that deep soil is an essential water source for tropical trees that delays potentially detrimental drops in plant water potentials and stem water content when surface soil water is limited and could hence mitigate the impacts of increasing drought occurrence and intensity as a consequence of climate change. Quantitatively, however, the amount of deep-water uptake was low due to the trees' reduction of sap flow during drought. Total water uptake largely followed surface soil water availability and trees switched back their uptake depth dynamically, from deep to shallow soils, following rainfall. Total transpiration fluxes were hence largely driven by precipitation input.
Collapse
Affiliation(s)
- Kathrin Kühnhammer
- IGOE, Environmental Geochemistry, TU Braunschweig, Langer Kamp 19c, 38106 Braunschweig, Germany; Ecosystem Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, 79110 Freiburg, Germany.
| | - Joost van Haren
- Biosphere 2, University of Arizona, 32540 S Biosphere Road, Oracle, AZ 85623, USA; Honors College, University of Arizona, 1101 E. Mabel St., Tucson, AZ 85719, USA
| | - Angelika Kübert
- Ecosystem Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, 79110 Freiburg, Germany; Institute for Atmospheric and Earth System Research, University of Helsinki, P.O. Box 68, Pietari Kalmin katu 5, 00014 Helsinki, Finland
| | - Kinzie Bailey
- School of Natural Resources and the Environment, University of Arizona, 1064 E Lowell St, Tucson, AZ 85721, USA
| | - Maren Dubbert
- Ecosystem Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, 79110 Freiburg, Germany; Isotope Biogeochemistry and Gasfluxes, ZALF, Eberswalder Straße 84, 15374 Müncheberg, Germany
| | - Jia Hu
- School of Natural Resources and the Environment, University of Arizona, 1064 E Lowell St, Tucson, AZ 85721, USA
| | - S Nemiah Ladd
- Ecosystem Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, 79110 Freiburg, Germany; Department of Environmental Sciences, University of Basel, Bernoullistrasse 32, 4056 Basel, Switzerland
| | - Laura K Meredith
- Biosphere 2, University of Arizona, 32540 S Biosphere Road, Oracle, AZ 85623, USA; School of Natural Resources and the Environment, University of Arizona, 1064 E Lowell St, Tucson, AZ 85721, USA
| | - Christiane Werner
- Ecosystem Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, 79110 Freiburg, Germany
| | - Matthias Beyer
- IGOE, Environmental Geochemistry, TU Braunschweig, Langer Kamp 19c, 38106 Braunschweig, Germany
| |
Collapse
|
7
|
Martínez-Vilalta J, Poyatos R. Connecting the dots: concurrent assessment of water flows and pools to better understand plant responses to drought. TREE PHYSIOLOGY 2023; 43:1285-1289. [PMID: 37341378 DOI: 10.1093/treephys/tpad076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 06/22/2023]
Affiliation(s)
- Jordi Martínez-Vilalta
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Universitat Autònoma de Barcelona, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - Rafael Poyatos
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Universitat Autònoma de Barcelona, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| |
Collapse
|
8
|
Orlowski N, Rinderer M, Dubbert M, Ceperley N, Hrachowitz M, Gessler A, Rothfuss Y, Sprenger M, Heidbüchel I, Kübert A, Beyer M, Zuecco G, McCarter C. Challenges in studying water fluxes within the soil-plant-atmosphere continuum: A tracer-based perspective on pathways to progress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163510. [PMID: 37059146 DOI: 10.1016/j.scitotenv.2023.163510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 06/01/2023]
Abstract
Tracing and quantifying water fluxes in the hydrological cycle is crucial for understanding the current state of ecohydrological systems and their vulnerability to environmental change. Especially the interface between ecosystems and the atmosphere that is strongly mediated by plants is important to meaningfully describe ecohydrological system functioning. Many of the dynamic interactions generated by water fluxes between soil, plant and the atmosphere are not well understood, which is partly due to a lack of interdisciplinary research. This opinion paper reflects the outcome of a discussion among hydrologists, plant ecophysiologists and soil scientists on open questions and new opportunities for collaborative research on the topic "water fluxes in the soil-plant-atmosphere continuum" especially focusing on environmental and artificial tracers. We emphasize the need for a multi-scale experimental approach, where a hypothesis is tested at multiple spatial scales and under diverse environmental conditions to better describe the small-scale processes (i.e., causes) that lead to large-scale patterns of ecosystem functioning (i.e., consequences). Novel in-situ, high-frequency measurement techniques offer the opportunity to sample data at a high spatial and temporal resolution needed to understand the underlying processes. We advocate for a combination of long-term natural abundance measurements and event-based approaches. Multiple environmental and artificial tracers, such as stable isotopes, and a suite of experimental and analytical approaches should be combined to complement information gained by different methods. Virtual experiments using process-based models should be used to inform sampling campaigns and field experiments, e.g., to improve experimental designs and to simulate experimental outcomes. On the other hand, experimental data are a pre-requisite to improve our currently incomplete models. Interdisciplinary collaboration will help to overcome research gaps that overlap across different earth system science fields and help to generate a more holistic view of water fluxes between soil, plant and atmosphere in diverse ecosystems.
