1
|
Zhong Q, Zhang H, Zhang X, Gao F, Han H. Study on synergistic change strategies of leaf functional traits of common garden plants along the urban-rural gradient-Suzhou, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:363. [PMID: 40050466 DOI: 10.1007/s10661-025-13807-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/20/2025] [Indexed: 04/11/2025]
Abstract
The study of changes in landscape plant responses along the urban-rural gradient can better inform plant allocation strategies to mitigate the ecological risks associated with rapid urban development. This study focused on the trait changes of 10 common garden plants along the urban-rural gradient in Suzhou, selecting 12 leaf functional traits for the investigation to provide a quantitative basis for decision-making and landscape plant management practices. The results showed that: (1) six leaf functional traits, including specific leaf area (SLA), stomatal conductance (Gs), transpiration rate (Tr), leaf nitrogen content per unit of mass (Nmass), leaf potassium content per unit of mass (Kmass), and stomatal size (SS), differed significantly along the urban-rural gradient; (2) the variability and variance characteristics of leaf functional traits varied along the urban-rural gradient among different plants and growth forms; (3) the synergistic changes in leaf functional traits of different garden plants, driven by the urban-rural, differed, which can be further explored to understand plant adaptive strategies in various environments and guide garden plant selection.
Collapse
Affiliation(s)
- Qilin Zhong
- School of Architecture and Urban Planning, Suzhou University of Science and Technology, No. 1701, Binhe Road, Huqiu District, Suzhou, 215129, Jiangsu Province, China
| | - Hongyun Zhang
- Institute of Natural Resources And Ecology, Heilongjiang Academy of Sciences, No.103, Haping Road, Xiangfang District, Harbin, 150040, Heilongjiang Province, China
| | - Xing Zhang
- School of Architecture and Urban Planning, Suzhou University of Science and Technology, No. 1701, Binhe Road, Huqiu District, Suzhou, 215129, Jiangsu Province, China.
- Institute of Natural Resources And Ecology, Heilongjiang Academy of Sciences, No.103, Haping Road, Xiangfang District, Harbin, 150040, Heilongjiang Province, China.
| | - Fei Gao
- School of Architecture and Urban Planning, Suzhou University of Science and Technology, No. 1701, Binhe Road, Huqiu District, Suzhou, 215129, Jiangsu Province, China.
- Institute of Natural Resources And Ecology, Heilongjiang Academy of Sciences, No.103, Haping Road, Xiangfang District, Harbin, 150040, Heilongjiang Province, China.
| | - Hui Han
- Institute of Natural Resources And Ecology, Heilongjiang Academy of Sciences, No.103, Haping Road, Xiangfang District, Harbin, 150040, Heilongjiang Province, China
| |
Collapse
|
2
|
Kirakosyan RN, Kalasnikova EA, Bolotina EA, Saleh A, Balakina AA, Zaytseva SM. Localization of Secondary Metabolites in Relict Gymnosperms of the Genus Sequoia In Vivo and in Cell Cultures In Vitro, and the Biological Activity of Their Extracts. Life (Basel) 2024; 14:1694. [PMID: 39768400 PMCID: PMC11680049 DOI: 10.3390/life14121694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
In order to scientifically search for new sources of secondary metabolites with valuable qualities for phytopharmacognosy, tasks requiring a step-by-step solution were set. The primary task is the development of technologies for obtaining in vitro highly productive biomass of cells of relict gymnosperms of the genus Sequoia, capable of accumulating various classes of secondary metabolites. The study of the accumulation and localization of secondary metabolites allowed us to evaluate the biological activity and cytotoxicity of in vitro Sequoia cultures. In our study, histochemical methods were used to determine the localization of secondary compounds (phenolic and terpenoid in nature) in plant tissues. Secondary metabolites-polyphenols, catechins, and terpenoids-are mainly localized in the epidermal, parenchymal, and conductive tissues of Sequoia leaves and stems. In callus and suspension cultures of Sequoia, secondary metabolites were localized in cell walls and vacuoles. The mineral composition of the nutrient medium (MS and WPM), the light source (photoperiod), and the endogenous content of polyphenols in the primary explant influenced the initiation and growth characteristics of the in vitro culture of Sequoia plants. Inhibition of growth in suspension cultures on the WPM nutrient medium was noted. The cultivation of Sequoia cell lines at a 16 h photoperiod stimulated the formation of polyphenols but had a negative effect on the growth of callus cultures. Extractive substances obtained from intact and callus tissues of evergreen Sequoia demonstrate high biological (fungicidal) activity and cytotoxicity. The inhibitory effect on Fusarium oxisporum was noted when 200 mg/L of Sequoia extract was added to the nutrient medium. Extracts of redwood callus cultures were low in toxicity to normal FetMSC cells but inhibited the growth of lines of "immortal" cervical HeLa cancer cells and human glioblastoma A172. Intact tissues of Sequoia plants and cell cultures initiated from them in vitro are producers of secondary metabolites with high biological activity.
