1
|
Loupit G, Fonayet JV, Lorensen MDBB, Franc C, De Revel G, Janfelt C, Cookson SJ. Tissue-specific stilbene accumulation is an early response to wounding/grafting as revealed by using spatial and temporal metabolomics. PLANT, CELL & ENVIRONMENT 2023; 46:3871-3886. [PMID: 37646324 DOI: 10.1111/pce.14693] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 09/01/2023]
Abstract
Grafting is widely used in horticulture. Shortly after grafting, callus tissues appear at the graft interface and the vascular tissues of the scion and rootstock connect. The graft interface contains a complex mix of tissues, we hypothesised that each tissue has its own metabolic response to wounding/grafting and accumulates different metabolites at different rates. We made intact and wounded cuttings and grafts of grapevine, and then measured changes in bulk flavonoid, phenolic acid and stilbenoid concentration and used metabolite imaging to study tissue-specific responses. We show that some metabolites rapidly accumulate in specific tissues after grafting, for example, stilbene monomers accumulate in necrotic tissues surrounding mature xylem vessels. Whereas other metabolites, such as complex stilbenes, accumulate in the same tissues at later stages. We also observe that other metabolites accumulate in the newly formed callus tissue and identify genotype-specific responses. In addition, exogenous resveratrol application did not modify grafting success rate, potentially suggesting that the accumulation of resveratrol at the graft interface is not linked to graft union formation. The increasing concentration of complex stilbenes often occurs in response to plant stresses (via unknown mechanisms), and potentially increases antioxidant activity and antifungal capacities.
Collapse
Affiliation(s)
- Grégoire Loupit
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, Villenave d'Ornon, France
| | - Josep V Fonayet
- Unité de recherche Oenologie, EA 4577, USC 1366 INRAE, ISVV, Université de Bordeaux, Villenave d'Ornon, France
- Bordeaux Metabolome Facility, MetaboHUB, PHENOME-EMPHASIS, Villenave d'Ornon, France
| | - Marcus D B B Lorensen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Céline Franc
- Unité de recherche Oenologie, EA 4577, USC 1366 INRAE, ISVV, Université de Bordeaux, Villenave d'Ornon, France
| | - Gilles De Revel
- Unité de recherche Oenologie, EA 4577, USC 1366 INRAE, ISVV, Université de Bordeaux, Villenave d'Ornon, France
| | - Christian Janfelt
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sarah J Cookson
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, Villenave d'Ornon, France
| |
Collapse
|
2
|
Yu X, Liu Z, Sun X. Single-cell and spatial multi-omics in the plant sciences: Technical advances, applications, and perspectives. PLANT COMMUNICATIONS 2023; 4:100508. [PMID: 36540021 DOI: 10.1016/j.xplc.2022.100508] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 11/09/2022] [Accepted: 12/16/2022] [Indexed: 05/11/2023]
Abstract
Plants contain a large number of cell types and exhibit complex regulatory mechanisms. Studies at the single-cell level have gradually become more common in plant science. Single-cell transcriptomics, spatial transcriptomics, and spatial metabolomics techniques have been combined to analyze plant development. These techniques have been used to study the transcriptomes and metabolomes of plant tissues at the single-cell level, enabling the systematic investigation of gene expression and metabolism in specific tissues and cell types during defined developmental stages. In this review, we present an overview of significant breakthroughs in spatial multi-omics in plants, and we discuss how these approaches may soon play essential roles in plant research.
Collapse
Affiliation(s)
- Xiaole Yu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, P.R. China
| | - Zhixin Liu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, P.R. China
| | - Xuwu Sun
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, P.R. China.
| |
Collapse
|
3
|
Comparative Multi-Omics Analysis Reveals Lignin Accumulation Affects Peanut Pod Size. Int J Mol Sci 2022; 23:ijms232113533. [DOI: 10.3390/ijms232113533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Pod size is one of the important factors affecting peanut yield. However, the metabolites relating to pod size and their biosynthesis regulatory mechanisms are still unclear. In the present study, two peanut varieties (Tif and Lps) with contrasting pod sizes were used for a comparative metabolome and transcriptome analysis. Developing peanut pods were sampled at 10, 20 and 30 days after pegging (DAP). A total of 720 metabolites were detected, most of which were lipids (20.3%), followed by phenolic acids (17.8%). There were 43, 64 and 99 metabolites identified as differentially accumulated metabolites (DAMs) at 10, 20 and 30 DAP, respectively, and flavonoids were the major DAMs between Tif and Lps at all three growth stages. Multi-omics analysis revealed that DAMs and DEGs (differentially expressed genes) were significantly enriched in the phenylpropanoid biosynthesis (ko00940) pathway, the main pathway of lignin biosynthesis, in each comparison group. The comparisons of the metabolites in the phenylpropanoid biosynthesis pathway accumulating in Tif and Lps at different growth stages revealed that the accumulation of p-coumaryl alcohol (H-monolignol) in Tif was significantly greater than that in Lps at 30 DAP. The differential expression of gene-LOC112771695, which is highly correlated with p-coumaryl alcohol and involved in the biosynthesis of monolignols, between Tif and Lps might explain the differential accumulation of p-coumaryl alcohol. The content of H-lignin in genetically diverse peanut varieties demonstrated that H-lignin content affected peanut pod size. Our findings would provide insights into the metabolic factors influencing peanut pod size and guidance for the genetic improvement of the peanut.
