1
|
Brooks MD, Szeto RC. Biological nitrogen fixation maintains carbon/nitrogen balance and photosynthesis at elevated CO 2. PLANT, CELL & ENVIRONMENT 2024; 47:2178-2191. [PMID: 38481026 DOI: 10.1111/pce.14873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/17/2024] [Accepted: 02/22/2024] [Indexed: 04/30/2024]
Abstract
Understanding crop responses to elevated CO2 is necessary to meet increasing agricultural demands. Crops may not achieve maximum potential yields at high CO2 due to photosynthetic downregulation, often associated with nitrogen limitation. Legumes have been proposed to have an advantage at elevated CO2 due to their ability to exchange carbon for nitrogen. Here, the effects of biological nitrogen fixation (BNF) on the physiological and gene expression responses to elevated CO2 were examined at multiple nitrogen levels by comparing alfalfa mutants incapable of nitrogen fixation to wild-type. Elemental analysis revealed a role for BNF in maintaining shoot carbon/nitrogen (C/N) balance under all nitrogen treatments at elevated CO2, whereas the effect of BNF on biomass was only observed at elevated CO2 and the lowest nitrogen dose. Lower photosynthetic rates at were associated with the imbalance in shoot C/N. Genome-wide transcriptional responses were used to identify carbon and nitrogen metabolism genes underlying the traits. Transcription factors important to C/N signalling were identified from inferred regulatory networks. This work supports the hypothesis that maintenance of C/N homoeostasis at elevated CO2 can be achieved in plants capable of BNF and revealed important regulators in the underlying networks including an alfalfa (Golden2-like) GLK ortholog.
Collapse
Affiliation(s)
- Matthew D Brooks
- Global Change and Photosynthesis Research Unit, USDA ARS, Urbana, Illinois, USA
| | - Ronnia C Szeto
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
2
|
Férriz M, Martin-Benito D, Fernández-de-Simón MB, Conde M, García-Cervigón AI, Aranda I, Gea-Izquierdo G. Functional phenotypic plasticity mediated by water stress and [CO2] explains differences in drought tolerance of two phylogenetically close conifers. TREE PHYSIOLOGY 2023; 43:909-924. [PMID: 36809504 PMCID: PMC10255776 DOI: 10.1093/treephys/tpad021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/15/2023] [Indexed: 06/11/2023]
Abstract
Forests are threatened globally by increased recurrence and intensity of hot droughts. Functionally close coexisting species may exhibit differences in drought vulnerability large enough to cause niche differentiation and affect forest dynamics. The effect of rising atmospheric [CO2], which could partly alleviate the negative effects of drought, may also differ between species. We analysed functional plasticity in seedlings of two taxonomically close pine species (Pinus pinaster Ait., Pinus pinea L.) under different [CO2] and water stress levels. The multidimensional functional trait variability was more influenced by water stress (preferentially xylem traits) and [CO2] (mostly leaf traits) than by differences between species. However, we observed differences between species in the strategies followed to coordinate their hydraulic and structural traits under stress. Leaf 13C discrimination decreased with water stress and increased under elevated [CO2]. Under water stress both species increased their sapwood area to leaf area ratios, tracheid density and xylem cavitation, whereas they reduced tracheid lumen area and xylem conductivity. Pinus pinea was more anisohydric than P. pinaster. Pinus pinaster produced larger conduits under well-watered conditions than P. pinea. Pinus pinea was more tolerant to water stress and more resistant to xylem cavitation under low water potentials. The higher xylem plasticity in P. pinea, particularly in tracheid lumen area, expressed a higher capacity of acclimation to water stress than P. pinaster. In contrast, P. pinaster coped with water stress comparatively more by increasing plasticity of leaf hydraulic traits. Despite the small differences observed in the functional response to water stress and drought tolerance between species, these interspecific differences agreed with ongoing substitution of P. pinaster by P. pinea in forests where both species co-occur. Increased [CO2] had little effect on the species-specific relative performance. Thus, a competitive advantage under moderate water stress of P. pinea compared with P. pinaster is expected to continue in the future.
