1
|
Islam MS, Chekhovskiy K, Saha MC. Dig up tall fescue plastid genomes for the identification of morphotype-specific DNA variants. BMC Genomics 2023; 24:586. [PMID: 37789301 PMCID: PMC10546690 DOI: 10.1186/s12864-023-09631-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Tall fescue (Festuca arundinacea Schreb.) is an important cool-season perennial grass species. Hexaploid tall fescue has three distinct morphotypes used either as forage or turf purposes. Its chloroplast genome is conserved due to it being maternally inherited to the next generation progenies. To identify morphotype-specific DNA markers and the genetic variations, plastid genomes of all three tall fescue morphotypes, i.e., Continental cv. Texoma MaxQ II, Rhizomatous cv. Torpedo, and Mediterranean cv. Resolute, have been sequenced using Illumina MiSeq sequencing platform. RESULTS The plastid genomes of Continental-, Rhizomatous-, and Mediterranean tall fescue were assembled into circular master molecules of 135,283 bp, 135,336 bp, and 135,324 bp, respectively. The tall fescue plastid genome of all morphotypes contained 77 protein-coding, 20 tRNAs, four rRNAs, two pseudo protein-coding, and three hypothetical protein-coding genes. We identified 630 SNPs and 124 InDels between Continental and Mediterranean, 62 SNPs and 20 InDels between Continental and Rhizomatous, and 635 SNPs and 123 InDels between Rhizomatous and Mediterranean tall fescue. Only four InDels in four genes (ccsA, rps18, accD, and ndhH-p) were identified, which discriminated Continental and Rhizomatous plastid genomes from the Mediterranean plastid genome. Here, we identified and reported eight InDel markers (NRITCHL18, NRITCHL35, NRITCHL43, NRITCHL65, NRITCHL72, NRITCHL101, NRITCHL104, and NRITCHL110) from the intergenic regions that can successfully discriminate tall fescue morphotypes. Divergence time estimation revealed that Mediterranean tall fescue evolved approximately 7.09 Mya, whereas the divergence between Continental- and Rhizomatous tall fescue occurred about 0.6 Mya. CONCLUSIONS To our knowledge, this is the first report of the assembled plastid genomes of Rhizomatous and Mediterranean tall fescue. Our results will help to identify tall fescue morphotypes at the time of pre-breeding and will contribute to the development of lawn and forage types of commercial varieties.
Collapse
Affiliation(s)
- Md Shofiqul Islam
- Grass Genomics, Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA.
- Genetics Laboratory, Indiana Crop Improvement Association, 7700 Stockwell Road, Lafayette, IN, 47909, USA.
- Department of Agronomy, Purdue University, 915 Mitch Daniels Blvd, West Lafayette, IN, 47906, USA.
| | - Konstantin Chekhovskiy
- Grass Genomics, Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Malay C Saha
- Grass Genomics, Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| |
Collapse
|
2
|
Ahmad W, Asaf S, Al-Rawahi A, Al-Harrasi A, Khan AL. Comparative plastome genomics, taxonomic delimitation and evolutionary divergences of Tetraena hamiensis var. qatarensis and Tetraena simplex (Zygophyllaceae). Sci Rep 2023; 13:7436. [PMID: 37156827 PMCID: PMC10167353 DOI: 10.1038/s41598-023-34477-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 05/02/2023] [Indexed: 05/10/2023] Open
Abstract
The Zygophyllum and Tetraena genera are intriguingly important ecologically and medicinally. Based on morphological characteristics, T. hamiensis var. qatarensis, and T. simplex were transferred from Zygophyllum to Tetraena with the least genomic datasets available. Hence, we sequenced the T. hamiensis and T. simplex and performed in-depth comparative genomics, phylogenetic analysis, and estimated time divergences. The complete plastomes ranged between 106,720 and 106,446 bp-typically smaller than angiosperms plastomes. The plastome circular genomes are divided into large single-copy regions (~ 80,964 bp), small single-copy regions (~ 17,416 bp), and two inverted repeats regions (~ 4170 bp) in both Tetraena species. An unusual shrinkage of IR regions 16-24 kb was identified. This resulted in the loss of 16 genes, including 11 ndh genes which encode the NADH dehydrogenase subunits, and a significant size reduction of Tetraena plastomes compared to other angiosperms. The inter-species variations and similarities were identified using genome-wide comparisons. Phylogenetic trees generated by analyzing the whole plastomes, protein-coding genes, matK, rbcL, and cssA genes exhibited identical topologies, indicating that both species are sisters to the genus Tetraena and may not belong to Zygophyllum. Similarly, based on the entire plastome and proteins coding genes datasets, the time divergence of Zygophyllum and Tetraena was 36.6 Ma and 34.4 Ma, respectively. Tetraena stem ages were 31.7 and 18.2 Ma based on full plastome and protein-coding genes. The current study presents the plastome as a distinguishing and identification feature among the closely related Tetraena and Zygophyllum species. It can be potentially used as a universal super-barcode for identifying plants.
Collapse
Affiliation(s)
- Waqar Ahmad
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, 616, Oman
| | - Sajjad Asaf
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, 616, Oman
| | - Ahmed Al-Rawahi
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, 616, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, 616, Oman.
| | - Abdul Latif Khan
- Department of Engineering Technology, University of Houston, Sugar Land, TX, 77479, USA.
- Department of Biology and Biochemistry, University of Houston, Houston, USA.
| |
Collapse
|
3
|
Hu Y, Sun Y, Zhu QH, Fan L, Li J. Poaceae Chloroplast Genome Sequencing: Great Leap Forward in Recent Ten Years. Curr Genomics 2023; 23:369-384. [PMID: 37920556 PMCID: PMC10173419 DOI: 10.2174/1389202924666221201140603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/02/2022] [Accepted: 10/19/2022] [Indexed: 12/11/2022] Open
Abstract
The first complete chloroplast genome of rice (Oryza sativa) was published in 1989, ushering in a new era of studies of chloroplast genomics in Poaceae. Progresses in Next-Generation Sequencing (NGS) and Third-Generation Sequencing (TGS) technologiesand in the development of genome assembly software, have significantly advanced chloroplast genomics research. Poaceae is one of the most targeted families in chloroplast genome research because of its agricultural, ecological, and economic importance. Over the last 30 years, 2,050 complete chloroplast genome sequences from 40 tribes and 282 genera have been generated, most (97%) of them in the recent ten years. The wealth of data provides the groundwork for studies on species evolution, phylogeny, genetic transformation, and other aspects of Poaceae chloroplast genomes. As a result, we have gained a deeper understanding of the properties of Poaceae chloroplast genomes. Here, we summarize the achievements of the studies of the Poaceae chloroplast genomes and envision the challenges for moving the area ahead.
Collapse
Affiliation(s)
- Yiyu Hu
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Yanqing Sun
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Qian-Hao Zhu
- CSIRO, Agriculture and Food, Canberra, ACT 2601, Australia
| | - Longjiang Fan
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Jianhua Li
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Zhu Y, Zhang X, Yan S, Feng C, Wang D, Yang W, Daud MK, Xiang J, Mei L. SSR identification and phylogenetic analysis in four plant species based on complete chloroplast genome sequences. Plasmid 2023; 125:102670. [PMID: 36828204 DOI: 10.1016/j.plasmid.2023.102670] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023]
Abstract
The effective utilization of traditional Chinese medicine (TCM) has been challenged by the difficulty to accurately distinguish between similar plant varieties. The stability and conservation of the chloroplast genome can aid in resolving genotypes. Previous studies using nuclear sequences and molecular markers have not effectively differentiated the species from related taxa, such as Machilus leptophylla, Hanceola exserta, Rubus bambusarum, and Rubus henryi. This study aimed to characterize the chloroplast genomes of these four plant species, and analyze their simple sequence repeats (SSRs) and phylogenetic positions. The results demonstrated the four chloroplast genomes consisted of 152.624 kb, 153.296 kb, 156.309 kb, and 158.953 kb in length, involving 124, 130, 129, and 131 genes, respectively. They also contained four specific regions with mononucleotide being the class with the most members. Moreover, these repeating types of SSR were various in individual class. Phylogenetic analysis showed that M. leptophylla was clustered with M. yunnanensis, and H. exserta was confirmed as belonging to the family Ocimeae. Additionally, R. bambusarum and R. henryi were grouped together but differed in their SSR features, indicating that they were not the same species. This research provides evidence for resolving species and contributes new genetic information for further studies.
Collapse
Affiliation(s)
- Yueyi Zhu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xianwen Zhang
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shufeng Yan
- Cereal Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Chen Feng
- Lushan Botanical Garden, Chinese Academy of Sciences, Lushan 330000, China
| | - Dongfang Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Wei Yang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Muhammad Khan Daud
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat 26000, Pakistan
| | - Jiqian Xiang
- Enshi Tujia & Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi 445000, China
| | - Lei Mei
- Enshi Tujia & Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi 445000, China; Center of Research and Development, Senium Science Development (Zhejiang) Company Limited, Hangzhou 311121, China.
| |
Collapse
|
5
|
Complete Chloroplast Genome Features of Dendrocalamusfarinosus and Its Comparison and Evolutionary Analysis with Other Bambusoideae Species. Genes (Basel) 2022; 13:genes13091519. [PMID: 36140690 PMCID: PMC9498922 DOI: 10.3390/genes13091519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Dendrocalamus farinosus is one of the essential bamboo species mainly used for food and timber in the southwestern region of China. In this study, the complete chloroplast (cp) genome of D. farinosus is sequenced, assembled, and the phylogenetic relationship analyzed. The cp genome has a circular and quadripartite structure, has a total length of 139,499 bp and contains 132 genes: 89 protein-coding genes, eight rRNAs and 35 tRNAs. The repeat analyses showed that three types of repeats (palindromic, forward and reverse) are present in the genome. A total of 51 simple sequence repeats are identified in the cp genome. The comparative analysis between different species belonging to Dendrocalamus revealed that although the cp genomes are conserved, many differences exist between the genomes. The analysis shows that the non-coding regions were more divergent than the coding regions, and the inverted repeat regions are more conserved than the single-copy regions. Moreover, these results also indicate that rpoC2 may be used to distinguish between different bamboo species. Phylogenetic analysis results supported that D. farinosus was closely related to D. latiflorus. Furthermore, these bamboo species’ geographical distribution and rhizome types indicate two evolutionary pathways: one is from the tropics to the alpine zone, and the other is from the tropics to the warm temperate zone. Our study will be helpful in the determination of the cp genome sequences of D. farinosus, and provides new molecular data to understand the Bambusoideae evolution.
Collapse
|
6
|
Jiao Y, Zeng H, Xia H, Wang Y, Wang J, Jin C. RNA-seq and phytohormone analysis reveals the culm color variation of Bambusa oldhamii Munro. PeerJ 2022; 10:e12796. [PMID: 35070510 PMCID: PMC8761368 DOI: 10.7717/peerj.12796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 12/23/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The clumping bamboo Bambusa oldhamii Munro, known as "green bamboo", is famous for its edible bamboo shoots and fast-growing timber. The green and yellow striped-culm B. oldhamii variety, named B. oldhamii f. revoluta W.T. Lin & J. Y. Lin, is an attractive system for researching the culm color variation of B. oldhamii. METHODS Millions of clean reads were generated and assembled into 604,900 transcripts, and 383,278 unigenes were acquired with RNA-seq technology. The quantification of ABA, IAA, JA, GA1, GA3, GA4, and GA7 was performed using HPLC-MS/MS platforms. RESULTS Differential expression analysis showed that 449 unigenes were differentially expressed genes (DEGs), among which 190 DEGs were downregulated and 259 DEGs were upregulated in B. oldhamii f. revoluta. Phytohormone contents, especially GA1 and GA7, were higher in B. oldhamii. Approximately 21 transcription factors (TFs) were differentially expressed between the two groups: the bZIP, MYB, and NF-YA transcription factor families had the most DEGs, indicating that those TFs play important roles in B. oldhamii culm color variation. RNA-seq data were confirmed by quantitative RT-PCR analysis of the selected genes; moreover, phytohormone contents, especially those of ABA, GA1 and GA7, were differentially accumulated between the groups. Our study provides a basal gene expression and phytohormone analysis of B. oldhamii culm color variation, which could provide a solid fundamental theory for investigating bamboo culm color variation.
