1
|
Li S, Wuyun TN, Wang L, Zhang J, Tian H, Zhang Y, Wang S, Xia Y, Liu X, Wang N, Lv F, Xu J, Tang Z. Genome-wide and functional analysis of late embryogenesis abundant (LEA) genes during dormancy and sprouting periods of kernel consumption apricots (P. armeniaca L. × P. sibirica L.). Int J Biol Macromol 2024; 279:133245. [PMID: 38977045 DOI: 10.1016/j.ijbiomac.2024.133245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/05/2024] [Accepted: 06/16/2024] [Indexed: 07/10/2024]
Abstract
Late embryogenesis abundant (LEA) proteins play a crucial role in protecting cells from stress, making them potential contributors to abiotic stress tolerance. This study focuses on apricot (P. armeniaca L. × P. sibirica L.), where a comprehensive genome-wide analysis identified 54 LEA genes, categorized into eight subgroups based on phylogenetic relationships. Synteny analysis revealed 14 collinear blocks containing LEA genes between P. armeniaca × P. sibirica and Arabidopsis thaliana, with an additional 9 collinear blocks identified between P. armeniaca × P. sibirica and poplar. Examination of gene structure and conserved motifs indicated that these subgroups exhibit consistent exon-intron patterns and shared motifs. The expansion and duplication of LEA genes in P. armeniaca × P. sibirica were driven by whole-genome duplication (WGD), segmental duplication, and tandem duplication events. Expression analysis, utilizing RNA-seq data and quantitative real-time RT-PCR (qRT-PCR), indicated induction of PasLEA2-20, PasLEA3-2, PasLEA6-1, Pasdehydrin-3, and Pasdehydrin-5 in flower buds during dormancy and sprouting phases. Coexpression network analysis linked LEA genes with 15 cold-resistance genes. Remarkably, during the four developmental stages of flower buds in P. armeniaca × P. sibirica - physiological dormancy, ecological dormancy, sprouting period, and germination stage - the expression patterns of all PasLEAs coexpressed with cold stress-related genes remained consistent. Protein-protein interaction networks, established using Arabidopsis orthologs, emphasized connections between PasLEA proteins and cold resistance pathways. Overexpression of certain LEA genes in yeast and Arabidopsis conferred advantages under cold stress, including increased pod length, reduced bolting time and flowering time, improved survival and seed setting rates, elevated proline accumulation, and enhanced antioxidative enzymatic activities. Furthermore, these overexpressed plants exhibited upregulation of genes related to flower development and cold resistance. The Y1H assay confirmed that PasGBF4 and PasDOF3.5 act as upstream regulatory factors by binding to the promoter region of PasLEA3-2. PasDOF2.4, PasDnaJ2, and PasAP2 were also found to bind to the promoter of Pasdehydrin-3, regulating the expression levels of downstream genes. This comprehensive study explores the evolutionary relationships among PasLEA genes, protein interactions, and functional analyses during various stages of dormancy and sprouting in P. armeniaca × P. sibirica. It offers potential targets for enhancing cold resistance and manipulating flower bud dormancy in this apricot hybrid.
Collapse
Affiliation(s)
- Shaofeng Li
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing 100091, PR China.
| | - Ta-Na Wuyun
- State Key Laboratory of Tree Genetics and Breeding, Non-timber Forestry Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, PR China.
| | - Lin Wang
- State Key Laboratory of Tree Genetics and Breeding, Non-timber Forestry Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, PR China.
| | - Jianhui Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Hua Tian
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing 100091, PR China.
| | - Yaodan Zhang
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing 100091, PR China.
| | - Shaoli Wang
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing 100091, PR China.
| | - Yongxiu Xia
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing 100091, PR China.
| | - Xue Liu
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing 100091, PR China.
| | - Ning Wang
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Fenni Lv
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botany Garden Mem. Sun Yat-Sen), Nanjing 210014, PR China.
| | - Jihuang Xu
- Experimental Center of Tropical Forestry, Chinese Academy of Forestry, Pingxiang 532600, PR China.
| | - Zhimin Tang
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100093, PR China.
| |
Collapse
|
2
|
Gabay G, Flaishman MA. Genetic and molecular regulation of chilling requirements in pear: breeding for climate change resilience. FRONTIERS IN PLANT SCIENCE 2024; 15:1347527. [PMID: 38736438 PMCID: PMC11082341 DOI: 10.3389/fpls.2024.1347527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/09/2024] [Indexed: 05/14/2024]
Abstract
Pear (Pyrus spp.) is a deciduous fruit tree that requires exposure to sufficient chilling hours during the winter to establish dormancy, followed by favorable heat conditions during the spring for normal vegetative and floral budbreak. In contrast to most temperate woody species, apples and pears of the Rosaceae family are insensitive to photoperiod, and low temperature is the major factor that induces growth cessation and dormancy. Most European pear (Pyrus Communis L.) cultivars need to be grown in regions with high chilling unit (CU) accumulation to ensure early vegetative budbreak. Adequate vegetative budbreak time will ensure suitable metabolite accumulation, such as sugars, to support fruit set and vegetative development, providing the necessary metabolites for optimal fruit set and development. Many regions that were suitable for pear production suffer from a reduction in CU accumulation. According to climate prediction models, many temperate regions currently suitable for pear cultivation will experience a similar accumulation of CUs as observed in Mediterranean regions. Consequently, the Mediterranean region can serve as a suitable location for conducting pear breeding trials aimed at developing cultivars that will thrive in temperate regions in the decades to come. Due to recent climatic changes, bud dormancy attracts more attention, and several studies have been carried out aiming to discover the genetic and physiological factors associated with dormancy in deciduous fruit trees, including pears, along with their related biosynthetic pathways. In this review, current knowledge of the genetic mechanisms associated with bud dormancy in European pear and other Pyrus species is summarized, along with metabolites and physiological factors affecting dormancy establishment and release and chilling requirement determination. The genetic and physiological insights gained into the factors regulating pear dormancy phase transition and determining chilling requirements can accelerate the development of new pear cultivars better suited to both current and predicted future climatic conditions.
Collapse
Affiliation(s)
- Gilad Gabay
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boker, Israel
| | - Moshe A. Flaishman
- Institute of Plant Sciences, Volcani Research Center, Rishon Lezion, Israel
| |
Collapse
|
3
|
Guo Y, Kang X, Huang Y, Guo Z, Wang Y, Ma S, Li H, Chao N, Liu L. Functional characterization of MaEXPA11 and its roles in response to biotic and abiotic stresses in mulberry. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108289. [PMID: 38154294 DOI: 10.1016/j.plaphy.2023.108289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 12/30/2023]
Abstract
Mulberry is a traditional economic tree with various values in sericulture, ecology, food industry and medicine. Expansins (EXPs) are known as cell wall expansion related proteins and have been characterized to involve in plant development and responses to diverse stresses. In present study, twenty EXP and expansin-like (EXL) genes were identified in mulberry. RNA-seq results indicated that three EXP and EXL genes showed up-regulated expression level under sclerotiniose pathogen infection in three independent RNA-seq datasets. The most significant upregulated EXPA11 was selected as key EXP involving in response to sclerotiniose pathogen infection in mulberry. Furthermore, a comprehensive functional analysis was performed to reveal subcellular location, tissue expression profile of MaEXPA11 in mulberry. Down-regulation of MaEXPA11 using virus induced gene silence (VIGS) was performed to explore the function of MaEXPA11 in Morus alba. Results showed that MaEXPA11 can positively regulate mulberry resistance to Ciboria shiraiana infection and negatively regulate mulberry resistance to cold or drought stress.