Collapse
Affiliation(s)
- M Férriz
- ICIFOR-INIA, CSIC. Ctra La Coruña km 7.5, 28040 Madrid, Spain
| | - D Martin-Benito
- ICIFOR-INIA, CSIC. Ctra La Coruña km 7.5, 28040 Madrid, Spain
| | | | - M Conde
- ICIFOR-INIA, CSIC. Ctra La Coruña km 7.5, 28040 Madrid, Spain
| | - A I García-Cervigón
- Department of Biology and Geology, Physics and Inorganic Chemistry Rey Juan Carlos University, c/Tulipán s/n, 28933 Móstoles, Spain
| | - I Aranda
- ICIFOR-INIA, CSIC. Ctra La Coruña km 7.5, 28040 Madrid, Spain
| | - G Gea-Izquierdo
- ICIFOR-INIA, CSIC. Ctra La Coruña km 7.5, 28040 Madrid, Spain
| |
Collapse
|
3
|
Des Roches S, Pendleton LH, Shapiro B, Palkovacs EP. Conserving intraspecific variation for nature's contributions to people. Nat Ecol Evol 2021; 5:574-582. [PMID: 33649544 DOI: 10.1038/s41559-021-01403-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 01/25/2021] [Indexed: 01/31/2023]
Abstract
The rapid loss of intraspecific variation is a hidden biodiversity crisis. Intraspecific variation, which includes the genomic and phenotypic diversity found within and among populations, is threatened by local extinctions, abundance declines, and anthropogenic selection. However, biodiversity assessments often fail to highlight this loss of diversity within species. We review the literature on how intraspecific variation supports critical ecological functions and nature's contributions to people (NCP). Results show that the main categories of NCP (material, non-material, and regulating) are supported by intraspecific variation. We highlight new strategies that are needed to further explore these connections and to make explicit the value of intraspecific variation for NCP. These strategies will require collaboration with local and Indigenous groups who possess critical knowledge on the relationships between intraspecific variation and ecosystem function. New genomic methods provide a promising set of tools to uncover hidden variation. Urgent action is needed to document, conserve, and restore the intraspecific variation that supports nature and people. Thus, we propose that the maintenance and restoration of intraspecific variation should be raised to a major global conservation objective.
Collapse
Affiliation(s)
- Simone Des Roches
- Department of Ecology & Evolutionary Biology, University of California, Santa Cruz, CA, USA.,School of Aquatic and Fisheries Sciences, University of Washington, Seattle, WA, USA
| | - Linwood H Pendleton
- Centre for the Fourth Industrial Revolution - Ocean, Lysaker, Norway.,Ifremer, CNRS, UMR 6308, AMURE, IUEM University of Western Brittany, Plouzané, France.,Global Change Institute, University of Queensland, Brisbane, Queensland, Australia.,Duke University, Durham, NC, USA
| | - Beth Shapiro
- Department of Ecology & Evolutionary Biology, University of California, Santa Cruz, CA, USA.,Howard Hughes Medical Institute, University of California, Santa Cruz, CA, USA
| | - Eric P Palkovacs
- Department of Ecology & Evolutionary Biology, University of California, Santa Cruz, CA, USA.
| |
Collapse
|
4
|
Mao Q, Tang L, Ji W, Rennenberg H, Hu B, Ma M. Elevated CO 2 and soil mercury stress affect photosynthetic characteristics and mercury accumulation of rice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111605. [PMID: 33396125 DOI: 10.1016/j.ecoenv.2020.111605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/23/2020] [Accepted: 10/31/2020] [Indexed: 06/12/2023]
Abstract
This is a novel study about responses of leaf photosynthetic traits and plant mercury (Hg) accumulation of rice grown in Hg polluted soils to elevated CO2 (ECO2). The aim of this study was to provide basic information on the acclimation capacity of photosynthesis and Hg accumulation in rice grown in Hg polluted soil under ECO2 at day, night, and full day. For this purpose, we analyzed leaf photosynthetic traits of rice at flowering and grain filling. In addition, chlorophyll content, soluble sugar and Malondialdehyde (MDA) of rice leaves were measured at flowering. Seed yield, ear number, grain number per ear, 1000-grain weight, total mercury (THg) and methylmercury (MeHg) contents were determined after harvest. Our results showed that Hg polluted soil and ECO2 had no significant effect on leaf chlorophyll content and leaf mass per area (LMA) in rice. The contents of soluble sugar and MDA in leaves increased significantly under ECO2. Mercury polluted soil treatment significantly reduced the light saturated CO2 assimilation rate (Asat) of rice leaves only at flowering, but not at grain filling. Night ECO2 greatly improved rice leaf water use efficiency (WUE). ECO2 greatly increased seed yield and ear number. In addition, ECO2 did not affect THg accumulation in rice organs, but ECO2 and Hg treatment had a significant interaction on MeHg in seeds, husks and roots.