Collapse
Affiliation(s)
- Yulian Jiao
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, Zhejiang, China,Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization, Lin’an, Zhejiang, China
| | - Hu Zeng
- Wuhan Metware Biotechnology Co., Ltd, Wuhan, China
| | - Haitao Xia
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, Zhejiang, China
| | - Yueying Wang
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, Zhejiang, China
| | - Jinwang Wang
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, Zhejiang, China
| | - Chuan Jin
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, Zhejiang, China
| |
Collapse
|
7
|
Cheon SH, Woo MA, Jo S, Kim YK, Kim KJ. The Chloroplast Phylogenomics and Systematics of Zoysia (Poaceae). PLANTS 2021; 10:plants10081517. [PMID: 34451562 PMCID: PMC8400354 DOI: 10.3390/plants10081517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/13/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022]
Abstract
The genus Zoysia Willd. (Chloridoideae) is widely distributed from the temperate regions of Northeast Asia—including China, Japan, and Korea—to the tropical regions of Southeast Asia. Among these, four species—Zoysia japonica Steud., Zoysia sinica Hance, Zoysia tenuifolia Thiele, and Zoysia macrostachya Franch. & Sav.—are naturally distributed in the Korean Peninsula. In this study, we report the complete plastome sequences of these Korean Zoysia species (NCBI acc. nos. MF953592, MF967579~MF967581). The length of Zoysia plastomes ranges from 135,854 to 135,904 bp, and the plastomes have a typical quadripartite structure, which consists of a pair of inverted repeat regions (20,962~20,966 bp) separated by a large (81,348~81,392 bp) and a small (12,582~12,586 bp) single-copy region. In terms of gene order and structure, Zoysia plastomes are similar to the typical plastomes of Poaceae. The plastomes encode 110 genes, of which 76 are protein-coding genes, 30 are tRNA genes, and four are rRNA genes. Fourteen genes contain single introns and one gene has two introns. Three evolutionary hotspot spacer regions—atpB~rbcL, rps16~rps3, and rpl32~trnL-UAG—were recognized among six analyzed Zoysia species. The high divergences in the atpB~rbcL spacer and rpl16~rpl3 region are primarily due to the differences in base substitutions and indels. In contrast, the high divergence between rpl32~trnL-UAG spacers is due to a small inversion with a pair of 22 bp stem and an 11 bp loop. Simple sequence repeats (SSRs) were identified in 59 different locations in Z. japonica, 63 in Z. sinica, 62 in Z. macrostachya, and 63 in Z. tenuifolia plastomes. Phylogenetic analysis showed that the Zoysia (Zoysiinae) forms a monophyletic group, which is sister to Sporobolus (Sporobolinae), with 100% bootstrap support. Within the Zoysia clade, the relationship of (Z. sinica, Z japonica), (Z. tenuifolia, Z. matrella), (Z. macrostachya, Z. macrantha) was suggested.
Collapse
|
8
|
Wang H, Wu Z, Fan G, Zheng G, Gu C, Tembrock LR, Yang Z, Yang J, Wang J. Characterization of the Complete Chloroplast Genome of Hygroryza aristata (Retz.) Nees ex Wight & Arn. (Zizaniinae, Poaceae). MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:1949-1950. [PMID: 34212082 PMCID: PMC8221126 DOI: 10.1080/23802359.2021.1935352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The complete chloroplast genome sequence of Hygroryza aristata was sequenced, assembled and published for the first time here. The chloroplast genome was 135,681 bp in length and comprised of a large single-copy (LSC, 81,532 bp) region and a small single-copy (SSC, 12,383 bp) region interspersed by two inverted repeats (IRs, 20,883 bp). Gene annotation resulted in the identification of 113 unique genes including 79 protein-coding genes, 30 transfer RNA (tRNA) genes, and four ribosomal RNA (rRNA) genes. In addition, 118 simple sequence repeats (SSRs) and 47 long repeats were identified. Phylogenetic analysis based on maximum likelihood analysis (ML) resolved the placement of H. aristata sister to a clade of Rhynchoryza subulata and Zizania.
Collapse
Affiliation(s)
- Haoqi Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.,Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Guohua Fan
- Shanxi Agricultural University/Shanxi Academy of Agricultural Sciences, Sorghum Research Institute. Yuci, Shanxi, China
| | - Gang Zheng
- School of Landscape and Architecture, Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang A & F University, Hangzhou, China
| | - Cuihua Gu
- School of Landscape and Architecture, Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang A & F University, Hangzhou, China
| | - Luke R Tembrock
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Zuoren Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jiankang Yang
- School of Basic Medical Sciences, Dali University, Dali, China
| | - Jie Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,School of Landscape and Architecture, Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
9
|
Ruifang Liang, Caraballo-Ortiz MA, Liu Y, Su X. Characterization of the Complete Chloroplast Genome of Meconopsis punicea (Papaveraceae), an Endemic Species from the Qinghai-Tibet Plateau in China. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452721020092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Liu Y, Su T, Peng M, Li J, Zhu X, Gou G, Dai Z. The complete chloroplast genome of Chimonobambusa hejiangensis (Poaceae: Arundinarieae) and phylogenetic analysis. MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:1285-1286. [PMID: 33855178 PMCID: PMC8018436 DOI: 10.1080/23802359.2021.1886007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Chimonobambusa hejiangensis is a kind of bamboo that has excellent edible and economic value, which is endemic to southwest China. The study used next-generation sequencing to obtain the complete chloroplast (cp) genome sequence of C. hejiangensis. The cp genome of C. hejiangensis has a total length of 138,908 bp, and consisted of an 82,495-bp large single-copy region, an 12,743-bp small single-copy region, and two 21,835-bp IR regions. In total, 112 unique genes were found in the cp genome, including 77 protein coding, 31 tRNA, and 4 rRNA genes. Phylogenetic analysis indicated that C.hejiangensis and C. tumidissinoda are sister species within the Arundinarieae genus, where Chimonocalamus and Ampelocalamus are more closely related to them.
Collapse
Affiliation(s)
- Yanjiang Liu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang, Guizhou Province, China.,Bamboo Research Institute, Guizhou University, Guiyang, China
| | - Ting Su
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang, Guizhou Province, China
| | - MaiMai Peng
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang, Guizhou Province, China.,Bamboo Research Institute, Guizhou University, Guiyang, China
| | - Jiaxue Li
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang, Guizhou Province, China.,Bamboo Research Institute, Guizhou University, Guiyang, China
| | - Xiao Zhu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang, Guizhou Province, China.,Bamboo Research Institute, Guizhou University, Guiyang, China
| | - Guangqian Gou
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang, Guizhou Province, China.,Bamboo Research Institute, Guizhou University, Guiyang, China
| | - Zhaoxia Dai
- Bamboo Research Institute, Guizhou University, Guiyang, China.,College of Forestry, Guizhou University, Guiyang, China
| |
Collapse
|
11
|
Chloroplast-based DNA barcode analysis indicates high discriminatory potential of matK locus in Himalayan temperate bamboos. 3 Biotech 2020; 10:534. [PMID: 33214981 DOI: 10.1007/s13205-020-02508-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/24/2020] [Indexed: 10/23/2022] Open
Abstract
The study was conducted to evaluate the discriminatory potential of selected chloroplast-based DNA barcode regions for identifying and resolving phylogeny of the Indian bamboos. Among 11 chloroplast markers screened, only four, namely matK, rbcL, psbK-I and rps16-trnQ showed successful amplification in 88 genotypes of 30 Indian bamboo taxa under Bambuseae and Arundinarieae tribes. A total of 244 sequences were generated for the four chloroplast regions. Tree-based analysis demonstrated that none of the tested regions successfully discriminated the taxa under Bambuseae tribe. Importantly, our highly concerned Himalayan temperate bamboo species under Arundinarieae tribe, were successfully discriminated by matK locus with high bootstrap support (>60%). Sequence comparisons revealed that the discriminatory power demonstrated by matK region actually lies in the few unique fixed nucleotides (UFNs) despite the overall DNA polymorphism. Although, rps16-trnQ region was found to be the most polymorphic and revealed high genetic divergence among different taxonomic levels, it could not successfully discriminated the taxa with strong statistical support. In a taxonomically difficult plant group like bamboos, whose genome is relatively more complex and has a slow rate of molecular evolution, it is difficult to get a universal marker. Further, highly variable barcode regions utilized in other species may not be informative, and thus, the development of DNA barcodes for different taxonomic levels, such as lineages or tribes could be a viable approach.
Collapse
|
12
|
The Complete Plastid Genome of Artocarpus camansi: A High Degree of Conservation of the Plastome Structure in the Family Moraceae. FORESTS 2020. [DOI: 10.3390/f11111179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Understanding the plastid genome is extremely important for the interpretation of the genetic mechanisms associated with essential physiological and metabolic functions, the identification of possible marker regions for phylogenetic or phylogeographic analyses, and the elucidation of the modes through which natural selection operates in different regions of this genome. In the present study, we assembled the plastid genome of Artocarpus camansi, compared its repetitive structures with Artocarpus heterophyllus, and searched for evidence of synteny within the family Moraceae. We also constructed a phylogeny based on 56 chloroplast genes to assess the relationships among three families of the order Rosales, that is, the Moraceae, Rhamnaceae, and Cannabaceae. The plastid genome of A. camansi has 160,096 bp, and presents the typical circular quadripartite structure of the Angiosperms, comprising a large single copy (LSC) of 88,745 bp and a small single copy (SSC) of 19,883 bp, separated by a pair of inverted repeat (IR) regions each with a length of 25,734 bp. The total GC content was 36.0%, which is very similar to Artocarpus heterophyllus (36.1%) and other moraceous species. A total of 23,068 codons and 80 SSRs were identified in the A. camansi plastid genome, with the majority of the SSRs being mononucleotide (70.0%). A total of 50 repeat structures were observed in the A. camansi plastid genome, in contrast with 61 repeats in A. heterophyllus. A purifying selection signal was found in 70 of the 79 protein-coding genes, indicating that they have all been highly conserved throughout the evolutionary history of the genus. The comparative analysis of the structural characteristics of the chloroplast among different moraceous species found a high degree of similarity in the sequences, which indicates a highly conserved evolutionary model in these plastid genomes. The phylogenetic analysis also recovered a high degree of similarity between the chloroplast genes of A. camansi and A. heterophyllus, and reconfirmed the hypothesis of the intense conservation of the plastome in the family Moraceae.