Collapse
Affiliation(s)
- Yangyang Guo
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Xiaoru Kang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Yajiang Huang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Zixuan Guo
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Yuqiong Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Shuwen Ma
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Hua Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Nan Chao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, China.
| | - Li Liu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, China.
| |
Collapse
|
4
|
Fouché M, Bonnet H, Bonnet DMV, Wenden B. Transport capacity is uncoupled with endodormancy breaking in sweet cherry buds: physiological and molecular insights. FRONTIERS IN PLANT SCIENCE 2023; 14:1240642. [PMID: 38752012 PMCID: PMC11094712 DOI: 10.3389/fpls.2023.1240642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/25/2023] [Indexed: 05/18/2024]
Abstract
Introduction To avoid the negative impacts of winter unfavorable conditions for plant development, temperate trees enter a rest period called dormancy. Winter dormancy is a complex process that involves multiple signaling pathways and previous studies have suggested that transport capacity between cells and between the buds and the twig may regulate the progression throughout dormancy stages. However, the dynamics and molecular actors involved in this regulation are still poorly described in fruit trees. Methods Here, in order to validate the hypothesis that transport capacity regulates dormancy progression in fruit trees, we combined physiological, imaging and transcriptomic approaches to characterize molecular pathways and transport capacity during dormancy in sweet cherry (Prunus avium L.) flower buds. Results Our results show that transport capacity is reduced during dormancy and could be regulated by environmental signals. Moreover, we demonstrate that dormancy release is not synchronized with the transport capacity resumption but occurs when the bud is capable of growth under the influence of warmer temperatures. We highlight key genes involved in transport capacity during dormancy. Discussion Based on long-term observations conducted during six winter seasons, we propose hypotheses on the environmental and molecular regulation of transport capacity, in relation to dormancy and growth resumption in sweet cherry.
Collapse
Affiliation(s)
- Mathieu Fouché
- INRAE, Univ. Bordeaux, UMR Biologie du Fruit et Pathologie 1332, Villenave d’Ornon, France
| | | | | | - Bénédicte Wenden
- INRAE, Univ. Bordeaux, UMR Biologie du Fruit et Pathologie 1332, Villenave d’Ornon, France
| |
Collapse
|
5
|
Watanabe T, Sekiyama Y, Kawamura T, Fukuda Y, Nagata M. Tissue structural analysis for internal browning sweet potatoes using magnetic resonance imaging and bio-electrochemical impedance spectroscopy. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2023.111451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
6
|
Canton M, Forestan C, Marconi G, Carrera E, Bonghi C, Varotto S. Evidence of chromatin and transcriptional dynamics for cold development in peach flower bud. THE NEW PHYTOLOGIST 2022; 236:974-988. [PMID: 35860865 PMCID: PMC9804738 DOI: 10.1111/nph.18393] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
In temperate zones, fruit trees regulate their annual growth cycle to seasonal environmental changes. During the cold season, growth is limited by both environmental and genetic factors. After the exposure to low temperature and fulfillment of chilling requirements, mild temperatures promote the growth and flowering. However, an insufficient chilling exposure may lead to nonuniform blooming, with a negative impact on fruit set. To gain insights into flower development in the fruit tree buds, peach is an interesting model, the flower and vegetative bud being distinct organs. To understand how flower bud development is regulated, we integrated cytological observations and epigenetic and chromatin genome-wide data with transcriptional changes to identify the main regulatory factors involved in flower development during chilling accumulation. We demonstrated that growth cessation does not occur in peach flower buds during chilling accumulation, but that there are changes in transcript abundance of key genes of hormone metabolism and flower bud development, distribution of histone modifications (H3K4me3 and H3K27me3) and DNA methylation. Altogether, our findings indicate that during the cold season the flower bud is in a nondormant state and that the chilling experience allows flower differentiation to be completed.
Collapse
Affiliation(s)
- Monica Canton
- Department of Agronomy Food Natural Resources, Animals and Environment (DAFNAE) AgripolisUniversity of Padova35020LegnaroPDItaly
| | - Cristian Forestan
- Department of Agricultural and Food Sciences (DISTAL)University of Bologna40127BolognaBOItaly
| | - Gianpiero Marconi
- Department Agricultural, Food and Environmental SciencesUniversity of Perugia06121PerugiaItaly
| | - Esther Carrera
- Instituto de Biologıa Molecular y Celular de Plantas (IBMCP)Universidad Politecnica de Valencia‐Consejo Superior de Investigaciones Cientıficas (CSIC)ValenciaSpain
| | - Claudio Bonghi
- Department of Agronomy Food Natural Resources, Animals and Environment (DAFNAE) AgripolisUniversity of Padova35020LegnaroPDItaly
| | - Serena Varotto
- Department of Agronomy Food Natural Resources, Animals and Environment (DAFNAE) AgripolisUniversity of Padova35020LegnaroPDItaly
| |
Collapse
|
7
|
Overexpression of AcEXPA23 Promotes Lateral Root Development in Kiwifruit. Int J Mol Sci 2022; 23:ijms23148026. [PMID: 35887372 PMCID: PMC9317778 DOI: 10.3390/ijms23148026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 12/12/2022] Open
Abstract
Kiwifruit is loved by consumers for its unique taste and rich vitamin C content. Kiwifruit are very sensitive to adverse soil environments owing to fleshy and shallow roots, which limits the uptake of water and nutrients into the root system, resulting in low yield and poor fruit quality. Lateral roots are the key organs for plants to absorb water and nutrients. Improving water and fertilizer use efficiency by promoting lateral root development is a feasible method to improve yield and quality. Expansin proteins plays a major role in lateral root growth; hence, it is important to identify expansin protein family members, screen key genes, and explore gene function in root development. In this study, 41 expansin genes were identified based on the genome of kiwifruit (‘Hongyang’, Actinidia chinensis). By clustering with the Arabidopsis thaliana expansin protein family, the 41 AcExpansin proteins were divided into four subfamilies. The AcExpansin protein family was further analysed by bioinformatics methods and was shown to be evolutionarily diverse and conserved at the DNA and protein levels. Based on previous transcriptome data and quantitative real-time PCR assays, we screened the candidate gene AcEXPA23. Overexpression of AcEXPA23 in kiwifruit increased the number of kiwifruit lateral roots.
Collapse
|
8
|
Li L, Xia T, Li B, Yang H. Hormone and carbohydrate metabolism associated genes play important roles in rhizome bud full-year germination of Cephalostachyum pingbianense. PHYSIOLOGIA PLANTARUM 2022; 174:e13674. [PMID: 35306669 DOI: 10.1111/ppl.13674] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/06/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Cephalostachyum pingbianense is the only woody bamboo species that can produce bamboo shoots in four seasons under natural conditions. So far, the regulatory mechanism of shoot bud differentiation and development is unknown. In the present study, indole-3-acetic acid (IAA), zeatin riboside (ZR), gibberellin A3 (GA3 ) and abscisic acid (ABA) contents determination, RNA sequencing and differentially expressed gene analysis were performed on dormant rhizome bud (DR), growing rhizome bud (GR), and germinative bud (GB) in each season. The results showed that the contents of IAA and ZR increased while ABA content decreased, and GA3 content was stable during bud transition from dormancy to germination in each season. Moreover, rhizome bud germination was cooperatively regulated by multiple pathways such as carbohydrate metabolism, hormone signal transduction, cell wall biogenesis, temperature response, and water transport. The inferred hub genes among these candidates were identified by protein-protein interaction network analyses, most of which were involved in hormone and carbohydrate metabolism, such as HK and BGLU4 in spring, IDH and GH3 in winter, GPI and talA/talB in summer and autumn. It is speculated that dynamic phytohormone changes and differential expression of these genes promote the release of rhizome bud dormancy and contribute to the phenological characteristics of full-year shooting. Moreover, the rhizome buds of C. pingbianense may not suffer from ecodormancy in winter. These findings would help accumulate knowledge on shooting mechanisms in woody bamboos and provide a physiological insight into germplasm conservation and forest management of C. pingbianense.