Collapse
Affiliation(s)
- Qiaozhi Mao
- Center of Molecular Ecological Physiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, PR China
| | - Lingzhi Tang
- Center of Molecular Ecological Physiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, PR China
| | - Wenwen Ji
- Center of Molecular Ecological Physiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, PR China
| | - Heinz Rennenberg
- Center of Molecular Ecological Physiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, PR China
| | - Bin Hu
- Center of Molecular Ecological Physiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, PR China.
| | - Ming Ma
- Center of Molecular Ecological Physiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, PR China.
| |
Collapse
|
5
|
Vega FE, Ziska LH, Simpkins A, Infante F, Davis AP, Rivera JA, Barnaby JY, Wolf J. Early growth phase and caffeine content response to recent and projected increases in atmospheric carbon dioxide in coffee (Coffea arabica and C. canephora). Sci Rep 2020; 10:5875. [PMID: 32246092 PMCID: PMC7125137 DOI: 10.1038/s41598-020-62818-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 03/16/2020] [Indexed: 11/27/2022] Open
Abstract
While [CO2] effects on growth and secondary chemistry are well characterized for annual plant species, little is known about perennials. Among perennials, production of Coffea arabica and C. canephora (robusta) have enormous economic importance worldwide. Three Arabica cultivars (Bourbon, Catimor, Typica) and robusta coffee were grown from germination to ca. 12 months at four CO2 concentrations: 300, 400, 500 or 600 ppm. There were significant increases in all leaf area and biomass markers in response to [CO2] with significant [CO2] by taxa differences beginning at 122-124 days after sowing (DAS). At 366-368 DAS, CO2 by cultivar variation in growth and biomass response among Arabica cultivars was not significant; however, significant trends in leaf area, branch number and total above-ground biomass were observed between Arabica and robusta. For caffeine concentration, there were significant differences in [CO2] response between Arabica and robusta. A reduction in caffeine in coffee leaves and seeds might result in decreased ability against deterrence, and consequently, an increase in pest pressure. We suggest that the interspecific differences observed (robusta vs. Arabica) may be due to differences in ploidy level (2n = 22 vs. 2n = 4x = 44). Differential quantitative and qualitative responses during early growth and development of Arabica and robusta may have already occurred with recent [CO2] increases, and such differences may be exacerbated, with production and quality consequences, as [CO2] continues to increase.
Collapse
Affiliation(s)
- Fernando E Vega
- Sustainable Perennial Crops Laboratory, U. S. Department of Agriculture, Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Lewis H Ziska
- Adaptive Cropping Systems Laboratory, U. S. Department of Agriculture, Agricultural Research Service, Beltsville, MD, 20705, USA
- Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Ann Simpkins
- Sustainable Perennial Crops Laboratory, U. S. Department of Agriculture, Agricultural Research Service, Beltsville, MD, 20705, USA
| | | | | | | | - Jinyoung Y Barnaby
- Dale Bumpers National Rice Research Center, U. S. Department of Agriculture, Agricultural Research Service, Stuttgart, AR, 72160, USA
| | - Julie Wolf
- Adaptive Cropping Systems Laboratory, U. S. Department of Agriculture, Agricultural Research Service, Beltsville, MD, 20705, USA
| |
Collapse
|
6
|
de Simón BF, Cadahía E, Aranda I. Metabolic response to elevated CO 2 levels in Pinus pinaster Aiton needles in an ontogenetic and genotypic-dependent way. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:202-212. [PMID: 30216778 DOI: 10.1016/j.plaphy.2018.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 06/08/2023]
Abstract
Global climate changes involve elevated atmospheric [CO2], fostering the carbon allocation to tree sink tissues, partitioning it into metabolic pathways. We use metabolomics analysis in adult and juvenile needles of four Pinus pinaster genotypes exposed to two levels of growth [CO2]: ambient (400 μmol mol-1) and enriched (800 μmol mol-1), to know if the metabolic responses are genotype-dependent and vary according to the stage of needle ontogeny. The eCO2-induced changes in the needle metabolomes are more significant in secondary metabolism pathways and especially meaningful in juvenile needles. The heteroblasty has important consequences in the expression of the metabolome, and on the plasticity to CO2, determining the level of specific metabolite accumulation, showing an interdependence between adult and juvenile needles. The P. pinaster needle metabolomes also show clear quantitative differences linked to genotype, as well as regarding the metabolic response to eCO2, showing both, common and genotype-specific biochemical responses. Thus, the changes in flavonol levels are mainly genotype-independent, while those in terpenoid and free fatty acids are mainly genotype-dependent, ratifying the importance of genotype to determine the metabolic response to eCO2. To understand the adaptation mechanisms that tree species can develop to cope with eCO2 it is necessary to know the genetically distinct responses within a species to recognize the CO2-induced changes from the divergent approaches, what can facilitate knowing also the possible interrelation of the physiological and metabolic responses. That could explain the controversial effects of eCO2 on the carbon-based metabolite in conifers, at the inter- and intra-specific level.