Collapse
|
13
|
Complete Chloroplast Genome of Japanese Larch (Larix kaempferi): Insights into Intraspecific Variation with an Isolated Northern Limit Population. FORESTS 2020. [DOI: 10.3390/f11080884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Research Highlights: The complete chloroplast genome for eight individuals of Japanese larch, including from the isolated population at the northern limit of the range (Manokami larch), revealed that Japanese larch forms a monophyletic group, within which Manokami larch can be phylogenetically placed in Japanese larch. We detected intraspecific variation for possible candidate cpDNA markers in Japanese larch. Background and Objectives: The natural distribution of Japanese larch is limited to the mountainous range in the central part of Honshu Island, Japan, with an isolated northern limit population (Manokami larch). In this study, we determined the phylogenetic position of Manokami larch within Japanese larch, characterized the chloroplast genome of Japanese larch, detected intraspecific variation, and determined candidate cpDNA markers. Materials and Methods: The complete genome sequence was determined for eight individuals, including Manokami larch, in this study. The genetic position of the northern limit population was evaluated using phylogenetic analysis. The chloroplast genome of Japanese larch was characterized by comparison with eight individuals. Furthermore, intraspecific variations were extracted to find candidate cpDNA markers. Results: The phylogenetic tree showed that Japanese larch forms a monophyletic group, within which Manokami larch can be phylogenetically placed, based on the complete chloroplast genome, with a bootstrap value of 100%. The value of nucleotide diversity (π) was calculated at 0.00004, based on SNP sites for Japanese larch, suggesting that sequences had low variation. However, we found three hyper-polymorphic regions within the cpDNA. Finally, we detected 31 intraspecific variations, including 19 single nucleotide polymorphisms, 8 simple sequence repeats, and 4 insertions or deletions. Conclusions: Using a distant genotype in a northern limit population (Manokami larch), we detected sufficient intraspecific variation for the possible candidates of cpDNA markers in Japanese larch.
Collapse
|
14
|
ddRAD analyses reveal a credible phylogenetic relationship of the four main genera of Bambusa-Dendrocalamus-Gigantochloa complex (Poaceae: Bambusoideae). Mol Phylogenet Evol 2020; 146:106758. [DOI: 10.1016/j.ympev.2020.106758] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 11/19/2022]
|
15
|
Wang W, Chen S, Guo W, Li Y, Zhang X. Tropical plants evolve faster than their temperate relatives: a case from the bamboos (Poaceae: Bambusoideae) based on chloroplast genome data. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1773312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Wencai Wang
- Molecular Genetics Group, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, PR China
- Molecular Genetics Group, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, PR China
| | - Siyun Chen
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan Province, PR China
| | - Wei Guo
- Department of Horticulture, College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, PR China
| | - Yongquan Li
- Department of Horticulture, College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, PR China
| | - Xianzhi Zhang
- Department of Horticulture, College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, PR China
| |
Collapse
|
16
|
Zhang X, Zhou R, Chen S. The complete chloroplast genome of Bambusa ventricosa (Bambusoideae: Bambuseae). Mitochondrial DNA B Resour 2018; 3:986-987. [PMID: 33474388 PMCID: PMC7799739 DOI: 10.1080/23802359.2018.1507645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 07/29/2018] [Indexed: 11/01/2022] Open
Abstract
Bambusa ventricosa is one important ornamental bamboo. In this study, we generated the complete chloroplast (cp) genome of B. ventricosa via genome-skimming method. The complete cp genome is 139,460 base-pairs (bp) in size, with a pair of inverted repeats of 21,794 bp which separate a large single copy region of 82,996 bp and a small single copy region of 12,876 bp. The genome contains a total of 131 genes, including 84 protein-coding genes, 8 ribosomal RNAs and 39 transfer RNAs. The GC content of the cp genome is 38.9%. Moreover, phylogenomic inference robustly placed B. ventricosa in the paleotropical woody bamboos lineage.
Collapse
Affiliation(s)
- Xianzhi Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Renchao Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Siyun Chen
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
17
|
Wang W, Chen S, Zhang X. Whole-Genome Comparison Reveals Divergent IR Borders and Mutation Hotspots in Chloroplast Genomes of Herbaceous Bamboos (Bambusoideae: Olyreae). Molecules 2018; 23:E1537. [PMID: 29949900 PMCID: PMC6099781 DOI: 10.3390/molecules23071537] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/15/2018] [Accepted: 06/21/2018] [Indexed: 11/21/2022] Open
Abstract
Herbaceous bamboos (Olyreae) are a separate lineage with idiosyncratic traits, e.g., unisexual flowers and annual or seasonal flowering lifestyle, in the grass family. To elucidate the evolution of herbaceous bamboos we produced two complete chloroplast (cp) genomes from two monotypic genera i.e., Froesiochloa and Rehia via the genome-skimming approach. The assembled F. boutelouoides and R. nervata cp genomes were 135,905 and 136,700 base-pair (bp), respectively. Further whole-genome comparative analyses revealed that the cp genes order was perfectly collinear, but the inverted repeats (IRs) borders, i.e., the junctions between IRs and single copy regions, were highly divergent in Olyreae. The IRs expansions/contractions occurred frequently in Olyreae, which have caused gene content and genome size variations, e.g., the copy number reduction of rps19 and trnH(GUG) genes in Froesiochloa. Subsequent nucleotide mutation analyses uncovered a greatly heterogeneous divergence pattern among different cpDNA regions in Olyreae cp genomes. On average, non-coding loci evolved at a rate of circa 1.9 times faster than coding loci, from which 20 rapidly evolving loci were determined as potential genetic markers for further studies on Olyreae. In addition, the phylogenomic analyses from 67 grass plastomes strongly supported the phylogenetic positions of Froesiochloa and Rehia in the Olyreae.
Collapse
Affiliation(s)
- Wencai Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Siyun Chen
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Xianzhi Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
18
|
Saarela JM, Burke SV, Wysocki WP, Barrett MD, Clark LG, Craine JM, Peterson PM, Soreng RJ, Vorontsova MS, Duvall MR. A 250 plastome phylogeny of the grass family (Poaceae): topological support under different data partitions. PeerJ 2018; 6:e4299. [PMID: 29416954 PMCID: PMC5798404 DOI: 10.7717/peerj.4299] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 01/08/2018] [Indexed: 12/23/2022] Open
Abstract
The systematics of grasses has advanced through applications of plastome phylogenomics, although studies have been largely limited to subfamilies or other subgroups of Poaceae. Here we present a plastome phylogenomic analysis of 250 complete plastomes (179 genera) sampled from 44 of the 52 tribes of Poaceae. Plastome sequences were determined from high throughput sequencing libraries and the assemblies represent over 28.7 Mbases of sequence data. Phylogenetic signal was characterized in 14 partitions, including (1) complete plastomes; (2) protein coding regions; (3) noncoding regions; and (4) three loci commonly used in single and multi-gene studies of grasses. Each of the four main partitions was further refined, alternatively including or excluding positively selected codons and also the gaps introduced by the alignment. All 76 protein coding plastome loci were found to be predominantly under purifying selection, but specific codons were found to be under positive selection in 65 loci. The loci that have been widely used in multi-gene phylogenetic studies had among the highest proportions of positively selected codons, suggesting caution in the interpretation of these earlier results. Plastome phylogenomic analyses confirmed the backbone topology for Poaceae with maximum bootstrap support (BP). Among the 14 analyses, 82 clades out of 309 resolved were maximally supported in all trees. Analyses of newly sequenced plastomes were in agreement with current classifications. Five of seven partitions in which alignment gaps were removed retrieved Panicoideae as sister to the remaining PACMAD subfamilies. Alternative topologies were recovered in trees from partitions that included alignment gaps. This suggests that ambiguities in aligning these uncertain regions might introduce a false signal. Resolution of these and other critical branch points in the phylogeny of Poaceae will help to better understand the selective forces that drove the radiation of the BOP and PACMAD clades comprising more than 99.9% of grass diversity.
Collapse
Affiliation(s)
- Jeffery M. Saarela
- Beaty Centre for Species Discovery and Botany Section, Canadian Museum of Nature, Ottawa, ON, Canada
| | - Sean V. Burke
- Plant Molecular and Bioinformatics Center, Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| | - William P. Wysocki
- Center for Data Intensive Sciences, University of Chicago, Chicago, IL, USA
| | - Matthew D. Barrett
- Botanic Gardens and Parks Authority, Kings Park and Botanic Garden, West Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Lynn G. Clark
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA
| | | | - Paul M. Peterson
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Robert J. Soreng
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Maria S. Vorontsova
- Comparative Plant & Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | - Melvin R. Duvall
- Plant Molecular and Bioinformatics Center, Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| |
Collapse
|
19
|
Zhang Y, Su J, Li J, Du FK. The complete chloroplast genome of a staple food of the giant panda, Fargesia denudata (Poaceae). CONSERV GENET RESOUR 2017. [DOI: 10.1007/s12686-017-0722-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Chen C, Zheng Y, Liu S, Zhong Y, Wu Y, Li J, Xu LA, Xu M. The complete chloroplast genome of Cinnamomum camphora and its comparison with related Lauraceae species. PeerJ 2017; 5:e3820. [PMID: 28948105 PMCID: PMC5609524 DOI: 10.7717/peerj.3820] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/28/2017] [Indexed: 11/20/2022] Open
Abstract
Cinnamomum camphora, a member of the Lauraceae family, is a valuable aromatic and timber tree that is indigenous to the south of China and Japan. All parts of Cinnamomum camphora have secretory cells containing different volatile chemical compounds that are utilized as herbal medicines and essential oils. Here, we reported the complete sequencing of the chloroplast genome of Cinnamomum camphora using illumina technology. The chloroplast genome of Cinnamomum camphora is 152,570 bp in length and characterized by a relatively conserved quadripartite structure containing a large single copy region of 93,705 bp, a small single copy region of 19,093 bp and two inverted repeat (IR) regions of 19,886 bp. Overall, the genome contained 123 coding regions, of which 15 were repeated in the IR regions. An analysis of chloroplast sequence divergence revealed that the small single copy region was highly variable among the different genera in the Lauraceae family. A total of 40 repeat structures and 83 simple sequence repeats were detected in both the coding and non-coding regions. A phylogenetic analysis indicated that Calycanthus is most closely related to Lauraceae, both being members of Laurales, which forms a sister group to Magnoliids. The complete sequence of the chloroplast of Cinnamomum camphora will aid in in-depth taxonomical studies of the Lauraceae family in the future. The genetic sequence information will also have valuable applications for chloroplast genetic engineering.