Collapse
Affiliation(s)
- Rima N. Kirakosyan
- Department of Biotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street 49, Moscow 127434, Russia; (E.A.K.); (E.A.B.); (A.S.)
| | - Elena A. Kalasnikova
- Department of Biotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street 49, Moscow 127434, Russia; (E.A.K.); (E.A.B.); (A.S.)
| | - Elizaveta A. Bolotina
- Department of Biotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street 49, Moscow 127434, Russia; (E.A.K.); (E.A.B.); (A.S.)
| | - Abdulrahman Saleh
- Department of Biotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street 49, Moscow 127434, Russia; (E.A.K.); (E.A.B.); (A.S.)
| | - Anastasiya A. Balakina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Science, Ac. Semenov Avenue 1, Moscow Region, Chernogolovka, Moscow 142432, Russia;
| | - Svetlana M. Zaytseva
- Department of Biotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street 49, Moscow 127434, Russia; (E.A.K.); (E.A.B.); (A.S.)
| |
Collapse
|
3
|
Zhang X, Duan J, Ji Y, Liu W, Gao J. Leaf nutrient traits exhibit greater environmental plasticity compared to resource utilization traits along an elevational gradient. FRONTIERS IN PLANT SCIENCE 2024; 15:1484744. [PMID: 39628531 PMCID: PMC11611591 DOI: 10.3389/fpls.2024.1484744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/30/2024] [Indexed: 12/06/2024]
Abstract
Studying key leaf functional traits is crucial for understanding plant resource utilization strategies and growth. To explore the patterns and driving factors of key leaf functional traits in forests along elevational gradients under global change, we collected survey data from 697 forests across China from 2008 to 2020. This study examined the elevational patterns of Specific Leaf Area (SLA, m²/kg), Leaf Dry Matter Content (LDMC, g/g), Leaf Nitrogen (LN, mg/g), and Leaf Phosphorus (LP, mg/g), and their responses to climate, soil nutrients, and stand factors. The results showed distinct differences in these key leaf traits at different elevational gradients. Generally, as elevation increased, SLA decreased, while LDMC significantly increased (P < 0.001), and LN first increase and then decreased (P < 0.001). The direct influence of elevation on the spatial variation of key leaf traits was greater than its indirect effects (through environmental and stand factors). The elevational patterns of leaf traits related to resource utilization strategies (SLA and LDMC) were mainly influenced by climate (temperature and precipitation) and soil nutrient factors, showing opposite trends in response to environmental changes. The patterns of leaf nutrient traits (LN and LP) along elevational gradients were primarily influenced by climatic factors, with LN exhibiting greater environmental plasticity. Compared to other stand factors, forest age predominantly influenced the spatial variation of key leaf traits, especially SLA. These findings have significant theoretical implications for revealing how plants adapt to global change.
Collapse
Affiliation(s)
- Xing Zhang
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, China
| | - Jie Duan
- Key Laboratory for the Conservation and Regulation Biology of Species in Special Environments, College of life science, Xinjiang Normal University, Urumqi, China
| | - Yuhui Ji
- Key Laboratory for the Conservation and Regulation Biology of Species in Special Environments, College of life science, Xinjiang Normal University, Urumqi, China
| | - Weiguo Liu
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, China
| | - Jie Gao
- Key Laboratory for the Conservation and Regulation Biology of Species in Special Environments, College of life science, Xinjiang Normal University, Urumqi, China
| |
Collapse
|
4
|
Niinemets Ü. Variation in leaf photosynthetic capacity within plant canopies: optimization, structural, and physiological constraints and inefficiencies. PHOTOSYNTHESIS RESEARCH 2023; 158:131-149. [PMID: 37615905 DOI: 10.1007/s11120-023-01043-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/04/2023] [Indexed: 08/25/2023]
Abstract
Leaf photosynthetic capacity (light-saturated net assimilation rate, AA) increases from bottom to top of plant canopies as the most prominent acclimation response to the conspicuous within-canopy gradients in light availability. Light-dependent variation in AA through plant canopies is associated with changes in key leaf structural (leaf dry mass per unit leaf area), chemical (nitrogen (N) content per area and dry mass, N partitioning between components of photosynthetic machinery), and physiological (stomatal and mesophyll conductance) traits, whereas the contribution of different traits to within-canopy AA gradients varies across sites, species, and plant functional types. Optimality models maximizing canopy carbon gain for a given total canopy N content predict that AA should be proportionally related to canopy light availability. However, comparison of model expectations with experimental data of within-canopy photosynthetic trait variations in representative plant functional types indicates that such proportionality is not observed in real canopies, and AA vs. canopy light relationships are curvilinear. The factors responsible for deviations from full optimality include stronger stomatal and mesophyll diffusion limitations at higher light, reflecting greater water limitations and more robust foliage in higher light. In addition, limits on efficient packing of photosynthetic machinery within leaf structural scaffolding, high costs of N redistribution among leaves, and limited plasticity of N partitioning among components of photosynthesis machinery constrain AA plasticity. Overall, this review highlights that the variation of AA through plant canopies reflects a complex interplay between adjustments of leaf structure and function to multiple environmental drivers, and that AA plasticity is limited by inherent constraints on and trade-offs between structural, chemical, and physiological traits. I conclude that models trying to simulate photosynthesis gradients in plant canopies should consider co-variations among environmental drivers, and the limitation of functional trait variation by physical constraints and include the key trade-offs between structural, chemical, and physiological leaf characteristics.