Collapse
Affiliation(s)
- Lushuang Li
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan, China
| | - Tize Xia
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan, China
| | - Bin Li
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan, China
| | - Hanqi Yang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan, China
| |
Collapse
|
9
|
Hermawaty D, Considine JA, Considine MJ. An Evaluation of Nuclei Preparation of the Dormant Axillary Bud of Grapevine for Cell Cycle Analysis by Flow Cytometry. FRONTIERS IN PLANT SCIENCE 2022; 13:834977. [PMID: 35283905 PMCID: PMC8913039 DOI: 10.3389/fpls.2022.834977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Whether the division of cells of a dormant meristem may be arrested, e.g., in the G1 phase, has proven to be an extremely difficult hypothesis to test. This is particularly so for woody perennial buds, where dormant and quiescent states are diffuse, and the organ may remain visibly unchanged for 6-9 months of the year. Flow cytometry (FCM) has been widely applied in plant studies to determine the genome size and endopolyploidy. In this study, we present the application of FCM to measure the cell cycle status in mature dormant buds of grapevine (Vitis vinifera cv. Cabernet Sauvignon), which represent a technically recalcitrant structure. This protocol illustrates the optimisation and validation of FCM data analysis to calculate the cell cycle status, or mitotic index, of dormant grapevine buds. We have shown how contamination with debris can be experimentally managed and give reference to the more malleable tomato leaves. We have also given a clear illustration of the primary pitfalls of data analysis to avoid artefacts or false results. Data acquisition and analysis strategies are detailed and can be readily applied to analyse FCM data from other recalcitrant plant samples.
Collapse
Affiliation(s)
- Dina Hermawaty
- UWA School of Agriculture and Environment, The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - John A. Considine
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Michael J. Considine
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
10
|
Tominaga A, Ito A, Sugiura T, Yamane H. How Is Global Warming Affecting Fruit Tree Blooming? "Flowering (Dormancy) Disorder" in Japanese Pear ( Pyrus pyrifolia) as a Case Study. FRONTIERS IN PLANT SCIENCE 2022; 12:787638. [PMID: 35211129 PMCID: PMC8861528 DOI: 10.3389/fpls.2021.787638] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/23/2021] [Indexed: 05/12/2023]
Abstract
Recent climate change has resulted in warmer temperatures. Warmer temperatures from autumn to spring has negatively affected dormancy progression, cold (de)acclimation, and cold tolerance in various temperate fruit trees. In Japan, a physiological disorder known as flowering disorder, which is an erratic flowering and bud break disorder, has recently emerged as a serious problem in the production of the pome fruit tree, Japanese (Asian) pear (Pyrus pyrifolia Nakai). Due to global warming, the annual temperature in Japan has risen markedly since the 1990s. Surveys of flowering disorder in field-grown and greenhouse-grown Japanese pear trees over several years have indicated that flowering disorder occurs in warmer years and cultivation conditions, and the risk of flowering disorder occurrence is higher at lower latitudes than at higher latitudes. Susceptibility to flowering disorder is linked to changes in the transcript levels of putative dormancy/flowering regulators such as DORMANCY-ASSOCIATED MADS-box (DAM) and FLOWERING LOCUS T (FT). On the basis of published studies, we conclude that autumn-winter warm temperatures cause flowering disorder through affecting cold acclimation, dormancy progression, and floral bud maturation. Additionally, warm conditions also decrease carbohydrate accumulation in shoots, leading to reduced tree vigor. We propose that all these physiological and metabolic changes due to the lack of chilling during the dormancy phase interact to cause flowering disorder in the spring. We also propose that the process of chilling exposure rather than the total amount of chilling may be important for the precise control of dormancy progression and robust blooming, which in turn suggests the necessity of re-evaluation of the characteristics of cultivar-dependent chilling requirement trait. A full understanding of the molecular and metabolic regulatory mechanisms of both dormancy completion (floral bud maturation) and dormancy break (release from the repression of bud break) will help to clarify the physiological basis of dormancy-related physiological disorder and also provide useful strategies to mitigate or overcome it under global warming.
Collapse
Affiliation(s)
| | - Akiko Ito
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Toshihiko Sugiura
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Hisayo Yamane
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
11
|
da Silveira Falavigna V, Severing E, Lai X, Estevan J, Farrera I, Hugouvieux V, Revers LF, Zubieta C, Coupland G, Costes E, Andrés F. Unraveling the role of MADS transcription factor complexes in apple tree dormancy. THE NEW PHYTOLOGIST 2021; 232:2071-2088. [PMID: 34480759 PMCID: PMC9292984 DOI: 10.1111/nph.17710] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/19/2021] [Indexed: 05/27/2023]
Abstract
A group of MADS transcription factors (TFs) are believed to control temperature-mediated bud dormancy. These TFs, called DORMANCY-ASSOCIATED MADS-BOX (DAM), are encoded by genes similar to SHORT VEGETATIVE PHASE (SVP) from Arabidopsis. MADS proteins form transcriptional complexes whose combinatory composition defines their molecular function. However, how MADS multimeric complexes control the dormancy cycle in trees is unclear. Apple MdDAM and other dormancy-related MADS proteins form complexes with MdSVPa, which is essential for the ability of transcriptional complexes to bind to DNA. Sequential DNA-affinity purification sequencing (seq-DAP-seq) was performed to identify the genome-wide binding sites of apple MADS TF complexes. Target genes associated with the binding sites were identified by combining seq-DAP-seq data with transcriptomics datasets obtained using a glucocorticoid receptor fusion system, and RNA-seq data related to apple dormancy. We describe a gene regulatory network (GRN) formed by MdSVPa-containing complexes, which regulate the dormancy cycle in response to environmental cues and hormonal signaling pathways. Additionally, novel molecular evidence regarding the evolutionary functional segregation between DAM and SVP proteins in the Rosaceae is presented. MdSVPa sequentially forms complexes with the MADS TFs that predominate at each dormancy phase, altering its DNA-binding specificity and, therefore, the transcriptional regulation of its target genes.
Collapse
Affiliation(s)
- Vítor da Silveira Falavigna
- UMR AGAP InstitutUniv MontpellierCIRADINRAEInstitut AgroF‐34398MontpellierFrance
- Department of Plant Developmental BiologyMax Planck Institute for Plant Breeding Research50829CologneGermany
| | - Edouard Severing
- Department of Plant Developmental BiologyMax Planck Institute for Plant Breeding Research50829CologneGermany
| | - Xuelei Lai
- Laboratoire de Physiologie Cellulaire et VégétaleUniversité Grenoble‐AlpesCNRSCEAINRAEIRIG‐DBSCI38000GrenobleFrance
| | - Joan Estevan
- UMR AGAP InstitutUniv MontpellierCIRADINRAEInstitut AgroF‐34398MontpellierFrance
| | - Isabelle Farrera
- UMR AGAP InstitutUniv MontpellierCIRADINRAEInstitut AgroF‐34398MontpellierFrance
| | - Véronique Hugouvieux
- Laboratoire de Physiologie Cellulaire et VégétaleUniversité Grenoble‐AlpesCNRSCEAINRAEIRIG‐DBSCI38000GrenobleFrance
| | | | - Chloe Zubieta
- Laboratoire de Physiologie Cellulaire et VégétaleUniversité Grenoble‐AlpesCNRSCEAINRAEIRIG‐DBSCI38000GrenobleFrance
| | - George Coupland
- Department of Plant Developmental BiologyMax Planck Institute for Plant Breeding Research50829CologneGermany
| | - Evelyne Costes
- UMR AGAP InstitutUniv MontpellierCIRADINRAEInstitut AgroF‐34398MontpellierFrance
| | - Fernando Andrés
- UMR AGAP InstitutUniv MontpellierCIRADINRAEInstitut AgroF‐34398MontpellierFrance
| |
Collapse
|
12
|
Gao Y, Yang Q, Yan X, Wu X, Yang F, Li J, Wei J, Ni J, Ahmad M, Bai S, Teng Y. High-quality genome assembly of 'Cuiguan' pear (Pyrus pyrifolia) as a reference genome for identifying regulatory genes and epigenetic modifications responsible for bud dormancy. HORTICULTURE RESEARCH 2021; 8:197. [PMID: 34465760 PMCID: PMC8408243 DOI: 10.1038/s41438-021-00632-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 05/26/2023]
Abstract
Dormancy-associated MADS-box (DAM) genes serve as crucial regulators of the endodormancy cycle in rosaceous plants. Although pear DAM genes have been identified previously, the lack of a high-quality reference genome and techniques to study gene function have prevented accurate genome-wide analysis and functional verification of such genes. Additionally, the contribution of other genes to the regulation of endodormancy release remains poorly understood. In this study, a high-quality genome assembly for 'Cuiguan' pear (Pyrus pyrifolia), which is a leading cultivar with a low chilling requirement cultivated in China, was constructed using PacBio and Hi-C technologies. Using this genome sequence, we revealed that pear DAM genes were tandemly clustered on Chr8 and Chr15 and were differentially expressed in the buds between 'Cuiguan' and the high-chilling-requirement cultivar 'Suli' during the dormancy cycle. Using a virus-induced gene silencing system, we determined the repressive effects of DAM genes on bud break. Several novel genes potentially involved in the regulation of endodormancy release were identified by RNA sequencing and H3K4me3 chromatin immunoprecipitation sequencing analyses of 'Suli' buds during artificial chilling using the new reference genome. Our findings enrich the knowledge of the regulatory mechanism underlying endodormancy release and chilling requirements and provide a foundation for the practical regulation of dormancy release in fruit trees as an adaptation to climate change.