Collapse
Affiliation(s)
- Caihui Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
- Camphor Engineering Technology Research Center for State Forestry Administration, Jiangxi Academy of Forestry, Nanchang, Jiangxi, China
| | - Yongjie Zheng
- Camphor Engineering Technology Research Center for State Forestry Administration, Jiangxi Academy of Forestry, Nanchang, Jiangxi, China
| | - Sian Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Yongda Zhong
- Institute of Biological Resources, Jiangxi Academy of Science, Nanchang, Jiangxi, China
| | - Yanfang Wu
- Camphor Engineering Technology Research Center for State Forestry Administration, Jiangxi Academy of Forestry, Nanchang, Jiangxi, China
| | - Jiang Li
- Camphor Engineering Technology Research Center for State Forestry Administration, Jiangxi Academy of Forestry, Nanchang, Jiangxi, China
| | - Li-An Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Meng Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|
21
|
Ye S, Cai C, Ren H, Wang W, Xiang M, Tang X, Zhu C, Yin T, Zhang L, Zhu Q. An Efficient Plant Regeneration and Transformation System of Ma Bamboo ( Dendrocalamus latiflorus Munro) Started from Young Shoot as Explant. FRONTIERS IN PLANT SCIENCE 2017; 8:1298. [PMID: 28798758 PMCID: PMC5529393 DOI: 10.3389/fpls.2017.01298] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/10/2017] [Indexed: 05/29/2023]
Abstract
Genetic engineering technology has been successfully used in many plant species, but is limited in woody plants, especially in bamboos. Ma bamboo (Dendrocalamus latiflorus Munro) is one of the most important bamboo species in Asia, and its genetic improvement was largely restricted by the lack of an efficient regeneration and transformation method. Here we reported a plantlet regeneration and Agrobacterium-mediated transformation protocol by using Ma bamboo young shoots as explants. Under our optimized conditions, embryogenic calluses were successfully induced from the excised young shoots on callus induction medium and rapidly grew on callus multiplication medium. Shoots and roots were regenerated on shoot induction medium and root induction medium, respectively, with high efficiency. An Agrobacterium-mediated genetic transformation protocol of Ma bamboo was established, verified by PCR and GUS staining. Furthermore, the maize Lc gene under the control of the ubiquitin promoter was successfully introduced into Ma bamboo genome and generated an anthocyanin over-accumulation phenotype. Our methods established here will facilitate the basic research as well as genetic breeding of this important bamboo species. Key achievements: A stable and high efficiency regeneration and Agrobacterium-mediated transformation protocol for Ma bamboo from vegetative organ is established.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Qiang Zhu
- Basic Forestry and Proteomics Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Forestry, Fujian Agriculture and Forestry UniversityFuzhou, China
| |
Collapse
|
22
|
Wu Z, Gu C, Tembrock LR, Zhang D, Ge S. Characterization of the whole chloroplast genome of Chikusichloa mutica and its comparison with other rice tribe (Oryzeae) species. PLoS One 2017; 12:e0177553. [PMID: 28542519 PMCID: PMC5443529 DOI: 10.1371/journal.pone.0177553] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/28/2017] [Indexed: 11/19/2022] Open
Abstract
Chloroplast genomes are a significant genomic resource in plant species and have been used in many research areas. The complete genomic information from wild crop species could supply a valuable genetic reservoir for breeding. Chikusichloa mutica is one of the most important wild distant relatives of cultivated rice. In this study, we sequenced and characterized its complete chloroplast (cp) genome and compared it with other species in the same tribe. The whole cp genome sequence is 136,603 bp in size and exhibits a typical quadripartite structure with large and small single-copy regions (LSC, 82,327 bp; SSC, 12,598 bp) separated by a pair of 20,839-bp inverted repeats (IRA, B). A total of 110 unique genes are annotated, including 76 protein-coding genes, 4 ribosomal RNA genes and 30 tRNA genes. The genome structure, gene order, GC content, and other features are similar to those of other angiosperm cp genomes. When comparing the cp genomes between Oryzinae and Zizaniinae subtribes, the main differences were found between the junction regions and distribution of simple sequence repeats (SSRs). In comparing the two Chikusichloa species, the genomes were only 40 bp different in length and 108 polymorphic sites, including 83 single nucleotide substitutions (SNPs) and 25 insertion-deletions (Indels), were found between the whole cp genomes. The complete cp genome of C. mutica will be an important genetic tool for future breeding programs and understanding the evolution of wild rice relatives.
Collapse
Affiliation(s)
- Zhiqiang Wu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| | - Cuihua Gu
- School of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Luke R. Tembrock
- Department of Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Dong Zhang
- Department of Statistics, Iowa State University, Ames, Iowa, United States of America
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Attigala L, Wysocki WP, Duvall MR, Clark LG. Phylogenetic estimation and morphological evolution of Arundinarieae (Bambusoideae: Poaceae) based on plastome phylogenomic analysis. Mol Phylogenet Evol 2016; 101:111-121. [DOI: 10.1016/j.ympev.2016.05.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/30/2016] [Accepted: 05/03/2016] [Indexed: 10/21/2022]
|
24
|
Daniell H, Lin CS, Yu M, Chang WJ. Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol 2016; 17:134. [PMID: 27339192 PMCID: PMC4918201 DOI: 10.1186/s13059-016-1004-2] [Citation(s) in RCA: 789] [Impact Index Per Article: 98.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chloroplasts play a crucial role in sustaining life on earth. The availability of over 800 sequenced chloroplast genomes from a variety of land plants has enhanced our understanding of chloroplast biology, intracellular gene transfer, conservation, diversity, and the genetic basis by which chloroplast transgenes can be engineered to enhance plant agronomic traits or to produce high-value agricultural or biomedical products. In this review, we discuss the impact of chloroplast genome sequences on understanding the origins of economically important cultivated species and changes that have taken place during domestication. We also discuss the potential biotechnological applications of chloroplast genomes.
Collapse
Affiliation(s)
- Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, South 40th St, Philadelphia, PA, 19104-6030, USA.
| | - Choun-Sea Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ming Yu
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, South 40th St, Philadelphia, PA, 19104-6030, USA
| | - Wan-Jung Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
25
|
Givnish TJ, Zuluaga A, Marques I, Lam VKY, Gomez MS, Iles WJD, Ames M, Spalink D, Moeller JR, Briggs BG, Lyon SP, Stevenson DW, Zomlefer W, Graham SW. Phylogenomics and historical biogeography of the monocot order Liliales: out of Australia and through Antarctica. Cladistics 2016; 32:581-605. [DOI: 10.1111/cla.12153] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2016] [Indexed: 11/28/2022] Open
Affiliation(s)
- Thomas J. Givnish
- Department of Botany; University of Wisconsin-Madison; Madison WI 53706 USA
| | - Alejandro Zuluaga
- Department of Botany; University of Wisconsin-Madison; Madison WI 53706 USA
- Departamento de Biología; Universidad del Valle; Cali Colombia
| | - Isabel Marques
- Department of Botany; University of British Columbia; Vancouver Canada V6T 1Z4
- Department of Agriculture (Botany); High Polytechnic School of Huesca; University of Zaragoza; Carretera de Cuarte Km 1 Huesca E22071 Spain
| | - Vivienne K. Y. Lam
- Department of Botany; University of British Columbia; Vancouver Canada V6T 1Z4
| | - Marybel Soto Gomez
- Department of Botany; University of British Columbia; Vancouver Canada V6T 1Z4
| | - William J. D. Iles
- University and Jepson Herbaria; University of California-Berkeley; Berkeley CA 94720 USA
| | - Mercedes Ames
- Department of Botany; University of Wisconsin-Madison; Madison WI 53706 USA
| | - Daniel Spalink
- Department of Botany; University of Wisconsin-Madison; Madison WI 53706 USA
| | - Jackson R. Moeller
- Department of Botany; University of Wisconsin-Madison; Madison WI 53706 USA
| | | | - Stephanie P. Lyon
- Department of Botany; University of Wisconsin-Madison; Madison WI 53706 USA
| | | | - Wendy Zomlefer
- Department of Plant Biology; University of Georgia; Athens GA 30602 USA
| | - Sean W. Graham
- Department of Botany; University of British Columbia; Vancouver Canada V6T 1Z4
| |
Collapse
|
26
|
Burke SV, Lin CS, Wysocki WP, Clark LG, Duvall MR. Phylogenomics and Plastome Evolution of Tropical Forest Grasses ( Leptaspis, Streptochaeta: Poaceae). FRONTIERS IN PLANT SCIENCE 2016; 7:1993. [PMID: 28083012 PMCID: PMC5186769 DOI: 10.3389/fpls.2016.01993] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/15/2016] [Indexed: 05/08/2023]
Abstract
Studies of complete plastomes have proven informative for our understanding of the molecular evolution and phylogenomics of grasses. In this study, a plastome phylogenomic analysis sampled species from lineages of deeply diverging grasses including Streptochaeta spicata (Anomochlooideae), Leptaspis banksii, and L. zeylanica (both Pharoideae). Plastomes from next generation sequences for three species were assembled by de novo methods. The unambiguously aligned coding and non-coding sequences of the entire plastomes were aligned with those from 43 other grasses and the outgroup Joinvillea ascendens. Outgroup sampling of grasses has previously posed a challenge for plastome phylogenomic studies because of major rearrangements of the plastome. Here, over 81,000 bases of homologous sequence were aligned for phylogenomic and divergence estimation analyses. Rare genomic changes, including persistently long ψycf1 and ψycf2 loci, the loss of the rpoC1 intron, and a 21 base tandem repeat insert in the coding sequence for rps19 defined branch points in the grass phylogeny. Marked differences were seen in the topologies inferred from the complete plastome and two gene matrices, and mean maximum likelihood support values for the former were 10% higher. In the full plastome phylogenomic analyses, the two species of Anomochlooideae were monophyletic. Leptaspis and Pharus were found to be reciprocally monophyletic, with the estimated divergence of two Leptaspis species preceding those of Pharus by over 14 Ma, consistent with historical biogeography. Our estimates for deep divergences among grasses were older than previous such estimates, likely influenced by more complete taxonomic and molecular sampling and the use of recently available or previously unused fossil calibration points.
Collapse
Affiliation(s)
- Sean V. Burke
- Department of Biological Sciences, Northern Illinois University, DeKalbIL, USA
- *Correspondence: Sean V. Burke,
| | - Choun-Sea Lin
- Plant Tech Core Unit, Agricultural Biotechnology Research Center, Academia SinicaTaipei, Taiwan
| | - William P. Wysocki
- Department of Biological Sciences, Northern Illinois University, DeKalbIL, USA
| | - Lynn G. Clark
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, AmesIA, USA
| | - Melvin R. Duvall
- Department of Biological Sciences, Northern Illinois University, DeKalbIL, USA
| |
Collapse
|
27
|
Phylogenetic inference and SSR characterization of tropical woody bamboos tribe Bambuseae (Poaceae: Bambusoideae) based on complete plastid genome sequences. Curr Genet 2015; 62:443-53. [PMID: 26643654 DOI: 10.1007/s00294-015-0549-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/22/2015] [Accepted: 11/23/2015] [Indexed: 10/22/2022]
Abstract
The complete plastome sequencing is an efficient option for increasing phylogenetic resolution and evolutionary studies, as well as may greatly facilitate the use of plastid DNA markers in plant population genetic studies. Merostachys and Guadua stand out as the most common and the highest potential utilization bamboos indigenous of Brazil. Here, we sequenced the complete plastome sequences of the Brazilian Guadua chacoensis and Merostachys sp. to perform full plastome phylogeny and characterize the occurrence, type, and distribution of SRRs using 20 Bambuseae species. The determined plastome sequence of Merostachys sp. and G. chacoensis is 136,334 and 135,403 bp in size, respectively, with an identical gene content and typical quadripartite structure consisting of a pair of IRs separated by the LSC and SSC regions. The Maximum Likelihood and Bayesian Inference analyses produced phylogenomic trees identical in topology. These trees supported monophyly of Paleotropical and Neotropical Bamboos clades. The Neotropical bamboos segregated into three well-supported lineages, Chusqueinae, Guaduinae, and Arthrostylidiinae, with the last two forming a well-supported sister relationship. Paleotropical bamboos segregated into two well-supported lineages, Hickeliinae and Bambusinae + Melocanninae. We identified 141.8 cpSSR in Bambuseae plastomes and an inferior value (38.15) for plastome coding sequences. Among them, we identified 16 polymorphic SSR loci, with number of alleles varying from 3 to 10. These 16 polymorphic cpSSR loci in Bambuseae plastome can be assessed for the intraspecific level of polymorphism, leading to innovative highly sensitive phylogeographic and population genetics studies for this tribe.
