1
|
Maitra P, Hrynkiewicz K, Szuba A, Jagodziński AM, Al-Rashid J, Mandal D, Mucha J. Metabolic niches in the rhizosphere microbiome: dependence on soil horizons, root traits and climate variables in forest ecosystems. FRONTIERS IN PLANT SCIENCE 2024; 15:1344205. [PMID: 38645395 PMCID: PMC11026606 DOI: 10.3389/fpls.2024.1344205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/18/2024] [Indexed: 04/23/2024]
Abstract
Understanding belowground plant-microbial interactions is important for biodiversity maintenance, community assembly and ecosystem functioning of forest ecosystems. Consequently, a large number of studies were conducted on root and microbial interactions, especially in the context of precipitation and temperature gradients under global climate change scenarios. Forests ecosystems have high biodiversity of plants and associated microbes, and contribute to major primary productivity of terrestrial ecosystems. However, the impact of root metabolites/exudates and root traits on soil microbial functional groups along these climate gradients is poorly described in these forest ecosystems. The plant root system exhibits differentiated exudation profiles and considerable trait plasticity in terms of root morphological/phenotypic traits, which can cause shifts in microbial abundance and diversity. The root metabolites composed of primary and secondary metabolites and volatile organic compounds that have diverse roles in appealing to and preventing distinct microbial strains, thus benefit plant fitness and growth, and tolerance to abiotic stresses such as drought. Climatic factors significantly alter the quantity and quality of metabolites that forest trees secrete into the soil. Thus, the heterogeneities in the rhizosphere due to different climate drivers generate ecological niches for various microbial assemblages to foster beneficial rhizospheric interactions in the forest ecosystems. However, the root exudations and microbial diversity in forest trees vary across different soil layers due to alterations in root system architecture, soil moisture, temperature, and nutrient stoichiometry. Changes in root system architecture or traits, e.g. root tissue density (RTD), specific root length (SRL), and specific root area (SRA), impact the root exudation profile and amount released into the soil and thus influence the abundance and diversity of different functional guilds of microbes. Here, we review the current knowledge about root morphological and functional (root exudation) trait changes that affect microbial interactions along drought and temperature gradients. This review aims to clarify how forest trees adapt to challenging environments by leveraging their root traits to interact beneficially with microbes. Understanding these strategies is vital for comprehending plant adaptation under global climate change, with significant implications for future research in plant biodiversity conservation, particularly within forest ecosystems.
Collapse
Affiliation(s)
- Pulak Maitra
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Katarzyna Hrynkiewicz
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Agnieszka Szuba
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Andrzej M. Jagodziński
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
- Department of Game Management and Forest Protection, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Poznań, Poland
| | - Jubair Al-Rashid
- Tianjin Institute of Industrial Biotechnology, University of Chinese Academy of Sciences, Tianjin, China
| | - Dipa Mandal
- Institute of Microbiology, University of Chinese Academy of Sciences, Beijing, China
| | - Joanna Mucha
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
- Department of Forest Entomology and Pathology, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
2
|
Bhattarai B, Sigurdsson BD, Sigurdsson P, Leblans N, Janssens I, Meynzer W, Devarajan AK, Truu J, Truu M, Ostonen I. Soil warming duration and magnitude affect the dynamics of fine roots and rhizomes and associated C and N pools in subarctic grasslands. ANNALS OF BOTANY 2023; 132:269-279. [PMID: 37471454 PMCID: PMC10583211 DOI: 10.1093/aob/mcad102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/18/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND AND AIMS The response of subarctic grassland's below-ground to soil warming is key to understanding this ecosystem's adaptation to future climate. Functionally different below-ground plant organs can respond differently to changes in soil temperature (Ts). We aimed to understand the below-ground adaptation mechanisms by analysing the dynamics and chemistry of fine roots and rhizomes in relation to plant community composition and soil chemistry, along with the duration and magnitude of soil warming. METHODS We investigated the effects of the duration [medium-term warming (MTW; 11 years) and long-term warming (LTW; > 60 years)] and magnitude (0-8.4 °C) of soil warming on below-ground plant biomass (BPB), fine root biomass (FRB) and rhizome biomass (RHB) in geothermally warmed subarctic grasslands. We evaluated the changes in BPB, FRB and RHB and the corresponding carbon (C) and nitrogen (N) pools in the context of ambient, Ts < +2 °C and Ts > +2 °C scenarios. KEY RESULTS BPB decreased exponentially in response to an increase in Ts under MTW, whereas FRB declined under both MTW and LTW. The proportion of rhizomes increased and the C-N ratio in rhizomes decreased under LTW. The C and N pools in BPB in highly warmed plots under MTW were 50 % less than in the ambient plots, whereas under LTW, C and N pools in warmed plots were similar to those in non-warmed plots. Approximately 78 % of the variation in FRB, RHB, and C and N concentration and pools in fine roots and rhizomes was explained by the duration and magnitude of soil warming, soil chemistry, plant community functional composition, and above-ground biomass. Plant's below-ground biomass, chemistry and pools were related to a shift in the grassland's plant community composition - the abundance of ferns increased and BPB decreased towards higher Ts under MTW, while the recovery of below-ground C and N pools under LTW was related to a higher plant diversity. CONCLUSION Our results indicate that plant community-level adaptation of below ground to soil warming occurs over long periods. We provide insight into the potential adaptation phases of subarctic grasslands.