Collapse
Affiliation(s)
- Ülo Niinemets
- Chair of Plant and Crop Science, Estonian University of Life Sciences, Kreutzwaldi 1, 51011, Tartu, Estonia.
- Estonian Academy of Sciences, Kohtu 6, 10130, Tallinn, Estonia.
| |
Collapse
|
5
|
Xu R, Liu WG, Huang TW, Li BR, Dai HX, Yang XD. Drought stress-induced the formation of heteromorphic leaves of Populus euphratica Oliv: evidence from gene transcriptome. FRONTIERS IN PLANT SCIENCE 2023; 14:1194169. [PMID: 37351211 PMCID: PMC10282185 DOI: 10.3389/fpls.2023.1194169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/16/2023] [Indexed: 06/24/2023]
Abstract
Populus euphratica Oliv., a dominant species of arid desert community, grows heteromorphic leaves at different crown positions. Whether heteromorphic leaves are a strategy of plant adaptation to drought stress is rarely reported. This study sequenced the transcriptome of three typical heteromorphic leaves (lanceolate, ovate and broad-ovate leaves) of P. euphratica, and measured their drought stress. We wanted to reveal the molecular mechanisms underlying the formation of heteromorphic leaves. Drought stress was increased significantly from lanceolate to ovate to broad-ovate leaves. Gene ontology (GO) and KEGG enrichment analysis showed that the MADs-box gene regulated the expression of peroxidase (POD) in the phenylpropane biosynthetic pathway. The up-regulated expression of the chalcone synthase (CHS) gene in broad-ovate leaves significantly activated the flavonoid biosynthetic pathway. In the process of leaf shape change, the different expressions of homeodomain leucine zipper (HD-ZIP) among the three heteromorphic leaves had potential interactions on the AUX and ABA pathways. The expression of Sucrose phosphate synthase (SPS) and sucrose synthase (SUS) increased from lanceolate to broad-ovate leaves, resulting in a consistent change in starch and sucrose content. We concluded that these resistance-related pathways are expressed in parallel with leaf formation genes, thereby inducing the formation of heteromorphic leaves. Our work provided a new insights for desert plants to adapt to drought stress.
Collapse
Affiliation(s)
- Rui Xu
- College of Ecology and Environment, Xinjiang University, Urumqi, China
| | - Wei-Guo Liu
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, China
| | - Ting-Wen Huang
- College of Ecology and Environment, Xinjiang University, Urumqi, China
| | - Bo-Rui Li
- College of Ecology and Environment, Xinjiang University, Urumqi, China
| | - Hui-Xian Dai
- College of Ecology and Environment, Xinjiang University, Urumqi, China
| | - Xiao-Dong Yang
- Department of Geography and Spatial Information Techniques/Center for Land and Marine Spatial Utilization and Governance Research, Ningbo University, Ningbo, China
| |
Collapse
|
6
|
Lamour J, Davidson KJ, Ely KS, Le Moguédec G, Anderson JA, Li Q, Calderón O, Koven CD, Wright SJ, Walker AP, Serbin SP, Rogers A. The effect of the vertical gradients of photosynthetic parameters on the CO 2 assimilation and transpiration of a Panamanian tropical forest. THE NEW PHYTOLOGIST 2023; 238:2345-2362. [PMID: 36960539 DOI: 10.1111/nph.18901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/14/2023] [Indexed: 05/19/2023]
Abstract
Terrestrial biosphere models (TBMs) include the representation of vertical gradients in leaf traits associated with modeling photosynthesis, respiration, and stomatal conductance. However, model assumptions associated with these gradients have not been tested in complex tropical forest canopies. We compared TBM representation of the vertical gradients of key leaf traits with measurements made in a tropical forest in Panama and then quantified the impact of the observed gradients on simulated canopy-scale CO2 and water fluxes. Comparison between observed and TBM trait gradients showed divergence that impacted canopy-scale simulations of water vapor and CO2 exchange. Notably, the ratio between the dark respiration rate and the maximum carboxylation rate was lower near the ground than at the top-of-canopy, leaf-level water-use efficiency was markedly higher at the top-of-canopy, and the decrease in maximum carboxylation rate from the top-of-canopy to the ground was less than TBM assumptions. The representation of the gradients of leaf traits in TBMs is typically derived from measurements made within-individual plants, or, for some traits, assumed constant due to a lack of experimental data. Our work shows that these assumptions are not representative of the trait gradients observed in species-rich, complex tropical forests.