Collapse
|
28
|
Wu M, Lan S, Cai B, Chen S, Chen H, Zhou S. The Complete Chloroplast Genome of Guadua angustifolia and Comparative Analyses of Neotropical-Paleotropical Bamboos. PLoS One 2015; 10:e0143792. [PMID: 26630488 PMCID: PMC4668023 DOI: 10.1371/journal.pone.0143792] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 11/10/2015] [Indexed: 11/19/2022] Open
Abstract
To elucidate chloroplast genome evolution within neotropical-paleotropical bamboos, we fully characterized the chloroplast genome of the woody bamboo Guadua angustifolia. This genome is 135,331 bp long and comprises of an 82,839-bp large single-copy (LSC) region, a 12,898-bp small single-copy (SSC) region, and a pair of 19,797-bp inverted repeats (IRs). Comparative analyses revealed marked conservation of gene content and sequence evolutionary rates between neotropical and paleotropical woody bamboos. The neotropical herbaceous bamboo Cryptochloa strictiflora differs from woody bamboos in IR/SSC boundaries in that it exhibits slightly contracted IRs and a faster substitution rate. The G. angustifolia chloroplast genome is similar in size to that of neotropical herbaceous bamboos but is ~3 kb smaller than that of paleotropical woody bamboos. Dissimilarities in genome size are correlated with differences in the lengths of intergenic spacers, which are caused by large-fragment insertion and deletion. Phylogenomic analyses of 62 taxa yielded a tree topology identical to that found in preceding studies. Divergence time estimation suggested that most bamboo genera diverged after the Miocene and that speciation events of extant species occurred during or after the Pliocene.
Collapse
Affiliation(s)
- Miaoli Wu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Siren Lan
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Bangping Cai
- Xiamen Botanical Garden, Xiamen, 361000, Fujian, China
| | - Shipin Chen
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Hui Chen
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- * E-mail: (HC); (SZ)
| | - Shiliang Zhou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- * E-mail: (HC); (SZ)
| |
Collapse
|
29
|
Talat F, Wang K. Comparative Bioinformatics Analysis of the Chloroplast Genomes of a Wild Diploid Gossypium and Two Cultivated Allotetraploid Species. IRANIAN JOURNAL OF BIOTECHNOLOGY 2015; 13:47-56. [PMID: 28959299 DOI: 10.15171/ijb.1231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Gossypium thurberi is a wild diploid species that has been used to improve cultivated allotetraploid cotton.G. thurberi belongs to D genome, which is an important wild bio-source for the cotton breeding and genetic research. To a certain degree, chloroplast DNA sequence information are a versatile tool for species identification and phylogenetic implications in plants. Different chloroplast loci have been utilized for evaluating phylogenetic relationships at each classification level among plant species, including at the interspecies and intraspecies levels. Present study was conducted in order to analyse the sequence of its chloroplast. OBJECTIVES Present study was conducted to study and compare the complete chloroplast sequence of G. thurberi, analyses of its genome structure, gene content and organization, repeat sequence and codon usage and comparison with two cultivated allotetraploid sequenced cotton species. MATERIALS AND METHODS The available sequence was assembled by DNAman (Version 8.1.2.378). Gene annotation was mainly performed by DOGMA. The map of genome structure and gene distribution were carried out using OGDRAW V1.1. Relative synonymous codon usage (RSCU) of different codons in each gene sample was calculated by codonW in Mobyle. To determine the repeat sequence and location, an online version of REPuter was used. RESULTS The G. thurberi chloroplast (cp) genome is 160264 bp in length with conserved quadripartite structure. Single copy region of cp genome is separated by the two inverted regions. The large single copy region is 88,737 bp, and the small single copy region is 20,271 bp whereas the inverted repeat is 25,628 bp each. The plastidic genome has 113 single genes and 20 duplicated genes. The singletones encode 79 proteins, 4 ribosomal RNA genes and 30 transfer RNA genes. CONCLUSIONS Amongst all plastidic genes only 18 genes appeared to have 1-2 introns and when compared with cpDNA of two cultivated allotetraploid, rps18 was the only duplicated gene in G.thurberi. Despite the high level of conservation in cp genome SSRs ,these are useful in analysis of genetic diversity due to their greater efficiency as opposed to genomic SSRs. Low GC content is a significant feature of plastidic genomes, which is possibly formed after endosymbiosis by DNA replication and repair.
Collapse
Affiliation(s)
- Farshid Talat
- West Azerbaijan Agricultural and Natural Resources Research Center, AREEO, Urmia, Iran.,Cotton Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, Henan, China
| | - Kunbo Wang
- Cotton Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, Henan, China
| |
Collapse
|
30
|
Saarela JM, Wysocki WP, Barrett CF, Soreng RJ, Davis JI, Clark LG, Kelchner SA, Pires JC, Edger PP, Mayfield DR, Duvall MR. Plastid phylogenomics of the cool-season grass subfamily: clarification of relationships among early-diverging tribes. AOB PLANTS 2015; 7:plv046. [PMID: 25940204 PMCID: PMC4480051 DOI: 10.1093/aobpla/plv046] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/21/2015] [Indexed: 05/08/2023]
Abstract
Whole plastid genomes are being sequenced rapidly from across the green plant tree of life, and phylogenetic analyses of these are increasing resolution and support for relationships that have varied among or been unresolved in earlier single- and multi-gene studies. Pooideae, the cool-season grass lineage, is the largest of the 12 grass subfamilies and includes important temperate cereals, turf grasses and forage species. Although numerous studies of the phylogeny of the subfamily have been undertaken, relationships among some 'early-diverging' tribes conflict among studies, and some relationships among subtribes of Poeae have not yet been resolved. To address these issues, we newly sequenced 25 whole plastomes, which showed rearrangements typical of Poaceae. These plastomes represent 9 tribes and 11 subtribes of Pooideae, and were analysed with 20 existing plastomes for the subfamily. Maximum likelihood (ML), maximum parsimony (MP) and Bayesian inference (BI) robustly resolve most deep relationships in the subfamily. Complete plastome data provide increased nodal support compared with protein-coding data alone at nodes that are not maximally supported. Following the divergence of Brachyelytrum, Phaenospermateae, Brylkinieae-Meliceae and Ampelodesmeae-Stipeae are the successive sister groups of the rest of the subfamily. Ampelodesmeae are nested within Stipeae in the plastome trees, consistent with its hybrid origin between a phaenospermatoid and a stipoid grass (the maternal parent). The core Pooideae are strongly supported and include Brachypodieae, a Bromeae-Triticeae clade and Poeae. Within Poeae, a novel sister group relationship between Phalaridinae and Torreyochloinae is found, and the relative branching order of this clade and Aveninae, with respect to an Agrostidinae-Brizinae clade, are discordant between MP and ML/BI trees. Maximum likelihood and Bayesian analyses strongly support Airinae and Holcinae as the successive sister groups of a Dactylidinae-Loliinae clade.
Collapse
Affiliation(s)
- Jeffery M Saarela
- Botany Section, Research and Collections, Canadian Museum of Nature, PO Box 3443 Stn. D, Ottawa, ON, Canada K1P 3P4
| | - William P Wysocki
- Biological Sciences, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115-2861, USA
| | - Craig F Barrett
- Department of Biological Sciences, California State University, 5151 State University Dr., Los Angeles, CA 90032-8201, USA
| | - Robert J Soreng
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, USA
| | - Jerrold I Davis
- Section of Plant Biology, Cornell University, 412 Mann Library, Ithaca, NY 14853, USA
| | - Lynn G Clark
- Ecology, Evolution and Organismal Biology, Iowa State University, 251 Bessey Hall, Ames, IA 50011-1020, USA
| | - Scot A Kelchner
- Biological Sciences, Idaho State University, 921 S. 8th Ave, Pocatello, ID 83209, USA
| | - J Chris Pires
- Division of Biological Sciences, University of Missouri, 1201 Rollins St, Columbia, MO 65211, USA
| | - Patrick P Edger
- Department of Plant and Microbial Biology, University of California - Berkeley, Berkeley, CA 94720, USA
| | - Dustin R Mayfield
- Division of Biological Sciences, University of Missouri, 1201 Rollins St, Columbia, MO 65211, USA
| | - Melvin R Duvall
- Biological Sciences, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115-2861, USA
| |
Collapse
|
31
|
Wysocki WP, Clark LG, Attigala L, Ruiz-Sanchez E, Duvall MR. Evolution of the bamboos (Bambusoideae; Poaceae): a full plastome phylogenomic analysis. BMC Evol Biol 2015. [PMID: 25887467 DOI: 10.1186/s12862‐015‐0321‐5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Bambusoideae (Poaceae) comprise three distinct and well-supported lineages: tropical woody bamboos (Bambuseae), temperate woody bamboos (Arundinarieae) and herbaceous bamboos (Olyreae). Phylogenetic studies using chloroplast markers have generally supported a sister relationship between Bambuseae and Olyreae. This suggests either at least two origins of the woody bamboo syndrome in this subfamily or its loss in Olyreae. RESULTS Here a full chloroplast genome (plastome) phylogenomic study is presented using the coding and noncoding regions of 13 complete plastomes from the Bambuseae, eight from Olyreae and 10 from Arundinarieae. Trees generated using full plastome sequences support the previously recovered monophyletic relationship between Bambuseae and Olyreae. In addition to these relationships, several unique plastome features are uncovered including the first mitogenome-to-plastome horizontal gene transfer observed in monocots. CONCLUSIONS Phylogenomic agreement with previous published phylogenies reinforces the validity of these studies. Additionally, this study presents the first published plastomes from Neotropical woody bamboos and the first full plastome phylogenomic study performed within the herbaceous bamboos. Although the phylogenomic tree presented in this study is largely robust, additional studies using nuclear genes support monophyly in woody bamboos as well as hybridization among previous woody bamboo lineages. The evolutionary history of the Bambusoideae could be further clarified using transcriptomic techniques to increase sampling among nuclear orthologues and investigate the molecular genetics underlying the development of woody and floral tissues.
Collapse
Affiliation(s)
- William P Wysocki
- Biological Sciences, Northern Illinois University, 1425 W Lincoln Hwy, DeKalb, 60115-2861, IL, USA.
| | - Lynn G Clark
- Ecology, Evolution and Organismal Biology, Iowa State University, 251 Bessey Hall, Ames, 50011-1020, IA, USA.
| | - Lakshmi Attigala
- Ecology, Evolution and Organismal Biology, Iowa State University, 251 Bessey Hall, Ames, 50011-1020, IA, USA.
| | - Eduardo Ruiz-Sanchez
- Instituto de Ecología AC, Centro Regional del Bajío, Biodiversidad y Sistemática, Av. Lázaro Cárdenas 253, Pátzcuaro, 61600, Michoacán, Mexico.
| | - Melvin R Duvall
- Biological Sciences, Northern Illinois University, 1425 W Lincoln Hwy, DeKalb, 60115-2861, IL, USA.
| |
Collapse
|
32
|
Wysocki WP, Clark LG, Attigala L, Ruiz-Sanchez E, Duvall MR. Evolution of the bamboos (Bambusoideae; Poaceae): a full plastome phylogenomic analysis. BMC Evol Biol 2015; 15:50. [PMID: 25887467 PMCID: PMC4389303 DOI: 10.1186/s12862-015-0321-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 02/24/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bambusoideae (Poaceae) comprise three distinct and well-supported lineages: tropical woody bamboos (Bambuseae), temperate woody bamboos (Arundinarieae) and herbaceous bamboos (Olyreae). Phylogenetic studies using chloroplast markers have generally supported a sister relationship between Bambuseae and Olyreae. This suggests either at least two origins of the woody bamboo syndrome in this subfamily or its loss in Olyreae. RESULTS Here a full chloroplast genome (plastome) phylogenomic study is presented using the coding and noncoding regions of 13 complete plastomes from the Bambuseae, eight from Olyreae and 10 from Arundinarieae. Trees generated using full plastome sequences support the previously recovered monophyletic relationship between Bambuseae and Olyreae. In addition to these relationships, several unique plastome features are uncovered including the first mitogenome-to-plastome horizontal gene transfer observed in monocots. CONCLUSIONS Phylogenomic agreement with previous published phylogenies reinforces the validity of these studies. Additionally, this study presents the first published plastomes from Neotropical woody bamboos and the first full plastome phylogenomic study performed within the herbaceous bamboos. Although the phylogenomic tree presented in this study is largely robust, additional studies using nuclear genes support monophyly in woody bamboos as well as hybridization among previous woody bamboo lineages. The evolutionary history of the Bambusoideae could be further clarified using transcriptomic techniques to increase sampling among nuclear orthologues and investigate the molecular genetics underlying the development of woody and floral tissues.