Collapse
Affiliation(s)
- Natalie Orlowski
- Hydrology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg im Breisgau, Germany.
| | - Michael Rinderer
- Hydrology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg im Breisgau, Germany; Geo7 AG, Bern, Switzerland
| | - Maren Dubbert
- Isotope Biogeochemistry and Gasfluxes, ZALF, Müncheberg, Germany
| | | | - Markus Hrachowitz
- Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628CN Delft, Netherlands
| | - Arthur Gessler
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland; Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland
| | - Youri Rothfuss
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Jülich, Germany; Terra Teaching and Research Centre, University of Liège, Gembloux, Belgium
| | - Matthias Sprenger
- Earth and Environmental Sciences at the Lawrence Berkeley National Laboratory, Berkeley, USA
| | - Ingo Heidbüchel
- Hydrological Modelling, University of Bayreuth, Bayreuth, Germany; Hydrogeology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Angelika Kübert
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
| | - Matthias Beyer
- Institute for Geoecology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Giulia Zuecco
- Department of Land, Environment, Agriculture and Forestry, University of Padova, Legnaro, Italy; Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Colin McCarter
- Department of Geography, Department of Biology and Chemistry, Nipissing University, North Bay, Ontario, Canada
| |
Collapse
|
9
|
Kagawa A. Foliar water uptake as a source of hydrogen and oxygen in plant biomass. TREE PHYSIOLOGY 2022; 42:2153-2173. [PMID: 35554604 PMCID: PMC9652008 DOI: 10.1093/treephys/tpac055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/08/2022] [Indexed: 05/11/2023]
Abstract
Introductory biology lessons around the world typically teach that plants absorb water through their roots, but, unfortunately, absorption of water through leaves and subsequent transport and use of this water for biomass formation remains a field limited mostly to specialists. Recent studies have identified foliar water uptake as a significant net water source for terrestrial plants. The growing interest in the development of a new model that includes both foliar water uptake (in liquid form) and root water uptake to explain hydrogen and oxygen isotope ratios in leaf water and tree rings demands a method for distinguishing between these two water sources. Therefore, in this study, I have devised a new labelling method that utilizes two different water sources, one enriched in deuterium (HDO + D2O; δD = 7.0 × 10 4‰, δ18O = 4.1‰) and one enriched in oxygen-18 (H218O; δD = -85‰, δ18O = 1.1 × 104‰), to simultaneously label both foliar-absorbed and root-absorbed water and quantify their relative contributions to plant biomass. Using this new method, I here present evidence that, in the case of well-watered Cryptomeria japonica D. Don, hydrogen and oxygen incorporated into new leaf cellulose in the rainy season derives mostly from foliar-absorbed water (69% from foliar-absorbed water and 31% from root-absorbed water), while that of new root cellulose derives mostly from root-absorbed water (20% from foliar-absorbed water and 80% from root-absorbed water), and new branch xylem is somewhere in between (55% from foliar-absorbed water and 45% from root-absorbed water). The dual-labelling method first implemented in this study enables separate and simultaneous labelling of foliar-absorbed and root-absorbed water and offers a new tool to study the uptake, transport and assimilation processes of these waters in terrestrial plants.
Collapse
|
10
|
Gimeno TE, Stangl ZR, Barbeta A, Saavedra N, Wingate L, Devert N, Marshall JD. Water taken up through the bark is detected in the transpiration stream in intact upper-canopy branches. PLANT, CELL & ENVIRONMENT 2022; 45:3219-3232. [PMID: 35922889 DOI: 10.1111/pce.14415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Alternative water uptake pathways through leaves and bark complement water supply with interception, fog or dew. Bark water-uptake contributes to embolism-repair, as demonstrated in cut branches. We tested whether bark water-uptake could also contribute to supplement xylem-water for transpiration. We applied bandages injected with 2 H-enriched water on intact upper-canopy branches of Pinus sylvestris and Fagus sylvatica in a boreal and in a temperate forest, in summer and winter, and monitored transpiration and online isotopic composition (δ2 H and δ18 O) of water vapour, before sampling for analyses of δ2 H and δ18 O in tissue waters. Xylem, bark and leaf waters from segments downstream from the bandages were 2 H-enriched whereas δ18 O was similar to controls. Transpiration was positively correlated with 2 H-enrichment. Isotopic compositions of transpiration and xylem water allowed us to calculate isotopic exchange through the bark via vapour exchange, which was negligible in comparison to estimated bark water-uptake, suggesting that water-uptake occurred via liquid phase. Results were consistent across species, forests and seasons, indicating that bark water-uptake may be more ubiquitous than previously considered. We suggest that water taken up through the bark could be incorporated into the transpiration stream, which could imply that sap-flow measurements underestimate transpiration when bark is wet.
Collapse
Affiliation(s)
- Teresa E Gimeno
- CREAF, 08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Basque Centre for Climate Change (BC3), Leioa, Spain
| | - Zsofia R Stangl
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
| | - Adrià Barbeta
- BEECA, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Noelia Saavedra
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
| | | | | | - John D Marshall
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
| |
Collapse
|
11
|
Gessler A. Water transport in trees-the importance of radial and circumferential transport. TREE PHYSIOLOGY 2021; 41:2245-2247. [PMID: 34617110 DOI: 10.1093/treephys/tpab131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/01/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Arthur Gessler
- Institute of Terrestrial Ecosystems (ITES), Department of Environmental Systems Science, ETH Zurich, Universitaetstrasse 16, 8092 Zurich, Switzerland
| |
Collapse
|