Collapse
Affiliation(s)
- Julien Lamour
- Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Kenneth J Davidson
- Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, 11974, USA
| | - Kim S Ely
- Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Gilles Le Moguédec
- AMAP, Université Montpellier, INRAE, Cirad CNRS, IRD, Montpellier, 34000, France
| | - Jeremiah A Anderson
- Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Qianyu Li
- Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Osvaldo Calderón
- Smithsonian Tropical Research Institute, Balboa, 0843-03092, Republic of Panama
| | - Charles D Koven
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - S Joseph Wright
- Smithsonian Tropical Research Institute, Balboa, 0843-03092, Republic of Panama
| | - Anthony P Walker
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Shawn P Serbin
- Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Alistair Rogers
- Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| |
Collapse
|
7
|
Sun Y, Gu L, Wen J, van der Tol C, Porcar-Castell A, Joiner J, Chang CY, Magney T, Wang L, Hu L, Rascher U, Zarco-Tejada P, Barrett CB, Lai J, Han J, Luo Z. From remotely sensed solar-induced chlorophyll fluorescence to ecosystem structure, function, and service: Part I-Harnessing theory. GLOBAL CHANGE BIOLOGY 2023; 29:2926-2952. [PMID: 36799496 DOI: 10.1111/gcb.16634] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/08/2022] [Indexed: 05/03/2023]
Abstract
Solar-induced chlorophyll fluorescence (SIF) is a remotely sensed optical signal emitted during the light reactions of photosynthesis. The past two decades have witnessed an explosion in availability of SIF data at increasingly higher spatial and temporal resolutions, sparking applications in diverse research sectors (e.g., ecology, agriculture, hydrology, climate, and socioeconomics). These applications must deal with complexities caused by tremendous variations in scale and the impacts of interacting and superimposing plant physiology and three-dimensional vegetation structure on the emission and scattering of SIF. At present, these complexities have not been overcome. To advance future research, the two companion reviews aim to (1) develop an analytical framework for inferring terrestrial vegetation structures and function that are tied to SIF emission, (2) synthesize progress and identify challenges in SIF research via the lens of multi-sector applications, and (3) map out actionable solutions to tackle these challenges and offer our vision for research priorities over the next 5-10 years based on the proposed analytical framework. This paper is the first of the two companion reviews, and theory oriented. It introduces a theoretically rigorous yet practically applicable analytical framework. Guided by this framework, we offer theoretical perspectives on three overarching questions: (1) The forward (mechanism) question-How are the dynamics of SIF affected by terrestrial ecosystem structure and function? (2) The inference question: What aspects of terrestrial ecosystem structure, function, and service can be reliably inferred from remotely sensed SIF and how? (3) The innovation question: What innovations are needed to realize the full potential of SIF remote sensing for real-world applications under climate change? The analytical framework elucidates that process complexity must be appreciated in inferring ecosystem structure and function from the observed SIF; this framework can serve as a diagnosis and inference tool for versatile applications across diverse spatial and temporal scales.