Collapse
Affiliation(s)
- William P Wysocki
- Biological Sciences, Northern Illinois University, 1425 W Lincoln Hwy, DeKalb, 60115-2861, IL, USA.
| | - Lynn G Clark
- Ecology, Evolution and Organismal Biology, Iowa State University, 251 Bessey Hall, Ames, 50011-1020, IA, USA.
| | - Lakshmi Attigala
- Ecology, Evolution and Organismal Biology, Iowa State University, 251 Bessey Hall, Ames, 50011-1020, IA, USA.
| | - Eduardo Ruiz-Sanchez
- Instituto de Ecología AC, Centro Regional del Bajío, Biodiversidad y Sistemática, Av. Lázaro Cárdenas 253, Pátzcuaro, 61600, Michoacán, Mexico.
| | - Melvin R Duvall
- Biological Sciences, Northern Illinois University, 1425 W Lincoln Hwy, DeKalb, 60115-2861, IL, USA.
| |
Collapse
|
33
|
Ma PF, Zhang YX, Zeng CX, Guo ZH, Li DZ. Chloroplast Phylogenomic Analyses Resolve Deep-Level Relationships of an Intractable Bamboo Tribe Arundinarieae (Poaceae). Syst Biol 2014; 63:933-50. [DOI: 10.1093/sysbio/syu054] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Peng-Fei Ma
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; 2Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; and 3Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; 2Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; and 3Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; 2Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; and 3Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yu-Xiao Zhang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; 2Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; and 3Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; 2Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; and 3Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Chun-Xia Zeng
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; 2Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; and 3Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Zhen-Hua Guo
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; 2Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; and 3Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - De-Zhu Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; 2Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; and 3Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; 2Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; and 3Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
34
|
Shih MC, Chou ML, Yue JJ, Hsu CT, Chang WJ, Ko SS, Liao DC, Huang YT, Chen JJW, Yuan JL, Gu XP, Lin CS. BeMADS1 is a key to delivery MADSs into nucleus in reproductive tissues-De novo characterization of Bambusa edulis transcriptome and study of MADS genes in bamboo floral development. BMC PLANT BIOLOGY 2014; 14:179. [PMID: 24989161 PMCID: PMC4087239 DOI: 10.1186/1471-2229-14-179] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 06/19/2014] [Indexed: 05/09/2023]
Abstract
BACKGROUND The bamboo Bambusa edulis has a long juvenile phase in situ, but can be induced to flower during in vitro tissue culture, providing a readily available source of material for studies on reproductive biology and flowering. In this report, in vitro-derived reproductive and vegetative materials of B. edulis were harvested and used to generate transcriptome databases by use of two sequencing platforms: Illumina and 454. Combination of the two datasets resulted in high transcriptome quality and increased length of the sequence reads. In plants, many MADS genes control flower development, and the ABCDE model has been developed to explain how the genes function together to create the different whorls within a flower. RESULTS As a case study, published floral development-related OsMADS proteins from rice were used to search the B. edulis transcriptome datasets, identifying 16 B. edulis MADS (BeMADS). The BeMADS gene expression levels were determined qRT-PCR and in situ hybridization. Most BeMADS genes were highly expressed in flowers, with the exception of BeMADS34. The expression patterns of these genes were most similar to the rice homologs, except BeMADS18 and BeMADS34, and were highly similar to the floral development ABCDE model in rice. Transient expression of MADS-GFP proteins showed that only BeMADS1 entered leaf nucleus. BeMADS18, BeMADS4, and BeMADS1 were located in the lemma nucleus. When co-transformed with BeMADS1, BeMADS15, 16, 13, 21, 6, and 7 translocated to nucleus in lemmas, indicating that BeMADS1 is a key factor for subcellular localization of other BeMADS. CONCLUSION Our study provides abundant B. edulis transcriptome data and offers comprehensive sequence resources. The results, molecular materials and overall strategy reported here can be used for future gene identification and for further reproductive studies in the economically important crop of bamboo.
Collapse
Affiliation(s)
- Ming-Che Shih
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ming-Lun Chou
- Department of Life Sciences, Tzu Chi University, Hualien, Taiwan
| | - Jin-Jun Yue
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, China
| | - Cheng-Tran Hsu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Wan-Jung Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Swee-Suak Ko
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| | - De-Chih Liao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Yao-Ting Huang
- Department of Computer Science and Information Engineering, National Chung Cheng University, Chia-yi, Taiwan
| | - Jeremy JW Chen
- Institute of Biomedical Sciences, National Chung-Hsing University, Taichung, Taiwan
| | - Jin-Ling Yuan
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, China
| | - Xiao-Ping Gu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, China
| | - Choun-Sea Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
35
|
Gao J, Li K, Gao LZ. The complete chloroplast genome sequence of the Bambusa multiplex (Poaceae: Bambusoideae). Mitochondrial DNA A DNA Mapp Seq Anal 2014; 27:980-2. [PMID: 24938112 DOI: 10.3109/19401736.2014.926515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The complete nucleotide sequence of the Bambusa multiplex chloroplast genome (cpDNA) was determined in this study. The cpDNA was 139,394 bp in length, containing a pair of 21,798 bp inverted repeat regions (IR), which were separated by small and large single copy regions (SSC and LSC) of 12,875 and 82,923 bp, respectively. The B. multiplex cp genome encodes 129 predicted functional genes; 110 are unique (77 protein-coding genes, 29 tRNA genes, 4 rRNA), 19 are duplicated in the IR regions and one gene extended into the IR region in the junctions between IR and SSC. 43.20% of the genome sequence encodes proteins. The B. multiplex cp genome is AT-rich (61.08%). In these genes, fourteen genes contained one intron, while one gene had two introns.
Collapse
Affiliation(s)
- Ju Gao
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , China and
| | - Kui Li
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , China and
| | - Li-zhi Gao
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , China and.,b Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, the Chinese Academy of Sciences , Kunming , China
| |
Collapse
|
36
|
Gao J, Gao LZ. The complete chloroplast genome sequence of the Phyllostachys sulphurea (Poaceae: Bambusoideae). Mitochondrial DNA A DNA Mapp Seq Anal 2014; 27:983-5. [PMID: 24938113 DOI: 10.3109/19401736.2014.926516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The complete nucleotide sequence of the Phyllostachys sulphurea chloroplast genome (cpDNA) was determined in this study. The cpDNA was 139,731 bp in length, containing a pair of 21,798 bp inverted repeat regions (IR), which were separated by small and large single copy regions (SSC and LSC) of 12,879 and 83,256 bp, respectively. The P. sulphurea cp genome encodes 129 predicted functional genes; 110 are unique (77 protein-coding genes, 29 tRNA genes, 4 rRNA), 19 are duplicated in the IR regions and one gene extended into the IR region in the junctions between IR and SSC. 43.06% of the genome sequence encodes proteins. The P. sulphurea cp genome is AT-rich (61.11%). In these genes, fourteen genes contained one intron, while one gene had two introns.
Collapse
Affiliation(s)
- Ju Gao
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , China and
| | - Li-zhi Gao
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , China and.,b Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, the Chinese Academy of Sciences , Kunming , China
| |
Collapse
|
37
|
Dong W, Xu C, Cheng T, Lin K, Zhou S. Sequencing angiosperm plastid genomes made easy: a complete set of universal primers and a case study on the phylogeny of saxifragales. Genome Biol Evol 2013; 5:989-97. [PMID: 23595020 PMCID: PMC3673619 DOI: 10.1093/gbe/evt063] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Plastid genomes are an invaluable resource for plant biological studies. However, the number of completely sequenced plant plastid genomes is still small compared with the vast number of species. To provide an alternative generalized approach, we designed a set of 138 pairs of universal primers for amplifying (termed "short-range PCR") and sequencing the entire genomes of the angiosperm plastid genomes. The universality of the primers was tested by using species from the basal to asterid angiosperms. The polymerase chain reaction (PCR) success rate was higher than 96%. We sequenced the complete chloroplast genome of Liquidambar formosana as an example using this method and compared it to the genomes independently determined by long-range PCR (from 6.3 kb to 13.3 kb) and next-generation sequencing methods. The three genomes showed that they were completely identical. To test the phylogenetic efficiency of this method, we amplified and sequenced 18 chloroplast regions of 19 Saxifragales and Saxifragales-related taxa, as a case study, to reconstruct the phylogeny of all families of the order. Phylograms based on a combination of our data, together with those from GenBank, clearly indicate three family groups and three single families within the order. This set of universal primers is expected to accelerate the accumulation of angiosperm plastid genomes and to make faster mass data collection of plastid genomes for molecular systematics.
Collapse
Affiliation(s)
- Wenpan Dong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Cheng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kui Lin
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Shiliang Zhou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- *Corresponding author: E-mail:
| |
Collapse
|
38
|
Yeh SH, Lee BH, Liao SC, Tsai MH, Tseng YH, Chang HC, Yang CC, Jan HC, Chiu YC, Wang AY. Identification of genes differentially expressed during the growth of Bambusa oldhamii. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 63:217-226. [PMID: 23291655 DOI: 10.1016/j.plaphy.2012.11.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 11/29/2012] [Indexed: 06/01/2023]
Abstract
Bamboos are ecologically and economically important grasses, and are distinguished by their rapid growth. To identify genes associated with bamboo growth, PCR-based mRNA differential display was used to clone genes that were differentially expressed in various tissues of bamboo (Bambusa oldhamii) shoots at different growth stages. In total, 260 different cDNA sequences were obtained. These genes displayed complex expression profiles across the different tissues and growth stages as revealed by a cDNA microarray analysis. Notable among them were genes that were temporally up-regulated or down-regulated in the internode-containing region of rapidly elongating shoots. These genes might participate in the rapid elongation of the bamboo culm. Of the 36 up-regulated and 46 down-regulated genes, 16 genes and 8 genes, respectively, were predicted to encode hypothetical proteins or were unknown sequences. Aside from these, genes involved in hormonal signaling and homeostasis, stress responses, peptide processing and signaling and lignin biosynthesis composed most of the up-regulated genes; genes involved in DNA replication, nucleic acid binding and signal transduction were highly represented among the down-regulated genes. These results suggested that genes associated with plant hormonal signaling and homeostasis, peptide signaling, reactive oxygen species signaling and homeostasis, several stress-related genes and a monocot-specific unknown gene, BoMSP41, play important roles in the elongation of bamboo internodes. Multiple signaling pathways might form a complex interconnected network that controls the rapid growth of this giant grass.
Collapse
Affiliation(s)
- Sheng-Hsiung Yeh
- Department of Biochemical Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Burke SV, Grennan CP, Duvall MR. Plastome sequences of two New World bamboos--Arundinaria gigantea and Cryptochloa strictiflora (Poaceae)--extend phylogenomic understanding of Bambusoideae. AMERICAN JOURNAL OF BOTANY 2012; 99:1951-61. [PMID: 23221496 DOI: 10.3732/ajb.1200365] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
PREMISE OF THE STUDY Two New World species of Bambusoideae, Arundinaria gigantea and Crytpochloa strictiflora, were investigated in a phylogenomic context. Complete plastome sequences have been previously determined and analyzed for nine bambusoid species that exclusively represent Old World lineages. The addition of New World species provides more complete information on relationships within Bambusoideae. • METHODS Plastomes from A. gigantea and C. strictiflora were sequenced using Sanger methods. Phylogenomic and divergence estimate analyses were conducted on both species with 23 other Poaceae. • KEY RESULTS Phylogenomic and divergence analyses suggested that A. gigantea diverged from within Arundinarieae between 1.94-3.92 mya and that C. strictiflora diverged as the sister to tropical woody species between 24.83 and 40.22 mya. These results are correlated with modern relative diversities in the two lineages. • CONCLUSIONS The two New World bamboos show unique plastome features accumulated and maintained in biogeographic isolation from Old World taxa. The overall evidence for A. gigantea is consistent with recent dispersal, and that for C. strictiflora is consistent with vicariance.