Collapse
|
4
|
Silva LMA, Filho EGA, Rodrigues THS, Louredo FJC, Zocolo GJ, Canuto KM, Mikich SB, Liebsch D, De Almeida A, De Brito ES. Metabolomic Profiling of Phloem Sap from Different Pine Species and Implications on Black Capuchin. J Chem Ecol 2022; 48:660-669. [PMID: 35653012 DOI: 10.1007/s10886-022-01365-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 03/14/2022] [Accepted: 03/23/2022] [Indexed: 12/20/2022]
Abstract
In most commercial pine farms in southern Brazil, black capuchin causes damage to wood and financial losses when it removes bark from some pine species to feed upon underlying vascular tissues. Therefore, this study aimed to evaluate the variability of the primary metabolites of phloem saps from 10 different species of pine by NMR spectroscopy, as well as the aroma compounds using SPME-GC-MS. Each technique provided a different set of metabolites that we can correlate to monkey predilection. The PCA showed monosaccharide (detected by NMR) and α-pinene (pine-like and resinous flavor descriptors) as attractive compounds for monkeys. On the other hand, the low content of monosaccharide and the high content of β-phellandrene (citrus odor descriptor) was observed in less attacked pine species (P. patula). The data fusion on primary metabolites and aroma compounds corroborated the individual analyses, complementing the comprehension of the monkey predilection. Thus, P. elliottii was an avoided tree even with high content of sugars possibly due to its high content of β-phellandrene (citrus odor). The results are useful for further behavioral studies to determine the role that each highlighted metabolite plays in chemically mediated animal-plant interactions.
Collapse
Affiliation(s)
- Lorena Mara A Silva
- Embrapa Agroindústria Tropical, Rua Doutora Sara Mesquita, 2270-Pici, Fortaleza, CE, CEP 60511-110, Brazil.
| | - Elenilson G Alves Filho
- Department of Food Engineering, Universidade Federal Do Ceará, Campus do Pici, Bloco 858, Fortaleza, CE, CEP 60440-900, Brazil
| | | | - Francisca Jamila C Louredo
- Department of Food Engineering, Universidade Federal Do Ceará, Campus do Pici, Bloco 858, Fortaleza, CE, CEP 60440-900, Brazil
| | - Guilherme J Zocolo
- Embrapa Agroindústria Tropical, Rua Doutora Sara Mesquita, 2270-Pici, Fortaleza, CE, CEP 60511-110, Brazil
| | - Kirley M Canuto
- Embrapa Agroindústria Tropical, Rua Doutora Sara Mesquita, 2270-Pici, Fortaleza, CE, CEP 60511-110, Brazil
| | - Sandra B Mikich
- Embrapa Floresta, Estrada da Ribeira, Km 111, Bairro Guaraituba, Colombo, PR, CEP 83411-000, Brazil
| | - Dieter Liebsch
- Arauka Ambiental, Rua Ten. Ricardo Kirch, 188, Curitiba, Paraná, CEP 81530120, Brazil
| | - Adriana De Almeida
- Universidade Estadual Paulista Júlio de Mesquita Filho, Rua Cristóvão Colombo 2265, São José Do Rio Preto, SP, 15054-000, Brazil
| | - Edy S De Brito
- Embrapa Agroindústria Tropical, Rua Doutora Sara Mesquita, 2270-Pici, Fortaleza, CE, CEP 60511-110, Brazil
| |
Collapse
|
5
|
Hu W, Nie H, Wang Y, Li N, Di S, Pan Q, Liu J, Han Y. Tracing the migration and transformation of metabolites in xylem during wood growth by mass spectrometry imaging. Analyst 2022; 147:1551-1558. [DOI: 10.1039/d1an02251b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MALDI MSI was used to explore the rule of metabolite migration and transformation for the first time. The rules of heartwood formation and resin secretion were visualized and fully explored.