Collapse
Affiliation(s)
- Biplabi Bhattarai
- Institute of Ecology and Earth Sciences, University of Tartu, Estonia
| | - Bjarni D Sigurdsson
- Faculty of Environmental and Forest Sciences, The Agricultural University of Iceland, Iceland
| | - Páll Sigurdsson
- Faculty of Environmental and Forest Sciences, The Agricultural University of Iceland, Iceland
| | - Niki Leblans
- Climate Impact Research Centre, Umeå University, Sweden
| | - Ivan Janssens
- Department of Biology, University of Antwerp, Belgium
| | | | | | - Jaak Truu
- Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Marika Truu
- Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Ivika Ostonen
- Institute of Ecology and Earth Sciences, University of Tartu, Estonia
| |
Collapse
|
3
|
Pierick K, Link RM, Leuschner C, Homeier J. Elevational trends of tree fine root traits in species‐rich tropical Andean forests. OIKOS 2022. [DOI: 10.1111/oik.08975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kerstin Pierick
- Plant Ecology and Ecosystems Research, Univ. of Goettingen Göttingen Germany
| | - Roman M. Link
- Ecophysiology and Vegetation Ecology, Julius‐von‐Sachs‐Inst. of Biological Sciences, Univ. of Würzburg Würzburg Germany
| | - Christoph Leuschner
- Plant Ecology and Ecosystems Research, Univ. of Goettingen Göttingen Germany
- Centre for Biodiversity and Sustainable Land Use, Univ. of Goettingen Göttingen Germany
| | - Jürgen Homeier
- Plant Ecology and Ecosystems Research, Univ. of Goettingen Göttingen Germany
- Centre for Biodiversity and Sustainable Land Use, Univ. of Goettingen Göttingen Germany
| |
Collapse
|
4
|
Zhang Q, Hao G, Li M, Li L, Kang B, Yang N, Li H. Transformation of Plant to Resource Acquisition Under High Nitrogen Addition Will Reduce Green Roof Ecosystem Functioning. FRONTIERS IN PLANT SCIENCE 2022; 13:894782. [PMID: 35665150 PMCID: PMC9157423 DOI: 10.3389/fpls.2022.894782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Ecosystem engineering, such as green roof, provides numerous key ecosystem functions dependent on both plants and environmental changes. In the recent years, global nitrogen (N) deposition has become a hot topic with the intensification of anthropogenic disturbance. However, the response of green roof ecosystems to N deposition is still not clear. To explore the effects of N addition on plant ecological strategy and ecosystem functioning (biomass), we conducted a 3-month N addition simulation experiment using 12 common green roof species from different growth forms on an extensive green roof in Tianjin, China. The experiment included three different N addition treatments (0, 3.5, and 10.5 gN m-2 year-1). We found that plants with the resource-acquisitive strategy were more suitable to survive in a high N environment, since both aboveground and belowground traits exhibited synergistic effects. Moreover, N addition indirectly decreased plant biomass, indicating that ecosystem functioning was impaired. We highlight that there is a trade-off between the survival of green roof species and keeping the ecosystem functioning well in the future N deposition. Meanwhile, these findings also provide insights into how green roof species respond to global climate change and offer important information for better managing and protecting similar ecosystem engineering in the background of high N deposition.