Collapse
Affiliation(s)
- Ying Sun
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, New York, USA
| | - Lianhong Gu
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Jiaming Wen
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, New York, USA
| | - Christiaan van der Tol
- Affiliation Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, The Netherlands
| | - Albert Porcar-Castell
- Optics of Photosynthesis Laboratory, Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Viikki Plant Science Center (ViPS), University of Helsinki, Helsinki, Finland
| | - Joanna Joiner
- National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), Greenbelt, Maryland, USA
| | - Christine Y Chang
- US Department of Agriculture, Agricultural Research Service, Adaptive Cropping Systems Laboratory, Beltsville, Maryland, USA
| | - Troy Magney
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Lixin Wang
- Department of Earth Sciences, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, Indiana, USA
| | - Leiqiu Hu
- Department of Atmospheric and Earth Science, University of Alabama in Huntsville, Huntsville, Alabama, USA
| | - Uwe Rascher
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Pablo Zarco-Tejada
- School of Agriculture and Food (SAF-FVAS) and Faculty of Engineering and Information Technology (IE-FEIT), University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher B Barrett
- Charles H. Dyson School of Applied Economics and Management, Cornell University, Ithaca, New York, USA
| | - Jiameng Lai
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, New York, USA
| | - Jimei Han
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, New York, USA
| | - Zhenqi Luo
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, New York, USA
| |
Collapse
|
8
|
Duan X, Jia Z, Li J, Wu S. The influencing factors of leaf functional traits variation of Pinus densiflora Sieb. et Zucc. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
9
|
Yang XD, Anwar E, Xu YL, Zhou J, Sha LB, Gong XW, Ali A, Gao YC, Liu Y, Ge P. Hydraulic constraints determine the distribution of heteromorphic leaves along plant vertical height. FRONTIERS IN PLANT SCIENCE 2022; 13:941764. [PMID: 36275510 PMCID: PMC9580785 DOI: 10.3389/fpls.2022.941764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
As an interesting and important trait of some drought-tolerant species, heteromorphic leaves are distributed differentially along plant vertical heights. However, the underpinning mechanism for the formation of heteromorphic leaves remains unclear. We hypothesize that heteromorphic leaves are caused by the hydraulic constraints possibly due to the compensation of the changes in functional traits in response to water transport capacity or the reduction of ineffective water loss. In this study, differences in water transport capacity, morphological traits, anatomical structures, and cellular water relations among three typical types of heteromorphic leaves (i.e., lanceolate, ovate, and broad-ovate) of Populus euphratica Oliv. (a dominant species of desert riparian forest in Central and West Asia) and their relationships were analyzed in order to explore the forming mechanism of heteromorphic leaves. The results showed that the lanceolate, ovate, and broad-ovate leaves were growing in the lower, intermediate, and higher positions from the ground, respectively. Morphological traits, anatomical structures, cellular water relations, and water transport capacity significantly varied among the three types of heteromorphic leaves (P< 0.01). Drought stress in broad-ovate leaves was significantly higher than that in ovate and lanceolate leaves (P< 0.01). Water transport capacity has significant correlations with morphological traits, anatomical structures, and cellular water relations (R 2 ≥ 0.30; P< 0.01). Our results indicated that heteromorphic leaves were used as an important adaptive strategy for P. euphratica to alleviate the increase of hydraulic constraints along vertical heights.
Collapse
Affiliation(s)
- Xiao-Dong Yang
- Department of Geography and Spatial Information/Center for Land and Marine Spatial Utilization and Governance Research, Ningbo University, Ningbo, China
- Institute of Resources and Environment Science, Xinjiang University, Urumqi, China
| | - Elhamjan Anwar
- Institute of Resources and Environment Science, Xinjiang University, Urumqi, China
| | - Yi-Lu Xu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle (UON), Newcastle, NSW, Australia
| | - Jie Zhou
- Institute of Resources and Environment Science, Xinjiang University, Urumqi, China
| | - Long-Bin Sha
- Institute of Resources and Environment Science, Xinjiang University, Urumqi, China
| | - Xue-Wei Gong
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Arshad Ali
- Forest Ecology Research Group, College of Life Sciences, Hebei University, Baoding, Hebei, China
| | - Yong-Chao Gao
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yanju Liu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle (UON), Newcastle, NSW, Australia
| | - Ping Ge
- Department of Development Planning, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
10
|
Zou G, Xu K, Yang Q, Niklas KJ, Wang G. Competitive performance of Pinus massoniana is related to scaling relationships at the individual plant and branch levels. AMERICAN JOURNAL OF BOTANY 2022; 109:1097-1107. [PMID: 35694727 PMCID: PMC9540003 DOI: 10.1002/ajb2.16023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
PREMISE Competition is an important driver of tree mortality and thus affects forest structure and dynamics. Tree architectural traits, such as height-to-diameter (H-D) and branch length-to-diameter (L-d) relationships are thought to influence species competitiveness by affecting light capture. Unfortunately, little is known about how the H vs. D and L vs. d scaling exponents are related to tree performance (defined in the context of growth vigor) in competition. METHODS Using data from field surveys of 1547 individuals and destructive sampling of 51 trees with 1086 first-order branches from a high-density Pinus massoniana forest, we explored whether the H vs. D and the L vs. d scaling exponents respectively differed numerically across tree performance and branch vertical position in crowns. RESULTS The results indicated that (1) the H vs. D scaling exponent decreased as tree performance declined; (2) the L vs. d scaling exponent differed across tree performance classes (i.e., the scaling exponent of "inferior" trees was significantly larger than that of "moderate" and "superior" trees); (3) the L vs. d scaling exponent decreased as branch position approached ground level; and (4) overall, the branch scaling exponent decreased as tree performance improved in each crown layer, but decreased significantly in the intermediate layer. CONCLUSIONS This study highlights the variation within (and linkage among) length-to-diameter scaling relationships across tree performance at the individual and branch levels. This linkage provides new insights into potential mechanisms of tree growth variation (and even further mortality) under competition in subtropical forests.