Collapse
Affiliation(s)
- Yuhao Gao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Qinsong Yang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Haidian District, Beijing, 100083, China
| | - Xinhui Yan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xinyue Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Feng Yang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jianzhao Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- College of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Jia Wei
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Junbei Ni
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Mudassar Ahmad
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Songling Bai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Yuanwen Teng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Hainan Institute of Zhejiang University, Sanya, Hainan, 572000, China
| |
Collapse
|
13
|
Characterization of Japanese Apricot (Prunus mume) Floral Bud Development Using a Modified BBCH Scale and Analysis of the Relationship between BBCH Stages and Floral Primordium Development and the Dormancy Phase Transition. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7060142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bud dormancy is an important developmental stage that ensures that trees can tolerate environmental stresses in winter and bloom uniformly in the following spring. Regarding Rosaceae floral buds, exposure to chilling conditions promotes floral primordium development and the transition from endodormancy to ecodormancy. A subsequent period of warm conditions induces blooming. In Japanese apricot (Prunus mume), dormancy progression is accompanied by morphological changes that alter the bud appearance and internal structures. We used a modified BBCH scale and conducted microscopy analyses to elucidate the bud developmental stage of three cultivars with contrasting chilling requirements. The floral bud developmental period corresponding to BBCH stages 51–53 includes the transition from endodormancy to ecodormancy in all three cultivars. Male meiosis and microspore development occurred during this transition in high-chill cultivars, but were detected considerably later than the transition in the low-chill cultivar. A slow or suspended developmental phase was observed only for the high-chill cultivars upon completion of floral primordium organ differentiation, suggesting that chilling may be required to induce floral bud maturation and dormancy release only in high-chill cultivars. Possible relationships among BBCH stages, flowering-related morphological characteristics, and the dormancy phase transition in Japanese apricot are discussed.
Collapse
|
14
|
Fadón E, Herrera S, Herrero M, Rodrigo J. Male meiosis in sweet cherry is constrained by the chilling and forcing phases of dormancy. TREE PHYSIOLOGY 2021; 41:619-630. [PMID: 32453409 DOI: 10.1093/treephys/tpaa063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/23/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
Male meiosis in temperate fruit trees occurs in the anthers once a year, synchronized with the seasons. The alternation of dormant and growth cycles determines the optimum moment for the male gametophyte formation, a process sensitive to both cold and warm temperatures. This ensures pollen viability and subsequent reproduction success that guarantee fruit production. In this work, we explore how male meiosis is framed by seasonality in sweet cherry. For this purpose, the dormant phases, male meiosis and blooming dates were established in four cultivars with different flowering dates and chilling requirements over 7 years. The chilling and heat requirements for each cultivar were empirically estimated, and chilling and heat temperatures were quantified according to the Dynamic and Growing Degree Hours (GDH) models, respectively. Endodormancy was overcome approximately a fortnight earlier during the colder winters than during the milder winters. Against our initial hypothesis, these differences were not clearly reflected in the time of male meiosis. The period between chilling fulfillment and meiosis lasted several weeks, during which a high amount of GDH accumulated. Results showed that male meiosis is conditioned by endodormancy but especially by warm temperatures, during the forcing period. This differs from what has been described in other related species and creates a framework for further studies to understand the strategies of synchronizing dormancy with seasons.
Collapse
Affiliation(s)
- Erica Fadón
- INRES - Gartenbauwissenschaft, Universität Bonn, Bonn, Germany
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Zaragoza, Spain
- Departamento de Pomología, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD - CSIC), Zaragoza, Spain
| | - Sara Herrera
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Zaragoza, Spain
| | - María Herrero
- Departamento de Pomología, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD - CSIC), Zaragoza, Spain
| | - Javier Rodrigo
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Zaragoza, Spain
- Instituto Agroalimentario de Aragón - IA2 (CITA - Universidad de Zaragoza), Zaragoza, Spain
| |
Collapse
|
15
|
Ito A, Tuan PA, Saito T, Bai S, Kita M, Moriguchi T. Changes in phytohormone content and associated gene expression throughout the stages of pear (Pyrus pyrifolia Nakai) dormancy. TREE PHYSIOLOGY 2021; 41:529-543. [PMID: 31595966 DOI: 10.1093/treephys/tpz101] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/09/2019] [Indexed: 05/26/2023]
Abstract
To elucidate the role of phytohormones during bud dormancy progression in the Japanese pear (Pyrus pyrifolia Nakai), we investigated changes in phytohormone levels of indole acetic acid (IAA), gibberellic acid (GA), abscisic acid (ABA) and trans-zeatin (tZ). Using ultra-performance liquid chromatography/mass spectrometry/mass spectrometry, we monitored phytohormone levels in the buds of field-grown and potted trees that were artificially heated to modify the timing of dormancy and flowering (spring flush) progression. We also analyzed the expression of GA- and ABA-metabolic genes during dormancy. Indole acetic acid and tZ levels were low during dormancy and increased toward the flowering stage. Gibberellic acid levels were maintained at relatively high concentrations during the dormancy induction stage, then decreased before slightly increasing prior to flowering. The low GA concentration in potted trees compared with field-grown trees indicated that GA functions in regulating tree vigor. Abscisic acid levels increased from the dormancy induction stage, peaked near endodormancy release and steadily decreased before increasing again before the flowering stage. The ABA peak levels did not always coincide with endodormancy release, but peak height correlated with flowering uniformity, suggesting that a decline in ABA concentration was not necessary for resumption of growth but the abundance of ABA might be associated with dormancy depth. From monitoring the expression of genes related to GA and ABA metabolism, we inferred that phytohormone metabolism changed significantly during dormancy, even though the levels of bioactive molecules were consistently low. Phytohormones regulate dormancy progression not only upon the reception of internal signals but also upon sensing ambient conditions.
Collapse
Affiliation(s)
- Akiko Ito
- Institute of Fruit Tree and Tea Science, NARO, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
| | - Pham Anh Tuan
- Institute of Fruit Tree and Tea Science, NARO, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Takanori Saito
- Institute of Fruit Tree and Tea Science, NARO, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-8510, Japan
| | - Songling Bai
- Institute of Fruit Tree and Tea Science, NARO, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Masayuki Kita
- Institute of Fruit Tree and Tea Science, NARO, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
| | - Takaya Moriguchi
- Institute of Fruit Tree and Tea Science, NARO, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
| |
Collapse
|
16
|
Yang Q, Yang B, Li J, Wang Y, Tao R, Yang F, Wu X, Yan X, Ahmad M, Shen J, Bai S, Teng Y. ABA-responsive ABRE-BINDING FACTOR3 activates DAM3 expression to promote bud dormancy in Asian pear. PLANT, CELL & ENVIRONMENT 2020; 43:1360-1375. [PMID: 32092154 DOI: 10.1111/pce.13744] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 05/22/2023]
Abstract
Bud dormancy is indispensable for the survival of perennial plants in cold winters. Abscisic acid (ABA) has essential functions influencing the endo-dormancy status. Dormancy-associated MADS-box/SHORT VEGETATIVE PHASE-like genes function downstream of the ABA signalling pathway to regulate bud dormancy. However, the regulation of DAM/SVP expression remains largely uncharacterized. In this study, we confirmed that endo-dormancy maintenance and PpyDAM3 expression are controlled by the ABA content in pear (Pyrus pyrifolia) buds. The expression of pear ABRE-BINDING FACTOR3 (PpyABF3) was positively correlated with PpyDAM3 expression. Furthermore, PpyABF3 directly bound to the second ABRE in the PpyDAM3 promoter to activate its expression. Interestingly, both PpyABF3 and PpyDAM3 repressed the cell division and growth of transgenic pear calli. Another ABA-induced ABF protein, PpyABF2, physically interacted with PpyABF3 and disrupted the activation of the PpyDAM3 promoter by PpyABF3, indicating DAM expression was precisely controlled. Additionally, our results suggested that the differences in the PpyDAM3 promoter in two pear cultivars might be responsible for the diversity in the chilling requirements. In summary, our data clarify the finely tuned regulatory mechanism underlying the effect of ABA on DAM gene expression and provide new insights into ABA-related bud dormancy regulation.