Collapse
Affiliation(s)
- Brígida Fernández de Simón
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, O.A., M.P. (INIA), Centro de Investigación Forestal, Carretera de La Coruña Km 7.5, 28040 Madrid, Spain.
| | - Estrella Cadahía
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, O.A., M.P. (INIA), Centro de Investigación Forestal, Carretera de La Coruña Km 7.5, 28040 Madrid, Spain.
| | - Ismael Aranda
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, O.A., M.P. (INIA), Centro de Investigación Forestal, Carretera de La Coruña Km 7.5, 28040 Madrid, Spain; Instituto de Investigaciones Agroambientales y de Economía Del Agua (INAGEA), Palma de Mallorca, Islas Baleares, Spain.
| |
Collapse
|
7
|
Asgari M, Jawahery S, Bloch ED, Hudson MR, Flacau R, Vlaisavljevich B, Long JR, Brown CM, Queen WL. An experimental and computational study of CO 2 adsorption in the sodalite-type M-BTT (M = Cr, Mn, Fe, Cu) metal-organic frameworks featuring open metal sites. Chem Sci 2018; 9:4579-4588. [PMID: 29899951 PMCID: PMC5969499 DOI: 10.1039/c8sc00971f] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/22/2018] [Indexed: 11/21/2022] Open
Abstract
We present a comprehensive investigation of the CO2 adsorption properties of an isostructural series of metal-organic frameworks, M-BTT (M = Cr, Mn, Fe, Cu; BTT3- = 1,3,5-benzenetristetrazolate), which exhibit a high density of open metal sites capable of polarizing and binding guest molecules. Coupling gas adsorption measurements with in situ neutron and X-ray diffraction experiments provides molecular-level insight into the adsorption process and enables rationalization of the observed adsorption isotherms. In particular, structural data confirms that the high initial isosteric heats of CO2 adsorption for the series are directly correlated with the presence of open metal sites and further reveals the positions and orientations of as many as three additional adsorption sites. Density functional theory calculations that include van der Waals dispersion corrections quantitatively support the observed structural features associated with the primary and secondary CO2 binding sites, including CO2 positions and orientations, as well as the experimentally determined isosteric heats of CO2 adsorption.
Collapse
Affiliation(s)
- Mehrdad Asgari
- Institute of Chemical Sciences and Engineering , École Polytechnique Fédérale de Lausanne (EPFL) , CH-1051 Sion , Switzerland . ; Tel: +41 216958243
| | - Sudi Jawahery
- Institute of Chemical Sciences and Engineering , École Polytechnique Fédérale de Lausanne (EPFL) , CH-1051 Sion , Switzerland . ; Tel: +41 216958243
- Department of Chemical and Biomolecular Engineering , University of California , Berkeley , California 94720 , USA
| | - Eric D Bloch
- Department of Chemistry , University of California , Berkeley , California 94720 , USA
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , USA
| | - Matthew R Hudson
- National Institute of Standards and Technology , Center for Neutron Research , Gaithersburg , Maryland 20899 , USA
| | - Roxana Flacau
- Canadian Neutron Beam Centre , National Research Council , Chalk River Laboratories , Chalk River, Ontario K0J 1P0 , Canada
| | - Bess Vlaisavljevich
- Department of Chemistry , University of South Dakota , Vermillion , South Dakota 57069 , USA
| | - Jeffrey R Long
- Department of Chemical and Biomolecular Engineering , University of California , Berkeley , California 94720 , USA
- Department of Chemistry , University of California , Berkeley , California 94720 , USA
- Division of Materials Sciences , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , USA
| | - Craig M Brown
- National Institute of Standards and Technology , Center for Neutron Research , Gaithersburg , Maryland 20899 , USA
- Department of Chemical Engineering , University of Delaware , Newark , Delaware 19716 , USA
| | - Wendy L Queen
- Institute of Chemical Sciences and Engineering , École Polytechnique Fédérale de Lausanne (EPFL) , CH-1051 Sion , Switzerland . ; Tel: +41 216958243
| |
Collapse
|
8
|
Shimono H, Farquhar G, Brookhouse M, Busch FA, O Grady A, Tausz M, Pinkard EA. Prescreening in large populations as a tool for identifying elevated CO 2-responsive genotypes in plants. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 46:1-14. [PMID: 30939254 DOI: 10.1071/fp18087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/13/2018] [Indexed: 05/21/2023]