Collapse
Affiliation(s)
- Guiwu Zou
- College of Life SciencesZhejiang UniversityHangzhou310029China
| | - Kang Xu
- College of Environmental & Resource SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Qingpei Yang
- College of ForestryJiangxi Agricultural UniversityNanchang330045China
| | - Karl J. Niklas
- School of Integrative Plant Science, Plant Biology SectionCornell UniversityIthacaNY14853USA
| | - Genxuan Wang
- College of Life SciencesZhejiang UniversityHangzhou310029China
| |
Collapse
|
11
|
Norby RJ, Warren JM, Iversen CM, Childs J, Jawdy SS, Walker AP. Forest stand and canopy development unaltered by 12 years of CO2 enrichment. TREE PHYSIOLOGY 2022; 42:428-440. [PMID: 34387351 PMCID: PMC8919409 DOI: 10.1093/treephys/tpab107] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Canopy structure-the size and distribution of tree crowns and the spatial and temporal distribution of leaves within them-exerts dominant control over primary productivity, transpiration and energy exchange. Stand structure-the spatial arrangement of trees in the forest (height, basal area and spacing)-has a strong influence on forest growth, allocation and resource use. Forest response to elevated atmospheric CO2 is likely to be dependent on the canopy and stand structure. Here, we investigated elevated CO2 effects on the forest structure of a Liquidambar styraciflua L. stand in a free-air CO2 enrichment experiment, considering leaves, tree crowns, forest canopy and stand structure. During the 12-year experiment, the trees increased in height by 5 m and basal area increased by 37%. Basal area distribution among trees shifted from a relatively narrow distribution to a much broader one, but there was little evidence of a CO2 effect on height growth or basal area distribution. The differentiation into crown classes over time led to an increase in the number of unproductive intermediate and suppressed trees and to a greater concentration of stand basal area in the largest trees. A whole-tree harvest at the end of the experiment permitted detailed analysis of canopy structure. There was little effect of CO2 enrichment on the relative leaf area distribution within tree crowns and there was little change from 1998 to 2009. Leaf characteristics (leaf mass per unit area and nitrogen content) varied with crown depth; any effects of elevated CO2 were much smaller than the variation within the crown and were consistent throughout the crown. In this young, even-aged, monoculture plantation forest, there was little evidence that elevated CO2 accelerated tree and stand development, and there were remarkably small changes in canopy structure. Questions remain as to whether a more diverse, mixed species forest would respond similarly.
Collapse
Affiliation(s)
- Richard J Norby
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jeffrey M Warren
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Colleen M Iversen
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Joanne Childs
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Sara S Jawdy
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Anthony P Walker
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
12
|
Tang J, Sun B, Cheng R, Shi Z, Luo D, Liu S, Centritto M. The Effect of Low Irradiance on Leaf Nitrogen Allocation and Mesophyll Conductance to CO 2 in Seedlings of Four Tree Species in Subtropical China. PLANTS 2021; 10:plants10102213. [PMID: 34686021 PMCID: PMC8540425 DOI: 10.3390/plants10102213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/03/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022]
Abstract
Low light intensity can lead to a decrease in photosynthetic capacity. However, could N-fixing species with higher leaf N contents mitigate the effects of low light? Here, we exposed seedlings of Dalbergia odorifera and Erythrophleum fordii (N-fixing trees), and Castanopsis hystrix and Betula alnoides (non-N-fixing trees) to three irradiance treatments (100%, 40%, and 10% sunlight) to investigate the effects of low irradiance on leaf structure, leaf N allocation strategy, and photosynthetic physiological parameters in the seedlings. Low irradiance decreased the leaf mass per unit area, leaf N content per unit area (Narea), maximum carboxylation rate (Vcmax), maximum electron transport rate (Jmax), light compensation point, and light saturation point, and increased the N allocation proportion of light-harvesting components in all species. The studied tree seedlings changed their leaf structures, leaf N allocation strategy, and photosynthetic physiological parameters to adapt to low-light environments. N-fixing plants had a higher photosynthesis rate, Narea, Vcmax, and Jmax than non-N-fixing species under low irradiance and had a greater advantage in maintaining their photosynthetic rate under low-radiation conditions, such as under an understory canopy, in a forest gap, or when mixed with other species.
Collapse
Affiliation(s)
- Jingchao Tang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, China; (J.T.); (B.S.)