Collapse
Affiliation(s)
- Qinsong Yang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Integrative Biology and Utilization of Horticultural Plants, Hangzhou, Zhejiang, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou, Zhejiang, China
| | - Bo Yang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Integrative Biology and Utilization of Horticultural Plants, Hangzhou, Zhejiang, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou, Zhejiang, China
| | - Jianzhao Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Integrative Biology and Utilization of Horticultural Plants, Hangzhou, Zhejiang, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou, Zhejiang, China
| | - Yan Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Integrative Biology and Utilization of Horticultural Plants, Hangzhou, Zhejiang, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou, Zhejiang, China
| | - Ruiyan Tao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Integrative Biology and Utilization of Horticultural Plants, Hangzhou, Zhejiang, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou, Zhejiang, China
| | - Feng Yang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Integrative Biology and Utilization of Horticultural Plants, Hangzhou, Zhejiang, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou, Zhejiang, China
| | - Xinyue Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Integrative Biology and Utilization of Horticultural Plants, Hangzhou, Zhejiang, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou, Zhejiang, China
| | - Xinhui Yan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Integrative Biology and Utilization of Horticultural Plants, Hangzhou, Zhejiang, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou, Zhejiang, China
| | - Mudassar Ahmad
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Integrative Biology and Utilization of Horticultural Plants, Hangzhou, Zhejiang, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou, Zhejiang, China
| | - Jiaqi Shen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Integrative Biology and Utilization of Horticultural Plants, Hangzhou, Zhejiang, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou, Zhejiang, China
| | - Songling Bai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Integrative Biology and Utilization of Horticultural Plants, Hangzhou, Zhejiang, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou, Zhejiang, China
| | - Yuanwen Teng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Integrative Biology and Utilization of Horticultural Plants, Hangzhou, Zhejiang, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou, Zhejiang, China
| |
Collapse
|
17
|
Yu J, Conrad AO, Decroocq V, Zhebentyayeva T, Williams DE, Bennett D, Roch G, Audergon JM, Dardick C, Liu Z, Abbott AG, Staton ME. Distinctive Gene Expression Patterns Define Endodormancy to Ecodormancy Transition in Apricot and Peach. FRONTIERS IN PLANT SCIENCE 2020; 11:180. [PMID: 32180783 PMCID: PMC7059448 DOI: 10.3389/fpls.2020.00180] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/06/2020] [Indexed: 05/07/2023]
Abstract
Dormancy is a physiological state that plants enter for winter hardiness. Environmental-induced dormancy onset and release in temperate perennials coordinate growth cessation and resumption, but how the entire process, especially chilling-dependent dormancy release and flowering, is regulated remains largely unclear. We utilized the transcriptome profiles of floral buds from fall to spring in apricot (Prunus armeniaca) genotypes with contrasting bloom dates and peach (Prunus persica) genotypes with contrasting chilling requirements (CR) to explore the genetic regulation of bud dormancy. We identified distinct gene expression programming patterns in endodormancy and ecodormancy that reproducibly occur between different genotypes and species. During the transition from endo- to eco-dormancy, 1,367 and 2,102 genes changed in expression in apricot and peach, respectively. Over 600 differentially expressed genes were shared in peach and apricot, including three DORMANCY ASSOCIATED MADS-box (DAM) genes (DAM4, DAM5, and DAM6). Of the shared genes, 99 are located within peach CR quantitative trait loci, suggesting these genes as candidates for dormancy regulation. Co-expression and functional analyses revealed that distinctive metabolic processes distinguish dormancy stages, with genes expressed during endodormancy involved in chromatin remodeling and reproduction, while the genes induced at ecodormancy were mainly related to pollen development and cell wall biosynthesis. Gene expression analyses between two Prunus species highlighted the conserved transcriptional control of physiological activities in endodormancy and ecodormancy and revealed genes that may be involved in the transition between the two stages.
Collapse
Affiliation(s)
- Jiali Yu
- Genome Science and Technology Program, University of Tennessee, Knoxville, TN, United States
| | - Anna O. Conrad
- Forest Health Research and Education Center, University of Kentucky, Lexington, KY, United States
- Department of Plant Pathology, The Ohio State University, Columbus, OH, United States
| | - Véronique Decroocq
- UMR 1332 Biologie du Fruit et Pathologie, Equipe de Virologie, INRA, Universite de Bordeaux, Villenave d'Ornon, France
| | - Tetyana Zhebentyayeva
- Department of Ecosystem Science and Management, Schatz Center for Tree Molecular Genetics, the Pennsylvania State University, University Park, PA, United States
| | - Daniel E. Williams
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
| | - Dennis Bennett
- Appalachian Fruit Research Station, United States Department of Agriculture—Agriculture Research Service, Kearneysville, WV, United States
| | - Guillaume Roch
- GAFL Fruit and Vegetable Genetics and Breeding, INRA Centre PACA, Montfavet, France
| | - Jean-Marc Audergon
- GAFL Fruit and Vegetable Genetics and Breeding, INRA Centre PACA, Montfavet, France
| | - Christopher Dardick
- Appalachian Fruit Research Station, United States Department of Agriculture—Agriculture Research Service, Kearneysville, WV, United States
| | - Zongrang Liu
- Appalachian Fruit Research Station, United States Department of Agriculture—Agriculture Research Service, Kearneysville, WV, United States
| | - Albert G. Abbott
- Forest Health Research and Education Center, University of Kentucky, Lexington, KY, United States
| | - Margaret E. Staton
- Genome Science and Technology Program, University of Tennessee, Knoxville, TN, United States
- Department of Entomology and Plant Pathology, Institute of Agriculture, University of Tennessee, Knoxville, TN, United States
- *Correspondence: Margaret E. Staton,
| |
Collapse
|
18
|
Jiang Z, Sun L, Wei Q, Ju Y, Zou X, Wan X, Liu X, Yin Z. A New Insight into Flowering Regulation: Molecular Basis of Flowering Initiation in Magnolia × soulangeana 'Changchun'. Genes (Basel) 2019; 11:genes11010015. [PMID: 31877931 PMCID: PMC7017242 DOI: 10.3390/genes11010015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/17/2022] Open
Abstract
Magnolia × soulangeana ‘Changchun’ are trees that bloom in spring and summer respectively after flower bud differentiation. Here, we use phenological and morphological observation and RNA-seq technology to study the molecular basis of flowering initiation in ‘Changchun’. During the process of flowering initiation in spring and summer, the growth of expanded flower buds increased significantly, and their shape was obviously enlarged, which indicated that flowering was initiated. A total of 168,120 expressed genes were identified in spring and summer dormant and expanded flower buds, of which 11,687 genes showed significantly differential expression between spring and summer dormant and expanded flower buds. These differentially expressed genes (DEGs) were mainly involved in plant hormone signal transduction, metabolic processes, cellular components, binding, and catalytic activity. Analysis of differential gene expression patterns revealed that gibberellin signaling, and some transcription factors were closely involved in the regulation of spring and summer flowering initiation in ‘Changchun’. A qRT-PCR (quantitative Real Time Polymerase Chain Reaction) analysis showed that BGISEQ-500 sequencing platform could truly reflect gene expression patterns. It also verified that GID1B (GIBBERELLIN INSENSITIVE DWARF1 B), GID1C, SPL8 (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 8), and GASA (GIBBERELLIC ACID-STIMULATED ARABIDOPSIS) family genes were expressed at high levels, while the expression of SPY (SPINDLY) was low during spring and summer flowering initiation. Meanwhile, the up- and down-regulated expression of, respectively, AGL6 (AGAMOUS-LIKE 6) and DREB3 (DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN 3), AG15, and CDF1 (CYCLIC DOF FACTOR 1) might also be involved in the specific regulation of spring and summer flowering initiation. Obviously, flowering initiation is an important stage of the flowering process in woody plants, involving the specific regulation of relevant genes and transcription factors. This study provides a new perspective for the regulation of the flowering process in perennial woody plants.