Collapse
Affiliation(s)
- Wenya Hu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, P. R. China
| | - Honggang Nie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yinghao Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, P. R. China
| | - Na Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shuangshuang Di
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qiong Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, P. R. China
| | - Jikun Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, P. R. China
| | - Yehua Han
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, P. R. China
| |
Collapse
|
6
|
Hu W, Han Y, Sheng Y, Wang Y, Pan Q, Nie H. Mass spectrometry imaging for direct visualization of components in plants tissues. J Sep Sci 2021; 44:3462-3476. [PMID: 34245221 DOI: 10.1002/jssc.202100138] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/09/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022]
Abstract
Mass spectrometry is considered the most informative technique for components identification and has been widely adopted in plant sciences. However, the spatial distribution of compounds in the plant, which is vital for the exploration of plant physiological mechanisms, is missed in MS analysis. In recent years, mass spectrometry imaging has brought a great breakthrough in plant analysis because it can determine both the molecular compositions and spatial distributions, which is conducive to understand functions and regulation pathways of specific components in plants. Mass spectrometry imaging analysis of plant tissue is toward high sensitivity, high spatial resolution, and even single-cell analysis. Despite many challenges and technical barriers, such as difficulties of sample pretreatment caused by morphological diversity of plant tissues, obstacles for high spatial resolution imaging, and so on, lots of researches have contributed to remarkable progress, including improvement in tissue preparation, matrix innovation, and ionization mode development. This review focuses on the advances of mass spectrometry imaging analysis of plants in the last 5 years, including commonly used ionization techniques, technical advances, and recent applications of mass spectrometry imaging in plants.
Collapse
Affiliation(s)
- Wenya Hu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Yehua Han
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Yiqi Sheng
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Yinghao Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Qiong Pan
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Honggang Nie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| |
Collapse
|
7
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
8
|
Baldacci-Cresp F, Le Roy J, Huss B, Lion C, Créach A, Spriet C, Duponchel L, Biot C, Baucher M, Hawkins S, Neutelings G. UDP-GLYCOSYLTRANSFERASE 72E3 Plays a Role in Lignification of Secondary Cell Walls in Arabidopsis. Int J Mol Sci 2020; 21:ijms21176094. [PMID: 32847109 PMCID: PMC7503680 DOI: 10.3390/ijms21176094] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022] Open
Abstract
Lignin is present in plant secondary cell walls and is among the most abundant biological polymers on Earth. In this work we investigated the potential role of the UGT72E gene family in regulating lignification in Arabidopsis. Chemical determination of floral stem lignin contents in ugt72e1, ugt72e2, and ugt72e3 mutants revealed no significant differences compared to WT plants. In contrast, the use of a novel safranin O ratiometric imaging technique indicated a significant increase in the cell wall lignin content of both interfascicular fibers and xylem from young regions of ugt72e3 mutant floral stems. These results were globally confirmed in interfascicular fibers by Raman microspectroscopy. Subsequent investigation using a bioorthogonal triple labelling strategy suggested that the augmentation in lignification was associated with an increased capacity of mutant cell walls to incorporate H-, G-, and S-monolignol reporters. Expression analysis showed that this increase was associated with an up-regulation of LAC17 and PRX71, which play a key role in lignin polymerization. Altogether, these results suggest that UGT72E3 can influence the kinetics of lignin deposition by regulating monolignol flow to the cell wall as well as the potential of this compartment to incorporate monomers into the growing lignin polymer.
Collapse
Affiliation(s)
- Fabien Baldacci-Cresp
- University Lille, CNRS, UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), F-59000 Lille, France; (F.B.-C.); (J.L.R.); (B.H.); (C.L.); (A.C.); (C.S.); (C.B.); (S.H.)
| | - Julien Le Roy
- University Lille, CNRS, UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), F-59000 Lille, France; (F.B.-C.); (J.L.R.); (B.H.); (C.L.); (A.C.); (C.S.); (C.B.); (S.H.)