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China; (R.C.); (D.L.); (S.L.)
| | - Baodi Sun
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, China; (J.T.); (B.S.)
| | - Ruimei Cheng
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China; (R.C.); (D.L.); (S.L.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Zuomin Shi
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China; (R.C.); (D.L.); (S.L.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Institute for Sustainable Pant Protection, National Research Council of Italy, Strada delle Cacce 73, 10135 Torino, Italy;
- Correspondence: ; Tel.: +86-010-62888308
| | - Da Luo
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China; (R.C.); (D.L.); (S.L.)
| | - Shirong Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China; (R.C.); (D.L.); (S.L.)
| | - Mauro Centritto
- Institute for Sustainable Pant Protection, National Research Council of Italy, Strada delle Cacce 73, 10135 Torino, Italy;
| |
Collapse
|
13
|
Carter KR, Wood TE, Reed SC, Butts KM, Cavaleri MA. Experimental warming across a tropical forest canopy height gradient reveals minimal photosynthetic and respiratory acclimation. PLANT, CELL & ENVIRONMENT 2021; 44:2879-2897. [PMID: 34169547 DOI: 10.1111/pce.14134] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Tropical forest canopies cycle vast amounts of carbon, yet we still have a limited understanding of how these critical ecosystems will respond to climate warming. We implemented in situ leaf-level + 3°C experimental warming from the understory to the upper canopy of two Puerto Rican tropical tree species, Guarea guidonia and Ocotea sintenisii. After approximately 1 month of continuous warming, we assessed adjustments in photosynthesis, chlorophyll fluorescence, stomatal conductance, leaf traits and foliar respiration. Warming did not alter net photosynthetic temperature response for either species; however, the optimum temperature of Ocotea understory leaf photosynthetic electron transport shifted upward. There was no Ocotea respiratory treatment effect, while Guarea respiratory temperature sensitivity (Q10 ) was down-regulated in heated leaves. The optimum temperatures for photosynthesis (Topt ) decreased 3-5°C from understory to the highest canopy position, perhaps due to upper canopy stomatal conductance limitations. Guarea upper canopy Topt was similar to the mean daytime temperatures, while Ocotea canopy leaves often operated above Topt . With minimal acclimation to warmer temperatures in the upper canopy, further warming could put these forests at risk of reduced CO2 uptake, which could weaken the overall carbon sink strength of this tropical forest.
Collapse
Affiliation(s)
- Kelsey R Carter
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, USA
- Earth and Environmental Science Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Tana E Wood
- United States Department of Agriculture, Forest Service, International Institute of Tropical Forestry, Jardin Botánico Sur, Río Piedras, Puerto Rico, USA
| | - Sasha C Reed
- U.S. Geological Survey, Southwest Biological Science Center, Moab, Utah, USA
| | - Kaylie M Butts
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, USA
| | - Molly A Cavaleri
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, USA
| |
Collapse
|
14
|
Amaral EJ, Franco AC, Rivera VL, Munhoz CBR. Environment, phylogeny, and photosynthetic pathway as determinants of leaf traits in savanna and forest graminoid species in central Brazil. Oecologia 2021; 197:1-11. [PMID: 33885981 DOI: 10.1007/s00442-021-04923-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 04/13/2021] [Indexed: 12/01/2022]
Abstract
Leaf traits are closely linked to plant responses to the environment and can provide important information on adaptation and evolution. These traits may also result from common ancestry, so phylogenetic relationships also play an important role in adaptive evolution. We evaluated the effects of the closed forest environment (gallery forest) and the open savanna environment (cerrado) on the selection of leaf traits of graminoid species. The two plant communities differ in light, nutrients, and water availability, which are important drivers in the selection and differentiation of these traits. We also investigated the functional structure and the role of phylogeny in the functional organization of species, considering leaf traits. Patterns of leaf trait variation differed between forest and savanna species suggesting habitat specialization. Wider and longer leaves, with higher values of specific leaf area, chlorophyll, and nitrogen, seem to be an advantage for graminoid species growing in forest environments, while thicker leaves, with higher values of leaf dry-matter content and carbon, benefit species growing in savanna environments. We found few phylogenetic signals related to leaf traits in each environment. Therefore, the functional similarity that the gallery forest and cerrado graminoid species share within their group is independent of their phylogenetic proximity. Environmental filters affect the functional structure of communities differently, generating communities with trait values that are more distant than expected by chance in cerrado (functional dispersion), and closer than expected by chance in the gallery forest (functional convergence).