Collapse
Affiliation(s)
- Sean V Burke
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois 60115-2861, USA
| | | | | |
Collapse
|
40
|
Xu Q, Xiong G, Li P, He F, Huang Y, Wang K, Li Z, Hua J. Analysis of complete nucleotide sequences of 12 Gossypium chloroplast genomes: origin and evolution of allotetraploids. PLoS One 2012; 7:e37128. [PMID: 22876273 PMCID: PMC3411646 DOI: 10.1371/journal.pone.0037128] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 04/16/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cotton (Gossypium spp.) is a model system for the analysis of polyploidization. Although ascertaining the donor species of allotetraploid cotton has been intensively studied, sequence comparison of Gossypium chloroplast genomes is still of interest to understand the mechanisms underlining the evolution of Gossypium allotetraploids, while it is generally accepted that the parents were A- and D-genome containing species. Here we performed a comparative analysis of 13 Gossypium chloroplast genomes, twelve of which are presented here for the first time. METHODOLOGY/PRINCIPAL FINDINGS The size of 12 chloroplast genomes under study varied from 159,959 bp to 160,433 bp. The chromosomes were highly similar having >98% sequence identity. They encoded the same set of 112 unique genes which occurred in a uniform order with only slightly different boundary junctions. Divergence due to indels as well as substitutions was examined separately for genome, coding and noncoding sequences. The genome divergence was estimated as 0.374% to 0.583% between allotetraploid species and A-genome, and 0.159% to 0.454% within allotetraploids. Forty protein-coding genes were completely identical at the protein level, and 20 intergenic sequences were completely conserved. The 9 allotetraploids shared 5 insertions and 9 deletions in whole genome, and 7-bp substitutions in protein-coding genes. The phylogenetic tree confirmed a close relationship between allotetraploids and the ancestor of A-genome, and the allotetraploids were divided into four separate groups. Progenitor allotetraploid cotton originated 0.43-0.68 million years ago (MYA). CONCLUSION Despite high degree of conservation between the Gossypium chloroplast genomes, sequence variations among species could still be detected. Gossypium chloroplast genomes preferred for 5-bp indels and 1-3-bp indels are mainly attributed to the SSR polymorphisms. This study supports that the common ancestor of diploid A-genome species in Gossypium is the maternal source of extant allotetraploid species and allotetraploids have a monophyletic origin. G. hirsutum AD1 lineages have experienced more sequence variations than other allotetraploids in intergenic regions. The available complete nucleotide sequences of 12 Gossypium chloroplast genomes should facilitate studies to uncover the molecular mechanisms of compartmental co-evolution and speciation of Gossypium allotetraploids.
Collapse
Affiliation(s)
- Qin Xu
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Guanjun Xiong
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Pengbo Li
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
- Institute of Cotton, Shanxi Academy of Agricultural Sciences, Yuncheng, China
| | - Fei He
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yi Huang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Kunbo Wang
- Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhaohu Li
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Jinping Hua
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
41
|
Pan IC, Liao DC, Wu FH, Daniell H, Singh ND, Chang C, Shih MC, Chan MT, Lin CS. Complete chloroplast genome sequence of an orchid model plant candidate: Erycina pusilla apply in tropical Oncidium breeding. PLoS One 2012; 7:e34738. [PMID: 22496851 PMCID: PMC3319614 DOI: 10.1371/journal.pone.0034738] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 03/09/2012] [Indexed: 01/07/2023] Open
Abstract
Oncidium is an important ornamental plant but the study of its functional genomics is difficult. Erycina pusilla is a fast-growing Oncidiinae species. Several characteristics including low chromosome number, small genome size, short growth period, and its ability to complete its life cycle in vitro make E. pusilla a good model candidate and parent for hybridization for orchids. Although genetic information remains limited, systematic molecular analysis of its chloroplast genome might provide useful genetic information. By combining bacterial artificial chromosome (BAC) clones and next-generation sequencing (NGS), the chloroplast (cp) genome of E. pusilla was sequenced accurately, efficiently and economically. The cp genome of E. pusilla shares 89 and 84% similarity with Oncidium Gower Ramsey and Phalanopsis aphrodite, respectively. Comparing these 3 cp genomes, 5 regions have been identified as showing diversity. Using PCR analysis of 19 species belonging to the Epidendroideae subfamily, a conserved deletion was found in the rps15-trnN region of the Cymbidieae tribe. Because commercial Oncidium varieties in Taiwan are limited, identification of potential parents using molecular breeding method has become very important. To demonstrate the relationship between taxonomic position and hybrid compatibility of E. pusilla, 4 DNA regions of 36 tropically adapted Oncidiinae varieties have been analyzed. The results indicated that trnF-ndhJ and trnH-psbA were suitable for phylogenetic analysis. E. pusilla proved to be phylogenetically closer to Rodriguezia and Tolumnia than Oncidium, despite its similar floral appearance to Oncidium. These results indicate the hybrid compatibility of E. pusilla, its cp genome providing important information for Oncidium breeding.
Collapse
Affiliation(s)
- I-Chun Pan
- Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, Taiwan
| | - Der-Chih Liao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Fu-Huei Wu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Henry Daniell
- Department of Molecular Biology and Microbiology, University of Central Florida, Orlando, Florida, United States of America
| | - Nameirakpam Dolendro Singh
- Department of Molecular Biology and Microbiology, University of Central Florida, Orlando, Florida, United States of America
| | - Chen Chang
- Department of Horticulture, National Chung Hsing University, Taichung, Taiwan
| | - Ming-Che Shih
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ming-Tsair Chan
- Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, Taiwan
- * E-mail: (M-TC); (C-SL)
| | - Choun-Sea Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- * E-mail: (M-TC); (C-SL)
| |
Collapse
|
42
|
Uthaipaisanwong P, Chanprasert J, Shearman JR, Sangsrakru D, Yoocha T, Jomchai N, Jantasuriyarat C, Tragoonrung S, Tangphatsornruang S. Characterization of the chloroplast genome sequence of oil palm (Elaeis guineensis Jacq.). Gene 2012; 500:172-80. [PMID: 22487870 DOI: 10.1016/j.gene.2012.03.061] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 03/09/2012] [Accepted: 03/23/2012] [Indexed: 10/28/2022]
Abstract
Oil palm (Elaeis guineensis Jacq.) is an economically important crop, which is grown for oil production. To better understand the molecular basis of oil palm chloroplasts, we characterized the complete chloroplast (cp) genome sequence obtained from 454 pyrosequencing. The oil palm cp genome is 156,973 bp in length consisting of a large single-copy region of 85,192 bp flanked on each side by inverted repeats of 27,071 bp with a small single-copy region of 17,639 bp joining the repeats. The genome contains 112 unique genes: 79 protein-coding genes, 4 ribosomal RNA genes and 29 tRNA genes. By aligning the cp genome sequence with oil palm cDNA sequences, we observed 18 non-silent and 10 silent RNA editing events among 19 cp protein-coding genes. Creation of an initiation codon by RNA editing in rpl2 has been reported in several monocots and was also found in the oil palm cp genome. Fifty common chloroplast protein-coding genes from 33 plant taxa were used to construct ML and MP phylogenetic trees. Their topologies are similar and strongly support for the position of E. guineensis as the sister of closely related species Phoenix dactylifera in Arecaceae (palm families) of monocot subtrees.
Collapse
Affiliation(s)
- P Uthaipaisanwong
- National Center for Genetic Engineering and Biotechnology, 113 Phaholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wu ZQ, Ge S. The phylogeny of the BEP clade in grasses revisited: Evidence from the whole-genome sequences of chloroplasts. Mol Phylogenet Evol 2012; 62:573-8. [DOI: 10.1016/j.ympev.2011.10.019] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 10/22/2011] [Accepted: 10/24/2011] [Indexed: 11/29/2022]
|
44
|
Gao ZM, Li CL, Peng ZH. Generation and analysis of expressed sequence tags from a normalized cDNA library of young leaf from Ma bamboo (Dendrocalamus latiflorus Munro). PLANT CELL REPORTS 2011; 30:2045-57. [PMID: 21713530 DOI: 10.1007/s00299-011-1112-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 06/13/2011] [Accepted: 06/16/2011] [Indexed: 05/04/2023]
Abstract
Ma bamboo (Dendrocalamus latiflorus Munro) belongs to Dendrocalamus genus, Bambusease tribe, Bambusoideae subfamily, Poaceae family. It is a representative species of clumping bamboo, and a principal commercial species for various construction purposes using mature culms and for human consumption using young shoots. A normalized cDNA library was constructed from young leaves of Ma bamboo and 9,574 high-quality ESTs were generated, from which 5,317 unigenes including 1,502 contigs and 3,815 singletons were assembled. The unigenes were assigned into different gene ontology (GO) categories and summarized into 13 broad biologically functional groups according to similar functional characteristics or cellular roles by BLAST search against public databases. Eight hundred and ninety-one unigenes were assigned by KO identifiers and mapped to six KEGG biochemical pathways. The transcripts involved in biosynthesis of secondary metabolites such as cytochrome 450, flavonol synthase/flavanone 3-hydroxylase, and dihydroflavonol-4-reductase were well represented by 14 unigenes in the unigene set. The candidate genes involved in phytohormone metabolism, signal transduction and encoding cell wall-associated receptor kinases were also identified. Sixty-seven unigenes related to plant resistance (R) genes, including RPP genes, RGAs and RDL/RF genes, were discovered. These results will provide genome-wide knowledge about the molecular physiology of Ma bamboo young leaves and tools for advanced studies of molecular mechanism underlying leaf growth and development.
Collapse
Affiliation(s)
- Z M Gao
- International Center for Bamboo and Rattan, State Forestry Administration Key Open Laboratory on Bamboo and Rattan Science and Technology, Beijing, 100102, People's Republic of China.
| | | | | |
Collapse
|
45
|
Young HA, Lanzatella CL, Sarath G, Tobias CM. Chloroplast genome variation in upland and lowland switchgrass. PLoS One 2011; 6:e23980. [PMID: 21887356 PMCID: PMC3161095 DOI: 10.1371/journal.pone.0023980] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 08/01/2011] [Indexed: 11/25/2022] Open
Abstract
Switchgrass (Panicum virgatum L.) exists at multiple ploidies and two phenotypically distinct ecotypes. To facilitate interploidal comparisons and to understand the extent of sequence variation within existing breeding pools, two complete switchgrass chloroplast genomes were sequenced from individuals representative of the upland and lowland ecotypes. The results demonstrated a very high degree of conservation in gene content and order with other sequenced plastid genomes. The lowland ecotype reference sequence (Kanlow Lin1) was 139,677 base pairs while the upland sequence (Summer Lin2) was 139,619 base pairs. Alignments between the lowland reference sequence and short-read sequence data from existing sequence datasets identified as either upland or lowland confirmed known polymorphisms and indicated the presence of other differences. Insertions and deletions principally occurred near stretches of homopolymer simple sequence repeats in intergenic regions while most Single Nucleotide Polymorphisms (SNPs) occurred in intergenic regions and introns within the single copy portions of the genome. The polymorphism rate between upland and lowland switchgrass ecotypes was found to be similar to rates reported between chloroplast genomes of indica and japonica subspecies of rice which were believed to have diverged 0.2–0.4 million years ago.