- College La Cité, Technology Access Center in Bio-Innovation (TAC-B), Ottawa, ON K1K4R3, Canada
| | - Brigitte Huss
- University Lille, CNRS, UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), F-59000 Lille, France; (F.B.-C.); (J.L.R.); (B.H.); (C.L.); (A.C.); (C.S.); (C.B.); (S.H.)
| | - Cédric Lion
- University Lille, CNRS, UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), F-59000 Lille, France; (F.B.-C.); (J.L.R.); (B.H.); (C.L.); (A.C.); (C.S.); (C.B.); (S.H.)
| | - Anne Créach
- University Lille, CNRS, UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), F-59000 Lille, France; (F.B.-C.); (J.L.R.); (B.H.); (C.L.); (A.C.); (C.S.); (C.B.); (S.H.)
| | - Corentin Spriet
- University Lille, CNRS, UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), F-59000 Lille, France; (F.B.-C.); (J.L.R.); (B.H.); (C.L.); (A.C.); (C.S.); (C.B.); (S.H.)
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41, UMS 2014, PLBS, F-59000 Lille, France
| | - Ludovic Duponchel
- University Lille, CNRS, UMR 8516, LASIR, Infrared and Raman Spectroscopy Laboratory, F-59000 Lille, France;
| | - Christophe Biot
- University Lille, CNRS, UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), F-59000 Lille, France; (F.B.-C.); (J.L.R.); (B.H.); (C.L.); (A.C.); (C.S.); (C.B.); (S.H.)
| | - Marie Baucher
- Laboratoire de Biotechnologie Végétale (LBV), Université libre de Bruxelles, B-6041 Gosselies, Belgium;
| | - Simon Hawkins
- University Lille, CNRS, UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), F-59000 Lille, France; (F.B.-C.); (J.L.R.); (B.H.); (C.L.); (A.C.); (C.S.); (C.B.); (S.H.)
| | - Godfrey Neutelings
- University Lille, CNRS, UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), F-59000 Lille, France; (F.B.-C.); (J.L.R.); (B.H.); (C.L.); (A.C.); (C.S.); (C.B.); (S.H.)
- Correspondence:
| |
Collapse
|
9
|
Kuo TH, Huang HC, Hsu CC. Mass spectrometry imaging guided molecular networking to expedite discovery and structural analysis of agarwood natural products. Anal Chim Acta 2019; 1080:95-103. [PMID: 31409479 DOI: 10.1016/j.aca.2019.05.070] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 02/04/2023]
Abstract
Structural analysis of biomolecules is essential to natural product discovery, especially for precious biomaterials such as agarwood. However, one of the greatest challenges to the characterization of natural products is the profound cost in time and manpower to the structural elucidation of these highly diverse compounds. Here, we demonstrate a multi-modal mass spectrometric strategy, integrating matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI) and mass spectral molecular networking, to uncover agarwood natural products of Aquilaria sinensis trees. A simple workflow for preparing wood sections for MALDI-MSI analysis was demonstrated. Notably, tens of natural products in the agarwood region in wood stem section of A. sinensis were spatially revealed by MALDI-MSI. For the first time, such a great number of plant specialized metabolites is obtained by a single wood section MSI. Guided by the spatially resolved features, mass spectral molecular networking was subsequently applied for structural analysis of the agarwood natural products, in which three major classes of 2-(2-phenylethyl)chromones and their analogues were putatively characterized. These results suggest an efficient strategy to the dereplication of plant natural products.
Collapse
Affiliation(s)
- Ting-Hao Kuo
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
| | - Hou-Chun Huang
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
10
|
Cheng X, Muhammad A, Li G, Zhang J, Cheng J, Qiu J, Jiang T, Jin Q, Cai Y, Lin Y. Family-1 UDP glycosyltransferases in pear (Pyrus bretschneideri): Molecular identification, phylogenomic characterization and expression profiling during stone cell formation. Mol Biol Rep 2019; 46:2153-2175. [PMID: 30734172 DOI: 10.1007/s11033-019-04669-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/31/2019] [Indexed: 02/07/2023]
Abstract
Stone cells are a characteristic trait of pear fruits, and excessive stone cell formation has a significant negative impact on the texture and flavour of the pulp. Lignin is one of the main components of stone cells. Family-1 uridine diphosphate-glycosyltransferases (UGTs) are responsible for the glycosylation modification of monolignols. However, information remains limited regarding the relationship between UGTs and stone cell formation. To address this problem, we identified 139 UGTs from the pear genome, which were distributed in 15 phylogenetic groups (A-M, O, and P). We also performed a collinearity analysis of UGTs among four Rosaceae plants (pear, peach, mei, and strawberry). Phylogenetic analysis suggested that 13 PbUGTs might be related to the glycosylation of monolignols. Analysis of expression patterns demonstrated that most putative monolignol glycosylation-related PbUGTs not only showed high expression levels in flowers and buds but were also induced by exogenous ABA, SA, and MeJA. In addition, the transcript level of Pbr005014.1 (named PbUGT72AJ2) was consistent with the changing trend of lignin content in pear fruit, and the transcript level was also higher in 'Dangshan Su' pear with higher lignin and stone cell contents. Subcellular localization results showed that PbUGT72AJ2 was located mainly in the cytomembrane and cytoplasm. Based on our study, PbUGT72AJ2 is considered to be a monolignol glycosylation-related UGT. Our results provide an important source for the identification of UGTs and a foundation for the future understanding and manipulation of lignin metabolism and stone cell formation in pear fruit.