Collapse
Affiliation(s)
- Eliel J Amaral
- Graduate Program in Ecology, Institute of Biological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil.
| | - Augusto C Franco
- Graduate Program in Ecology, Institute of Biological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil.,Department of Botany, Institute of Biological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Vanessa L Rivera
- Department of Botany, Institute of Biological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Cássia B R Munhoz
- Graduate Program in Ecology, Institute of Biological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil.,Department of Botany, Institute of Biological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| |
Collapse
|
15
|
Béland M, Kobayashi H. Mapping forest leaf area density from multiview terrestrial lidar. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Martin Béland
- Department of Geomatics Sciences Laval University Quebec City QC Canada
| | - Hideki Kobayashi
- Institute of Arctic Climate and Environment ResearchJapan Agency for Marine‐Earth Science and Technology Yokohama Japan
| |
Collapse
|
16
|
Crous KY, Campany C, Lopez R, Cano FJ, Ellsworth DS. Canopy position affects photosynthesis and anatomy in mature Eucalyptus trees in elevated CO2. TREE PHYSIOLOGY 2020; 41:tpaa117. [PMID: 32918811 DOI: 10.1093/treephys/tpaa117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/26/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
Leaves are exposed to different light conditions according to their canopy position, resulting in structural and anatomical differences with consequences for carbon uptake. While these structure-function relationships have been thoroughly explored in dense forest canopies, such gradients may be diminished in open canopies, and they are often ignored in ecosystem models. We tested within-canopy differences in photosynthetic properties and structural traits in leaves in a mature Eucalyptus tereticornis canopy exposed to long-term elevated CO2 for up to three years. We explored these traits in relation to anatomical variation and diffusive processes for CO2 (i.e., stomatal conductance, gs and mesophyll conductance, gm) in both upper and lower portions of the canopy receiving ambient and elevated CO2. While shade resulted in 13% lower leaf mass per area ratio (MA) in lower versus upper canopy leaves, there was no relationship between leaf Nmass and canopy gap fraction. Both maximum carboxylation capacity (Vcmax) and maximum electron transport (Jmax) were ~ 18% lower in shaded leaves and were also reduced by ~ 22% with leaf aging. In mature leaves, we found no canopy differences for gm or gs, despite anatomical differences in MA, leaf thickness and mean mesophyll thickness between canopy positions. There was a positive relationship between net photosynthesis and gm or gs in mature leaves. Mesophyll conductance was negatively correlated with mean parenchyma length, suggesting that long palisade cells may contribute to a longer CO2 diffusional pathway and more resistance to CO2 transfer to chloroplasts. Few other relationships between gm and anatomical variables were found in mature leaves, which may be due to the open crown of Eucalyptus. Consideration of shade effects and leaf-age dependent responses to photosynthetic capacity and mesophyll conductance are critical to improve canopy photosynthesis models and will improve understanding of long-term responses to elevated CO2 in tree canopies.
Collapse
Affiliation(s)
- K Y Crous
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - C Campany
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
- Department of Biology, Shepherd University, P.O. Box 5000, Shepherdstown, West Virginia, 25443, USA
| | - R Lopez
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - F J Cano
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - D S Ellsworth
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| |
Collapse
|
17
|
|
18
|
Shen Y, Gilbert GS, Li W, Fang M, Lu H, Yu S. Linking Aboveground Traits to Root Traits and Local Environment: Implications of the Plant Economics Spectrum. FRONTIERS IN PLANT SCIENCE 2019; 10:1412. [PMID: 31737024 PMCID: PMC6831723 DOI: 10.3389/fpls.2019.01412] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 10/11/2019] [Indexed: 06/02/2023]
Abstract
The plant economics spectrum proposes that ecological traits are functionally coordinated and adapt along environmental gradients. However, empirical evidence is mixed about whether aboveground and root traits are consistently linked and which environmental factors drive functional responses. Here we measure the strength of relationships between aboveground and root traits, and examine whether community-weighted mean trait values are adapted along gradients of light and soil fertility, based on the seedling censuses of 57 species in a subtropical forest. We found that aboveground traits were good predictors of root traits; specific leaf area, dry matter, nitrogen and phosphorus content were strongly correlated with root tissue density and specific root length. Traits showed patterns of adaptation along the gradients of soil fertility and light; species with fast resource-acquisitive strategies were more strongly associated with high soil phosphorus, potassium, openness, and with low nitrogen, organic matter conditions. This demonstrates the potential to estimate belowground traits from known aboveground traits in seedling communities, and suggests that soil fertility is one of the main factors driving functional responses. Our results extend our understanding of how ecological strategies shape potential responses of plant communities to environmental change.
Collapse
Affiliation(s)
- Yong Shen
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Gregory S. Gilbert
- Department of Environmental Studies, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Wenbin Li
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Miao Fang
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Huanping Lu
- Guangdong Ecological Meteorology Center, Guangzhou, China
| | - Shixiao Yu
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|