Collapse
Affiliation(s)
- Hugh A. Young
- Genomics and Gene Discovery Research Unit, United States Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States of America
| | - Christina L. Lanzatella
- Genomics and Gene Discovery Research Unit, United States Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States of America
| | - Gautam Sarath
- United States Department of Agriculture, Agricultural Research Service, Central-East Regional Biomass Center, Lincoln, Nebraska, United States of America
| | - Christian M. Tobias
- Genomics and Gene Discovery Research Unit, United States Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States of America
- * E-mail:
| |
Collapse
|
46
|
Zhang YJ, Ma PF, Li DZ. High-throughput sequencing of six bamboo chloroplast genomes: phylogenetic implications for temperate woody bamboos (Poaceae: Bambusoideae). PLoS One 2011; 6:e20596. [PMID: 21655229 PMCID: PMC3105084 DOI: 10.1371/journal.pone.0020596] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 05/05/2011] [Indexed: 11/25/2022] Open
Abstract
Background Bambusoideae is the only subfamily that contains woody members in the grass family, Poaceae. In phylogenetic analyses, Bambusoideae, Pooideae and Ehrhartoideae formed the BEP clade, yet the internal relationships of this clade are controversial. The distinctive life history (infrequent flowering and predominance of asexual reproduction) of woody bamboos makes them an interesting but taxonomically difficult group. Phylogenetic analyses based on large DNA fragments could only provide a moderate resolution of woody bamboo relationships, although a robust phylogenetic tree is needed to elucidate their evolutionary history. Phylogenomics is an alternative choice for resolving difficult phylogenies. Methodology/Principal Findings Here we present the complete nucleotide sequences of six woody bamboo chloroplast (cp) genomes using Illumina sequencing. These genomes are similar to those of other grasses and rather conservative in evolution. We constructed a phylogeny of Poaceae from 24 complete cp genomes including 21 grass species. Within the BEP clade, we found strong support for a sister relationship between Bambusoideae and Pooideae. In a substantial improvement over prior studies, all six nodes within Bambusoideae were supported with ≥0.95 posterior probability from Bayesian inference and 5/6 nodes resolved with 100% bootstrap support in maximum parsimony and maximum likelihood analyses. We found that repeats in the cp genome could provide phylogenetic information, while caution is needed when using indels in phylogenetic analyses based on few selected genes. We also identified relatively rapidly evolving cp genome regions that have the potential to be used for further phylogenetic study in Bambusoideae. Conclusions/Significance The cp genome of Bambusoideae evolved slowly, and phylogenomics based on whole cp genome could be used to resolve major relationships within the subfamily. The difficulty in resolving the diversification among three clades of temperate woody bamboos, even with complete cp genome sequences, suggests that these lineages may have diverged very rapidly.
Collapse
Affiliation(s)
- Yun-Jie Zhang
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
- Graduate University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Peng-Fei Ma
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
- Graduate University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - De-Zhu Li
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
- * E-mail:
| |
Collapse
|
47
|
Zhang YJ, Ma PF, Li DZ. High-throughput sequencing of six bamboo chloroplast genomes: phylogenetic implications for temperate woody bamboos (Poaceae: Bambusoideae). PLoS One 2011; 6:e20596. [PMID: 21655229 DOI: 10.1371/journal.pone.0020596.t001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 05/05/2011] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Bambusoideae is the only subfamily that contains woody members in the grass family, Poaceae. In phylogenetic analyses, Bambusoideae, Pooideae and Ehrhartoideae formed the BEP clade, yet the internal relationships of this clade are controversial. The distinctive life history (infrequent flowering and predominance of asexual reproduction) of woody bamboos makes them an interesting but taxonomically difficult group. Phylogenetic analyses based on large DNA fragments could only provide a moderate resolution of woody bamboo relationships, although a robust phylogenetic tree is needed to elucidate their evolutionary history. Phylogenomics is an alternative choice for resolving difficult phylogenies. METHODOLOGY/PRINCIPAL FINDINGS Here we present the complete nucleotide sequences of six woody bamboo chloroplast (cp) genomes using Illumina sequencing. These genomes are similar to those of other grasses and rather conservative in evolution. We constructed a phylogeny of Poaceae from 24 complete cp genomes including 21 grass species. Within the BEP clade, we found strong support for a sister relationship between Bambusoideae and Pooideae. In a substantial improvement over prior studies, all six nodes within Bambusoideae were supported with ≥0.95 posterior probability from Bayesian inference and 5/6 nodes resolved with 100% bootstrap support in maximum parsimony and maximum likelihood analyses. We found that repeats in the cp genome could provide phylogenetic information, while caution is needed when using indels in phylogenetic analyses based on few selected genes. We also identified relatively rapidly evolving cp genome regions that have the potential to be used for further phylogenetic study in Bambusoideae. CONCLUSIONS/SIGNIFICANCE The cp genome of Bambusoideae evolved slowly, and phylogenomics based on whole cp genome could be used to resolve major relationships within the subfamily. The difficulty in resolving the diversification among three clades of temperate woody bamboos, even with complete cp genome sequences, suggests that these lineages may have diverged very rapidly.
Collapse
Affiliation(s)
- Yun-Jie Zhang
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
| | | | | |
Collapse
|
48
|
Givnish TJ, Ames M, McNeal JR, McKain MR, Steele PR, dePamphilis CW, Graham SW, Pires JC, Stevenson DW, Zomlefer WB, Briggs BG, Duvall MR, Moore MJ, Heaney JM, Soltis DE, Soltis PS, Thiele K, Leebens-Mack JH. Assembling the Tree of the Monocotyledons: Plastome Sequence Phylogeny and Evolution of Poales 1. ANNALS OF THE MISSOURI BOTANICAL GARDEN 2010. [PMID: 0 DOI: 10.3417/2010023] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
|
49
|
Mariotti R, Cultrera NGM, Díez CM, Baldoni L, Rubini A. Identification of new polymorphic regions and differentiation of cultivated olives (Olea europaea L.) through plastome sequence comparison. BMC PLANT BIOLOGY 2010; 10:211. [PMID: 20868482 PMCID: PMC2956560 DOI: 10.1186/1471-2229-10-211] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 09/24/2010] [Indexed: 05/24/2023]
Abstract
BACKGROUND The cultivated olive (Olea europaea L.) is the most agriculturally important species of the Oleaceae family. Although many studies have been performed on plastid polymorphisms to evaluate taxonomy, phylogeny and phylogeography of Olea subspecies, only few polymorphic regions discriminating among the agronomically and economically important olive cultivars have been identified. The objective of this study was to sequence the entire plastome of olive and analyze many potential polymorphic regions to develop new inter-cultivar genetic markers. RESULTS The complete plastid genome of the olive cultivar Frantoio was determined by direct sequence analysis using universal and novel PCR primers designed to amplify all overlapping regions. The chloroplast genome of the olive has an organisation and gene order that is conserved among numerous Angiosperm species and do not contain any of the inversions, gene duplications, insertions, inverted repeat expansions and gene/intron losses that have been found in the chloroplast genomes of the genera Jasminum and Menodora, from the same family as Olea.The annotated sequence was used to evaluate the content of coding genes, the extent, and distribution of repeated and long dispersed sequences and the nucleotide composition pattern. These analyses provided essential information for structural, functional and comparative genomic studies in olive plastids. Furthermore, the alignment of the olive plastome sequence to those of other varieties and species identified 30 new organellar polymorphisms within the cultivated olive. CONCLUSIONS In addition to identifying mutations that may play a functional role in modifying the metabolism and adaptation of olive cultivars, the new chloroplast markers represent a valuable tool to assess the level of olive intercultivar plastome variation for use in population genetic analysis, phylogenesis, cultivar characterisation and DNA food tracking.
Collapse
Affiliation(s)
- Roberto Mariotti
- CNR - Institute of Plant Genetics, Via Madonna Alta, 130, 06128 Perugia, Italy
| | - Nicolò GM Cultrera
- CNR - Institute of Plant Genetics, Via Madonna Alta, 130, 06128 Perugia, Italy
| | - Concepcion Muñoz Díez
- University of Cordoba - Dep. of Agronomy, Campus Universitario de Rabanales, 14080 Cordoba, Spain
| | - Luciana Baldoni
- CNR - Institute of Plant Genetics, Via Madonna Alta, 130, 06128 Perugia, Italy
| | - Andrea Rubini
- CNR - Institute of Plant Genetics, Via Madonna Alta, 130, 06128 Perugia, Italy
| |
Collapse
|
50
|
Wu FH, Chan MT, Liao DC, Hsu CT, Lee YW, Daniell H, Duvall MR, Lin CS. Complete chloroplast genome of Oncidium Gower Ramsey and evaluation of molecular markers for identification and breeding in Oncidiinae. BMC PLANT BIOLOGY 2010; 10:68. [PMID: 20398375 PMCID: PMC3095342 DOI: 10.1186/1471-2229-10-68] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 04/16/2010] [Indexed: 05/07/2023]
Abstract
BACKGROUND Oncidium spp. produce commercially important orchid cut flowers. However, they are amenable to intergeneric and inter-specific crossing making phylogenetic identification very difficult. Molecular markers derived from the chloroplast genome can provide useful tools for phylogenetic resolution. RESULTS The complete chloroplast genome of the economically important Oncidium variety Onc. Gower Ramsey (Accession no. GQ324949) was determined using a polymerase chain reaction (PCR) and Sanger based ABI sequencing. The length of the Oncidium chloroplast genome is 146,484 bp. Genome structure, gene order and orientation are similar to Phalaenopsis, but differ from typical Poaceae, other monocots for which there are several published chloroplast (cp) genome. The Onc. Gower Ramsey chloroplast-encoded NADH dehydrogenase (ndh) genes, except ndhE, lack apparent functions. Deletion and other types of mutations were also found in the ndh genes of 15 other economically important Oncidiinae varieties, except ndhE in some species. The positions of some species in the evolution and taxonomy of Oncidiinae are difficult to identify. To identify the relationships between the 15 Oncidiinae hybrids, eight regions of the Onc. Gower Ramsey chloroplast genome were amplified by PCR for phylogenetic analysis. A total of 7042 bp derived from the eight regions could identify the relationships at the species level, which were supported by high bootstrap values. One particular 1846 bp region, derived from two PCR products (trnHGUG -psbA and trnFGAA-ndhJ) was adequate for correct phylogenetic placement of 13 of the 15 varieties (with the exception of Degarmoara Flying High and Odontoglossum Violetta von Holm). Thus the chloroplast genome provides a useful molecular marker for species identifications. CONCLUSION In this report, we used Phalaenopsis. aphrodite as a prototype for primer design to complete the Onc. Gower Ramsey genome sequence. Gene annotation showed that most of the ndh genes inOncidiinae, with the exception of ndhE, are non-functional. This phenomenon was observed in all of the Oncidiinae species tested. The genes and chloroplast DNA regions that would be the most useful for phylogenetic analysis were determined to be the trnHGUG-psbA and the trnFGAA-ndhJ regions. We conclude that complete chloroplast genome information is useful for plant phylogenetic and evolutionary studies in Oncidium with applications for breeding and variety identification.
Collapse
Affiliation(s)
- Fu-Hui Wu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ming-Tsair Chan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - De-Chih Liao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Chen-Tran Hsu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Wei Lee
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Henry Daniell
- Department of Molecular Biology and Microbiology, College of Medicine, Biomolecular Science Building, University of Central Florida, Orlando, USA
| | - Melvin R Duvall
- Department of Biology, Northern Illinois University, DeKalb, USA
| | - Choun-Sea Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|