Collapse
Affiliation(s)
- Xi Cheng
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China
| | - Abdullah Muhammad
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China
| | - Guohui Li
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China
| | - Jingyun Zhang
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China
- Horticultural Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Jun Cheng
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China
| | - Jingxiang Qiu
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China
| | - Taoshan Jiang
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China
| | - Qing Jin
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China
| | - Yongping Cai
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China.
| | - Yi Lin
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China.
| |
Collapse
|
11
|
The Use of Auxin Quantification for Understanding Clonal Tree Propagation. FORESTS 2017. [DOI: 10.3390/f8010027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Aoki D, Hanaya Y, Akita T, Matsushita Y, Yoshida M, Kuroda K, Yagami S, Takama R, Fukushima K. Distribution of coniferin in freeze-fixed stem of Ginkgo biloba L. by cryo-TOF-SIMS/SEM. Sci Rep 2016; 6:31525. [PMID: 27510918 PMCID: PMC4980676 DOI: 10.1038/srep31525] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/21/2016] [Indexed: 11/19/2022] Open
Abstract
To clarify the role of coniferin in planta, semi-quantitative cellular distribution of coniferin in quick-frozen Ginkgo biloba L. (ginkgo) was visualized by cryo time-of-flight secondary ion mass spectrometry and scanning electron microscopy (cryo-TOF-SIMS/SEM) analysis. The amount and rough distribution of coniferin were confirmed through quantitative chromatography measurement using serial tangential sections of the freeze-fixed ginkgo stem. The lignification stage of the sample was estimated using microscopic observations. Coniferin distribution visualized at the transverse and radial surfaces of freeze-fixed ginkgo stem suggested that coniferin is stored in the vacuoles, and showed good agreement with the assimilation timing of coniferin to lignin in differentiating xylem. Consequently, it is suggested that coniferin is stored in the tracheid cells of differentiating xylem and is a lignin precursor.
Collapse
Affiliation(s)
- Dan Aoki
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Yuto Hanaya
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Takuya Akita
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Yasuyuki Matsushita
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Masato Yoshida
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Katsushi Kuroda
- Department of Wood Properties and Processing, Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
| | - Sachie Yagami
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Ruka Takama
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Kazuhiko Fukushima
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
13
|
Le Roy J, Huss B, Creach A, Hawkins S, Neutelings G. Glycosylation Is a Major Regulator of Phenylpropanoid Availability and Biological Activity in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:735. [PMID: 27303427 PMCID: PMC4880792 DOI: 10.3389/fpls.2016.00735] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 05/12/2016] [Indexed: 05/18/2023]
Abstract
The phenylpropanoid pathway in plants is responsible for the biosynthesis of a huge amount of secondary metabolites derived from phenylalanine and tyrosine. Both flavonoids and lignins are synthesized at the end of this very diverse metabolic pathway, as well as many intermediate molecules whose precise biological functions remain largely unknown. The diversity of these molecules can be further increased under the action of UDP-glycosyltransferases (UGTs) leading to the production of glycosylated hydroxycinnamates and related aldehydes, alcohols and esters. Glycosylation can change phenylpropanoid solubility, stability and toxic potential, as well as influencing compartmentalization and biological activity. (De)-glycosylation therefore represents an extremely important regulation point in phenylpropanoid homeostasis. In this article we review recent knowledge on the enzymes involved in regulating phenylpropanoid glycosylation status and availability in different subcellular compartments. We also examine the potential link between monolignol glycosylation and lignification by exploring co-expression of lignin biosynthesis genes and phenolic (de)glycosylation genes. Of the different biological roles linked with their particular chemical properties, phenylpropanoids are often correlated with the plant's stress management strategies that are also regulated by glycosylation. UGTs can for instance influence the resistance of plants during infection by microorganisms and be involved in the mechanisms related to environmental changes. The impact of flavonoid glycosylation on the color of flowers, leaves, seeds and fruits will also be discussed. Altogether this paper underlies the fact that glycosylation and deglycosylation are powerful mechanisms allowing plants to regulate phenylpropanoid localisation, availability and biological activity.
Collapse
|