Collapse
Affiliation(s)
- Zheng Jiang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (Z.J.); (L.S.); (Y.J.); (X.Z.); (X.W.); (X.L.)
| | - Liyong Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (Z.J.); (L.S.); (Y.J.); (X.Z.); (X.W.); (X.L.)
| | - Qiang Wei
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China;
| | - Ye Ju
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (Z.J.); (L.S.); (Y.J.); (X.Z.); (X.W.); (X.L.)
| | - Xuan Zou
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (Z.J.); (L.S.); (Y.J.); (X.Z.); (X.W.); (X.L.)
| | - Xiaoxia Wan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (Z.J.); (L.S.); (Y.J.); (X.Z.); (X.W.); (X.L.)
| | - Xu Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (Z.J.); (L.S.); (Y.J.); (X.Z.); (X.W.); (X.L.)
| | - Zengfang Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (Z.J.); (L.S.); (Y.J.); (X.Z.); (X.W.); (X.L.)
- Correspondence: ; Tel.: +86-025-8542-7316
| |
Collapse
|
19
|
Fadón E, Herrero M, Rodrigo J. Anther and pollen development in sweet cherry (Prunus avium L.) in relation to winter dormancy. PROTOPLASMA 2019; 256:733-744. [PMID: 30506265 DOI: 10.1007/s00709-018-01332-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/21/2018] [Indexed: 05/23/2023]
Abstract
Anther and pollen development is a highly conserved process in angiosperms, but while pollen formation in annual plants occurs in a few days, in temperate woody perennials, it requires several months. How anther and pollen development is framed in terms of seasonality plays a clear part in reproductive success. In this study, seasonal anther and pollen development is characterized in two sweet cherry cultivars over 2 years, paying special attention to the period of dormancy and unveiling the role of starch in this process. We evaluated starch content from the autumn until bud burst with the help of an image analysis system fitted to a light microscope. Microscope observations allowed the temporal relationship of pollen development to the phenological stages of flower and bud development to be determined. In both cultivars and years, anther and pollen development followed the same pattern. Development was halted by dormancy, when the anthers showed no morphological changes until several weeks after chilling fulfillment, until the milder temperatures reactivated development. After dormancy, starch was accumulated in the connective tissue until tracheary element differentiation. Quantification of starch in the connective tissue of anthers revealed its importance in supporting pollen meiosis and subsequent anther growth.
Collapse
Affiliation(s)
- Erica Fadón
- Centro de Investigación y Tecnología Agroalimentaria de Aragón. Instituto Agroalimentario de Aragón - IA2 (CITA), Universidad de Zaragoza, Av. Montañana 930, 50059, Zaragoza, Spain
- Estación Experimental Aula Dei, CSIC, Av. Montañana 1005, 50059, Zaragoza, Spain
| | - María Herrero
- Estación Experimental Aula Dei, CSIC, Av. Montañana 1005, 50059, Zaragoza, Spain
| | - Javier Rodrigo
- Centro de Investigación y Tecnología Agroalimentaria de Aragón. Instituto Agroalimentario de Aragón - IA2 (CITA), Universidad de Zaragoza, Av. Montañana 930, 50059, Zaragoza, Spain.
| |
Collapse
|
20
|
Hou L, Zhang Z, Dou S, Zhang Y, Pang X, Li Y. Genome-wide identification, characterization, and expression analysis of the expansin gene family in Chinese jujube (Ziziphus jujuba Mill.). PLANTA 2019; 249:815-829. [PMID: 30411169 DOI: 10.1007/s00425-018-3020-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 09/23/2018] [Indexed: 05/10/2023]
Abstract
Main conclusion 30 expansin genes were identified in the jujube genome. Phylogenetic analysis classified expansins into 17 subgroups. Closely related expansins share a conserved gene structure. ZjEXPs had different expression patterns in different tissues. Plant-specific expansins were first discovered as pH-dependent cell-wall-loosening proteins involved in diverse physiological processes. No comprehensive analysis of the expansin gene family has yet been carried out at the whole genome level in Chinese jujube (Ziziphus jujuba Mill.). In this study, 30 expansin genes were identified in the jujube genome. These genes, which were distributed with varying densities across 10 of the 12 jujube chromosomes, could be divided into four subfamilies: 19 ZjEXPAs, 3 ZjEXPBs, 1 ZjEXLA, and 7 ZjEXLBs. Phylogenetic analysis of expansin genes in Arabidopsis, rice, apple, grape, and jujube classified these genes into 17 subgroups. Members of the same subfamily and subgroup shared conserved gene structure and motif compositions. Homology analysis identified 20 homologous gene pairs between jujube and Arabidopsis. Further analysis of ZjEXP gene promoter regions uncovered various growth, development and stress-responsive cis-acting elements. Expression analysis and transcript profiling revealed that ZjEXPs had different expression patterns in different tissues at various developmental stages. ZjEXPA4 and ZjEXPA6 were highly expressed in young fruits, ZjEXPA3 and ZjEXPA5 were significantly expressed in flowers, and ZjEXPA7 was specifically expressed in young leaves. The results of this study, the first systematic analysis of the jujube expansin gene family, can serve as a strong foundation for further elucidation of the physiological functions and biological roles of jujube expansin genes.
Collapse
Affiliation(s)
- Lu Hou
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Zhiyong Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Suhan Dou
- Henan Longyuan Flowers &Trees Co., Ltd., Xuchang, 461000, China
| | - Yadong Zhang
- Henan Longyuan Flowers &Trees Co., Ltd., Xuchang, 461000, China
| | - Xiaoming Pang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yingyue Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
21
|
Ito A, Sakaue T, Fujimaru O, Iwatani A, Ikeda T, Sakamoto D, Sugiura T, Moriguchi T. Comparative phenology of dormant Japanese pear (Pyrus pyrifolia) flower buds: a possible cause of 'flowering disorder'. TREE PHYSIOLOGY 2018; 38:825-839. [PMID: 29370432 DOI: 10.1093/treephys/tpx169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 12/04/2017] [Indexed: 05/03/2023]
Abstract
Mild winters influenced by global warming have increased the incidence of erratic flowering ('flowering disorder') in Japanese pear (Pyrus pyrifolia Nakai) trees in Japan. To discover how, when and what kind of disorder/damage occur in pear flower buds, we observed axillary flower buds of two cultivars, 'Kosui' (a mid-chill cultivar) and 'Niitaka' (a high-chill cultivar), grown at five locations. We focused on the phenology from autumn 2015 to spring 2016, when temperatures were higher than for average years, especially from September to January, and large fluctuations occurred due to El Niño. During the blooming season in the spring of 2016, both the percentage of blooming flower buds and the number of florets per flower bud decreased in trees located at lower latitudes (with lower chilling accumulation) with a more severe problem in 'Niitaka' than in 'Kosui'. As shown by forcing excised shoots, the onset and release of endodormancy occurred earlier in 'Kosui' than 'Niitaka' and occurred earlier in trees growing at higher latitudes than at lower latitudes (warmer regions). The freezing tolerance of flower buds, measured as the lethal temperature for 50% survival (LT50), was similar for the cultivars beginning in autumn and reached maximum levels, LT50 values of less than -12 °C, between late-December and mid-January in both cultivars, except for those in Kagoshima (the lowest latitude), where the maximum LT50 was only -5 °C throughout the season. We propose that warmer autumn-winter temperatures may prevent the acquisition of freezing tolerance, disturb endodormancy progression and disrupt floral organ development, thereby causing flowering disorder in pear trees. The risk of occurrence of flowering disorder in pear may be higher in high-chill cultivars than in low- or mid-chill cultivars and at lower latitudes compared with higher latitudes.