Abstract
Elevated atmospheric CO2 concentration (e[CO2]) can stimulate the photosynthesis and productivity of C3 species including food and forest crops. Intraspecific variation in responsiveness to e[CO2] can be exploited to increase productivity under e[CO2]. However, active selection of genotypes to increase productivity under e[CO2] is rarely performed across a wide range of germplasm, because of constraints of space and the cost of CO2 fumigation facilities. If we are to capitalise on recent advances in whole genome sequencing, approaches are required to help overcome these issues of space and cost. Here, we discuss the advantage of applying prescreening as a tool in large genome×e[CO2] experiments, where a surrogate for e[CO2] was used to select cultivars for more detailed analysis under e[CO2] conditions. We discuss why phenotypic prescreening in population-wide screening for e[CO2] responsiveness is necessary, what approaches could be used for prescreening for e[CO2] responsiveness, and how the data can be used to improve genetic selection of high-performing cultivars. We do this within the framework of understanding the strengths and limitations of genotype-phenotype mapping.
Collapse
Affiliation(s)
- Hiroyuki Shimono
- Crop Science Laboratory, Faculty of Agriculture, Iwate University, Morioka, 2032162, Japan
| | - Graham Farquhar
- Research School of Biology, Australian National University, Canberra, ACT 2600, Australia
| | - Matthew Brookhouse
- Research School of Biology, Australian National University, Canberra, ACT 2600, Australia
| | - Florian A Busch
- Research School of Biology, Australian National University, Canberra, ACT 2600, Australia
| | | | - Michael Tausz
- Birmingham Institute of Forest Research, University of Birmingham, Birmingham, 35203, UK
| | | |
Collapse
|
9
|
Sánchez-Gómez D, Mancha JA, Cervera MT, Aranda I. Inter-genotypic differences in drought tolerance of maritime pine are modified by elevated [CO2]. ANNALS OF BOTANY 2017; 120:591-602. [PMID: 29059316 PMCID: PMC5737726 DOI: 10.1093/aob/mcx080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/02/2017] [Indexed: 05/12/2023]
Abstract
Background and Aims Despite the importance of growth [CO 2 ] and water availability for tree growth and survival, little information is available on how the interplay of these two factors can shape intraspecific patterns of functional variation in tree species, particularly for conifers. The main objective of the study was to test whether the range of realized drought tolerance within the species can be affected by elevated [CO 2 ]. Methods Intraspecific variability in leaf gas exchange, growth rate and other leaf functional traits were studied in clones of maritime pine. A factorial experiment including water availability, growth [CO 2 ] and four different genotypes was conducted in growth rooms. A 'water deficit' treatment was imposed by applying a cycle of progressive soil water depletion and recovery at two levels of growth [CO 2 ]: 'ambient [CO 2 ]' (aCO 2 400 μmol mol -1 ) and 'elevated [CO 2 ]' (eCO 2 800 μmol mol -1 ). Key Results eCO2 had a neutral effect on the impact of drought on growth and leaf gas exchange of the most drought-sensitive genotypes while it aggravated the impact of drought on the most drought-tolerant genotypes at aCO2. Thus, eCO2 attenuated genotypic differences in drought tolerance as compared with those observed at aCO2. Genotypic variation at both levels of growth [CO2] was found in specific leaf area and leaf nitrogen content but not in other physiological leaf traits such as intrinsic water use efficiency and leaf osmotic potential. eCO2 increased Δ 13 C but had no significant effect on δ 18 O. This effect did not interact with the impact of drought, which increased δ 18 O and decreased Δ 13 C. Nevertheless, correlations between Δ 13 C and δ 18 O indicated the non-stomatal component of water use efficiency in this species can be particularly sensitive to drought. Conclusions Evidence from this study suggests elevated [CO 2 ] can modify current ranges of drought tolerance within tree species.