Collapse
Affiliation(s)
- A Ito
- Division of Fruit Production and Postharvest Science, Institute of Fruit Tree and Tea Science, NARO, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
| | - T Sakaue
- Fruit Tree Division, Kagoshima Prefectural Institute of Agricultural Development, 2200 Oono, Kinpo, Minamisatsuma, Kagoshima 899-3401, Japan
| | - O Fujimaru
- Department of Deciduous Fruit Tree, Fruit Tree Research Institute, Kumamoto Prefectural Agricultural Research Center, 2566 Toyofuku, Matsubase, Uki, Kumamoto 869-0524, Japan
- Northern Kumamoto Administrative Headquarters, Kumamoto Prefectural Government, Tamana, Kumamoto 865-0016, Japan
| | - A Iwatani
- Department of Deciduous Fruit Tree, Fruit Tree Research Institute, Kumamoto Prefectural Agricultural Research Center, 2566 Toyofuku, Matsubase, Uki, Kumamoto 869-0524, Japan
| | - T Ikeda
- Laboratory of Fruit Growing and Breeding, Tottori Prefectural Horticultural Research Center, 2048 Yurashuku Hokuei, Tottori 689-2221, Japan
| | - D Sakamoto
- Division of Fruit Production and Postharvest Science, Institute of Fruit Tree and Tea Science, NARO, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
| | - T Sugiura
- Division of Fruit Production and Postharvest Science, Institute of Fruit Tree and Tea Science, NARO, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
| | - T Moriguchi
- Division of Fruit Production and Postharvest Science, Institute of Fruit Tree and Tea Science, NARO, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
| |
Collapse
|
22
|
Luo Y, Li H, Xiang Z, He N. Identification of Morus notabilis MADS-box genes and elucidation of the roles of MnMADS33 during endodormancy. Sci Rep 2018; 8:5860. [PMID: 29643336 PMCID: PMC5895635 DOI: 10.1038/s41598-018-23985-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/22/2018] [Indexed: 11/24/2022] Open
Abstract
The MADS-box genes encode transcriptional regulators with various functions especially during floral development. A total of 54 putative Morus notabilis MADS-box genes (MnMADSs) were identified and phylogenetically classified as either type I (17 genes) or type II (37 genes). The detected genes included three FLOWERING LOCUS C-like (MnFLC-like) genes, MnMADS33, MnMADS50, and MnMADS7. MnFLC-like proteins could directly or indirectly repress promoter activity of the mulberry FLOWERING LOCUS T-like (MnFT) gene. Transgenic Arabidopsis thaliana overexpressing MnFLC-like genes exhibited delayed flowering and down-regulated expression of FT and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1). The gene expression analyses in floral bud indicated that MnMADS33 expression increased, while MnFT expression decreased during the induction of dormancy in response to cold conditions. Dormancy release resulted in the down-regulation of MnMADS33 expression and the up-regulation of MnFT expression. Furthermore, abscisic acid promoted the transcription of MnMADS33 and MnFT, although the expression level of MnFT gradually decreased. These results are consistent with the hypothesis that MnMADS33 negatively regulated the expression of MnFT to repress dormancy release and flowering in mulberry. This study may be relevant for future investigations regarding the effects of MnMADS genes on mulberry flowering development.
Collapse
Affiliation(s)
- Yiwei Luo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, P. R. China
| | - Hongshun Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, P. R. China
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, P. R. China
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, P. R. China.
| |
Collapse
|
23
|
Bai S, Tuan PA, Saito T, Ito A, Ubi BE, Ban Y, Moriguchi T. Repression of TERMINAL FLOWER1 primarily mediates floral induction in pear (Pyrus pyrifolia Nakai) concomitant with change in gene expression of plant hormone-related genes and transcription factors. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4899-4914. [PMID: 28992213 PMCID: PMC5853822 DOI: 10.1093/jxb/erx296] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/02/2017] [Indexed: 05/22/2023]
Abstract
Floral induction is an important event in the annual growth cycle of perennial fruit trees. For pear, this event directly affects fruit production in the following year. The flower buds in many species are induced by FLOWERING LOCUS T (FT), whose effect is repressed by the meristem-expressed gene TERMINAL FLOWER1 (TFL1). In this study, we investigated the functions of pear FT and TFL1 genes during floral development. Expression of pear FTs (PpFT1a and PpFT2a) in reproductive meristems was not obviously induced prior to floral initiation, while expression of TFL1s (PpTFL1-1a and PpTFL1-2a) rapidly decreased. The induction of the productive meristem identity MADS-box gene AP1 after repression of PpTFL1s suggested a primary role for PpTFL1 in floral induction. RNA-seq analysis suggested that plant hormone-related genes and several transcription factors that were coexpressed with PpTFL1 were potentially involved in the PpTFL1-mediated floral induction. Our data indicate the essential function of TFL1 in pear floral induction and add another species in the family Rosaceae in addition to strawberry and rose that shows a role for TFL1 in floral induction.
Collapse
Affiliation(s)
- Songling Bai
- Institute of Fruit Tree and Tea Science, NARO, Tsukuba, Ibaraki, Japan
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Pham Anh Tuan
- Institute of Fruit Tree and Tea Science, NARO, Tsukuba, Ibaraki, Japan
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Takanori Saito
- Institute of Fruit Tree and Tea Science, NARO, Tsukuba, Ibaraki, Japan
- Graduate School of Horticulture, Chiba University, Matsudo-shi, Chiba, Japan
| | - Akiko Ito
- Institute of Fruit Tree and Tea Science, NARO, Tsukuba, Ibaraki, Japan
| | - Benjamin Ewa Ubi
- Institute of Fruit Tree and Tea Science, NARO, Tsukuba, Ibaraki, Japan
- Department of Biotechnology, Ebonyi State University, Abakaliki, Nigeria
| | - Yusuke Ban
- Institute of Fruit Tree and Tea Science, NARO, Tsukuba, Ibaraki, Japan
- Western Region Agricultural Research Center, NARO, Division of Lowland Crop Research, Fukuyama-shi, Hiroshima, Japan
| | - Takaya Moriguchi
- Institute of Fruit Tree and Tea Science, NARO, Tsukuba, Ibaraki, Japan
- Institute of Fruit Tree and Tea Science, NARO, Division of Citrus Research, Okitsu-Nakacho Shimizu, Shizuoka, Japan
- Correspondence:
| |
Collapse
|
24
|
Glazinska P, Wojciechowski W, Kulasek M, Glinkowski W, Marciniak K, Klajn N, Kesy J, Kopcewicz J. De novo Transcriptome Profiling of Flowers, Flower Pedicels and Pods of Lupinus luteus (Yellow Lupine) Reveals Complex Expression Changes during Organ Abscission. FRONTIERS IN PLANT SCIENCE 2017; 8:641. [PMID: 28512462 PMCID: PMC5412092 DOI: 10.3389/fpls.2017.00641] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 04/10/2017] [Indexed: 05/03/2023]
Abstract
Yellow lupine (Lupinus luteus L., Taper c.), a member of the legume family (Fabaceae L.), has an enormous practical importance. Its excessive flower and pod abscission represents an economic drawback, as proper flower and seed formation and development is crucial for the plant's productivity. Generative organ detachment takes place at the basis of the pedicels, within a specialized group of cells collectively known as the abscission zone (AZ). During plant growth these cells become competent to respond to specific signals that trigger separation and lead to the abolition of cell wall adhesion. Little is known about the molecular network controlling the yellow lupine organ abscission. The aim of our study was to establish the divergences and similarities in transcriptional networks in the pods, flowers and flower pedicels abscised or maintained on the plant, and to identify genes playing key roles in generative organ abscission in yellow lupine. Based on de novo transcriptome assembly, we identified 166,473 unigenes representing 219,514 assembled unique transcripts from flowers, flower pedicels and pods undergoing abscission and from control organs. Comparison of the cDNA libraries from dropped and control organs helped in identifying 1,343, 2,933 and 1,491 differentially expressed genes (DEGs) in the flowers, flower pedicels and pods, respectively. In DEG analyses, we focused on genes involved in phytohormonal regulation, cell wall functioning and metabolic pathways. Our results indicate that auxin, ethylene and gibberellins are some of the main factors engaged in generative organ abscission. Identified 28 DEGs common for all library comparisons are involved in cell wall functioning, protein metabolism, water homeostasis and stress response. Interestingly, among the common DEGs we also found an miR169 precursor, which is the first evidence of micro RNA engaged in abscission. A KEGG pathway enrichment analysis revealed that the identified DEGs were predominantly involved in carbohydrate and amino acid metabolism, but some other pathways were also targeted. This study represents the first comprehensive transcriptome-based characterization of organ abscission in L. luteus and provides a valuable data source not only for understanding the abscission signaling pathway in yellow lupine, but also for further research aimed at improving crop yields.