Collapse
Affiliation(s)
- David Sánchez-Gómez
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla-La Mancha (IRIAF), Centro de Investigación Agroforestal de Albaladejito (CIAF), Carretera Toledo-Cuenca, km 174, 16194, Cuenca, Spain
- Centro de Investigaciones Forestales (CIFOR), Instituto Nacional de Investigaciones Agrarias (INIA), Carretera de la Coruña km 7,5, 28040 Madrid, Spain
| | - José A Mancha
- Centro de Investigaciones Forestales (CIFOR), Instituto Nacional de Investigaciones Agrarias (INIA), Carretera de la Coruña km 7,5, 28040 Madrid, Spain
| | - M Teresa Cervera
- Centro de Investigaciones Forestales (CIFOR), Instituto Nacional de Investigaciones Agrarias (INIA), Carretera de la Coruña km 7,5, 28040 Madrid, Spain
| | - Ismael Aranda
- Centro de Investigaciones Forestales (CIFOR), Instituto Nacional de Investigaciones Agrarias (INIA), Carretera de la Coruña km 7,5, 28040 Madrid, Spain
| |
Collapse
|
10
|
Hiraoka Y, Iki T, Nose M, Tobita H, Yazaki K, Watanabe A, Fujisawa Y, Kitao M. Species characteristics and intraspecific variation in growth and photosynthesis of Cryptomeria japonica under elevated O3 and CO2. TREE PHYSIOLOGY 2017; 37:733-743. [PMID: 28369644 DOI: 10.1093/treephys/tpx028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 03/15/2017] [Indexed: 06/07/2023]
Abstract
In order to predict the effects of future atmospheric conditions on forest productivity, it is necessary to clarify the physiological responses of major forest tree species to high concentrations of ozone (O3) and carbon dioxide (CO2). Furthermore, intraspecific variation of these responses should also be examined in order to predict productivity gains through tree improvements in the future. We investigated intraspecific variation in growth and photosynthesis of Cryptomeria japonica D. Don, a major silviculture species in Japan, in response to elevated concentrations of O3 (eO3) and CO2 (eCO2), separately and in combination. Cuttings of C. japonica were grown and exposed to two levels of O3 (ambient and twice-ambient levels) in combination with two levels of CO2 (ambient and 550 µmol mol-1 in the daytime) for two growing seasons in a free-air CO2 enrichment experiment. There was no obvious negative effect of eO3 on growth or photosynthetic traits of the C. japonica clones, but a positive effect was observed for annual height increments in the first growing season. Dry mass production and the photosynthetic rate increased under eCO2 conditions, while the maximum carboxylation rate decreased. Significant interaction effects of eO3 and eCO2 on growth and photosynthetic traits were not observed. Clonal effects on growth and photosynthetic traits were significant, but the interactions between clones and O3 and/or CO2 treatments were not. Spearman's rank correlation coefficients between growth traits under ambient conditions and for each treatment were significantly positive, implying that clonal ranking in growth abilities might not be affected by either eO3 or eCO2. The knowledge obtained from this study will be helpful for species selection in afforestation programs, to continue and to improve current programs involving this species, and to accurately predict the CO2 fixation capacity of Japanese forests.
Collapse
Affiliation(s)
- Yuichiro Hiraoka
- Forest Tree Breeding Center (FTBC), Forestry and Forest Products Research Institute (FFPRI), 3809-1 Ishi, Juo-cho, Hitachi, Ibaraki 319-1301, Japan
| | - Taiichi Iki
- Tohoku Regional Breeding Office, FTBC, FFPRI, 95 Osaki, Takizawa, Iwate 020-0621, Japan
| | - Mine Nose
- Forest Tree Breeding Center (FTBC), Forestry and Forest Products Research Institute (FFPRI), 3809-1 Ishi, Juo-cho, Hitachi, Ibaraki 319-1301, Japan
| | | | | | - Atsushi Watanabe
- Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
| | - Yoshitake Fujisawa
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-8580, Japan
| | - Mitsutoshi Kitao
- Hokkaido Research Center, FFPRI, 7 Hitsujigaoka, Toyohira, Sapporo, Hokkaido 062-8516, Japan
| |
Collapse
|