Collapse
Affiliation(s)
- Paulina Glazinska
- Department of Biology and Environmental Science, Nicolaus Copernicus UniversityTorun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus UniversityTorun, Poland
| | - Waldemar Wojciechowski
- Department of Biology and Environmental Science, Nicolaus Copernicus UniversityTorun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus UniversityTorun, Poland
| | - Milena Kulasek
- Department of Biology and Environmental Science, Nicolaus Copernicus UniversityTorun, Poland
| | - Wojciech Glinkowski
- Department of Biology and Environmental Science, Nicolaus Copernicus UniversityTorun, Poland
| | - Katarzyna Marciniak
- Department of Biology and Environmental Science, Nicolaus Copernicus UniversityTorun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus UniversityTorun, Poland
| | - Natalia Klajn
- Department of Biology and Environmental Science, Nicolaus Copernicus UniversityTorun, Poland
| | - Jacek Kesy
- Department of Biology and Environmental Science, Nicolaus Copernicus UniversityTorun, Poland
| | - Jan Kopcewicz
- Department of Biology and Environmental Science, Nicolaus Copernicus UniversityTorun, Poland
| |
Collapse
|
25
|
Anh Tuan P, Bai S, Saito T, Imai T, Ito A, Moriguchi T. Involvement of EARLY BUD-BREAK, an AP2/ERF Transcription Factor Gene, in Bud Break in Japanese Pear (Pyrus pyrifolia Nakai) Lateral Flower Buds: Expression, Histone Modifications and Possible Target Genes. PLANT & CELL PHYSIOLOGY 2016; 57:1038-47. [PMID: 26940832 DOI: 10.1093/pcp/pcw041] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/19/2016] [Indexed: 05/05/2023]
Abstract
In the Japanese pear (Pyrus pyrifolia Nakai) 'Kosui', three developmental stages of lateral flower buds have been proposed to occur during ecodormancy to the flowering phase, i.e. rapid enlargement, sprouting and flowering. Here, we report an APETALA2/ethylene-responsive factor (AP2/ERF) transcription factor gene, named pear EARLY BUD-BREAK (PpEBB), which was highly expressed during the rapid enlargement stage occurring prior to the onset of bud break in flower buds. Gene expression analysis revealed that PpEBB expression was dramatically increased during the rapid enlargement stage in three successive growing seasons. PpEBB transcript levels peaked 1 week prior to onset of bud break in 'Kosui' potted plants treated with hydrogen cyanamide or water under forcing conditions. Chromatin immunoprecipitation-quantitative PCR showed that higher levels of active histone modifications (trimethylation of the histone H3 tail at Lys4) in the 5'-upstream and start codon regions of the PpEBB gene were associated with the induced expression level of PpEBB during the rapid enlargement stage. In addition, we provide evidence that PpEBB may interact with and regulate pear four D-type cyclin (PpCYCD3) genes during bud break in 'Kosui' lateral flower buds. PpEBB significantly increased the promoter activities of four PpCYCD3 genes in a dual-luciferase assay using tobacco leaves. Taken together, our findings uncovered aspects of the bud break regulatory mechanism in the Japanese pear and provided further evidence that the EBB family plays an important role in bud break in perennial plants.
Collapse
Affiliation(s)
- Pham Anh Tuan
- NARO Institute of Fruit Tree Science, Tsukuba, Ibaraki, 305-8605 Japan
| | - Songling Bai
- NARO Institute of Fruit Tree Science, Tsukuba, Ibaraki, 305-8605 Japan Present address: Institute of Fruit Science, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Takanori Saito
- NARO Institute of Fruit Tree Science, Tsukuba, Ibaraki, 305-8605 Japan Present address: Graduate School of Horticulture, Chiba University, Matsudo, Chiba, 271-8510 Japan
| | - Tsuyoshi Imai
- NARO Institute of Fruit Tree Science, Tsukuba, Ibaraki, 305-8605 Japan
| | - Akiko Ito
- NARO Institute of Fruit Tree Science, Tsukuba, Ibaraki, 305-8605 Japan
| | - Takaya Moriguchi
- NARO Institute of Fruit Tree Science, Tsukuba, Ibaraki, 305-8605 Japan
| |
Collapse
|
26
|
Seader VH, Thornsberry JM, Carey RE. Utility of the Amborella trichopoda expansin superfamily in elucidating the history of angiosperm expansins. JOURNAL OF PLANT RESEARCH 2016; 129:199-207. [PMID: 26646380 DOI: 10.1007/s10265-015-0772-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/29/2015] [Indexed: 05/15/2023]
Abstract
Expansins form a superfamily of plant proteins that assist in cell wall loosening during growth and development. The superfamily is divided into four families: EXPA, EXPB, EXLA, and EXLB (Sampedro and Cosgrove in Genome Biol 6:242, 2005. doi: 10.1186/gb-2005-6-12-242 ). Previous studies on Arabidopsis, rice, and Populus trichocarpa have clarified the evolutionary history of expansins in angiosperms (Sampedro et al. in Plant J 44:409-419, 2005. doi: 10.1111/j.1365-313X.2005.02540.x ). Amborella trichopoda is a flowering plant that diverged very early. Thus, it is a sister lineage to all other extant angiosperms (Amborella Genome Project in 342:1241089, 2013. doi: 10.1126/science.1241089 ). Because of this relationship, comparing the A. trichopoda expansin superfamily with those of other flowering plants may indicate which expansin genes were present in the last common ancestor of all angiosperms. The A. trichopoda expansin superfamily was assembled using BLAST searches with angiosperm expansin queries. The search results were analyzed and annotated to isolate the complete A. trichopoda expansin superfamily. This superfamily is similar to other angiosperm expansin superfamilies, but is somewhat smaller. This is likely because of a lack of genome duplication events (Amborella Genome Project 2013). Phylogenetic and syntenic analyses of A. trichopoda expansins have improved our understanding of the evolutionary history of expansins in angiosperms. Nearly all of the A. trichopoda expansins were placed into an existing Arabidopsis-rice expansin clade. Based on the results of phylogenetic and syntenic analyses, we estimate there were 12-13 EXPA genes, 2 EXPB genes, 1 EXLA gene, and 2 EXLB genes in the last common ancestor of all angiosperms.
Collapse
Affiliation(s)
- Victoria H Seader
- Program in Biochemistry and Molecular Biology, Lebanon Valley College, Annville, PA, 17003-1400, USA
| | - Jennifer M Thornsberry
- Department of Biology, Lebanon Valley College, 101 N. College Ave, Annville, PA, 17003-1400, USA
| | - Robert E Carey
- Department of Biology, Lebanon Valley College, 101 N. College Ave, Annville, PA, 17003-1400, USA.
| |
Collapse
|