Collapse
Affiliation(s)
- Qinze Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Guang Hao
- College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Meiyang Li
- College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Longqin Li
- College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Binyue Kang
- College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Nan Yang
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Hongyuan Li
- College of Environmental Science and Engineering, Nankai University, Tianjin, China
| |
Collapse
|
5
|
Sell M, Ostonen I, Rohula-Okunev G, Rusalepp L, Rezapour A, Kupper P. Responses of fine root exudation, respiration and morphology in three early successional tree species to increased air humidity and different soil nitrogen sources. TREE PHYSIOLOGY 2022; 42:557-569. [PMID: 34505158 DOI: 10.1093/treephys/tpab118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/16/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Global climate change scenarios predict an increase in air temperature, precipitation and air humidity for northern latitudes. Elevated air humidity may significantly reduce the water flux through forest canopies and affect interactions between water and nutrient uptake. However, we have limited understanding of how altered transpiration would affect root respiration and carbon (C) exudation as fine root morphology acclimates to different water flux. We investigated the effects of elevated air relative humidity (eRH) and different inorganic nitrogen sources (NO3- and NH4+) on above and belowground traits in hybrid aspen (Populus × wettsteinii Hämet-Ahti), silver birch (Betula pendula Roth.) and Scots pine (Pinus sylvestris L.) grown under controlled climate chamber conditions. The eRH significantly decreased the transpiration flux in all species, decreased root mass-specific exudation in pine, and increased root respiration in aspen. eRH also affected fine root morphology, with specific root area increasing for birch but decreasing in pine. The species comparison revealed that pine had the highest C exudation, whereas birch had the highest root respiration rate. Both humidity and nitrogen treatments affected the share of absorptive and pioneer roots within fine roots; however, the response was species-specific. The proportion of absorptive roots was highest in birch and aspen, the share of pioneer roots was greatest in aspen and the share of transport roots was greatest in pine. Fine roots with lower root tissue density were associated with pioneer root tips and had a higher C exudation rate. Our findings underline the importance of considering species-specific differences in relation to air humidity and soil nitrogen availability that interactively affect the C input-output balance. We highlight the role of changes in the fine root functional distribution as an important acclimation mechanism of trees in response to environmental change.
Collapse
Affiliation(s)
- Marili Sell
- University of Tartu, Institute of Ecology and Earth Sciences, Vanemuise 46, 51003, Tartu, Estonia
| | - Ivika Ostonen
- University of Tartu, Institute of Ecology and Earth Sciences, Vanemuise 46, 51003, Tartu, Estonia
| | - Gristin Rohula-Okunev
- University of Tartu, Institute of Ecology and Earth Sciences, Vanemuise 46, 51003, Tartu, Estonia
| | - Linda Rusalepp
- University of Tartu, Institute of Ecology and Earth Sciences, Vanemuise 46, 51003, Tartu, Estonia
| | - Azadeh Rezapour
- University of Tartu, Institute of Ecology and Earth Sciences, Vanemuise 46, 51003, Tartu, Estonia
| | - Priit Kupper
- University of Tartu, Institute of Ecology and Earth Sciences, Vanemuise 46, 51003, Tartu, Estonia
| |
Collapse
|
6
|
Freschet GT, Roumet C, Comas LH, Weemstra M, Bengough AG, Rewald B, Bardgett RD, De Deyn GB, Johnson D, Klimešová J, Lukac M, McCormack ML, Meier IC, Pagès L, Poorter H, Prieto I, Wurzburger N, Zadworny M, Bagniewska-Zadworna A, Blancaflor EB, Brunner I, Gessler A, Hobbie SE, Iversen CM, Mommer L, Picon-Cochard C, Postma JA, Rose L, Ryser P, Scherer-Lorenzen M, Soudzilovskaia NA, Sun T, Valverde-Barrantes OJ, Weigelt A, York LM, Stokes A. Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. THE NEW PHYTOLOGIST 2021; 232:1123-1158. [PMID: 33159479 DOI: 10.1111/nph.17072] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/30/2020] [Indexed: 05/17/2023]
Abstract
The effects of plants on the biosphere, atmosphere and geosphere are key determinants of terrestrial ecosystem functioning. However, despite substantial progress made regarding plant belowground components, we are still only beginning to explore the complex relationships between root traits and functions. Drawing on the literature in plant physiology, ecophysiology, ecology, agronomy and soil science, we reviewed 24 aspects of plant and ecosystem functioning and their relationships with a number of root system traits, including aspects of architecture, physiology, morphology, anatomy, chemistry, biomechanics and biotic interactions. Based on this assessment, we critically evaluated the current strengths and gaps in our knowledge, and identify future research challenges in the field of root ecology. Most importantly, we found that belowground traits with the broadest importance in plant and ecosystem functioning are not those most commonly measured. Also, the estimation of trait relative importance for functioning requires us to consider a more comprehensive range of functionally relevant traits from a diverse range of species, across environments and over time series. We also advocate that establishing causal hierarchical links among root traits will provide a hypothesis-based framework to identify the most parsimonious sets of traits with the strongest links on functions, and to link genotypes to plant and ecosystem functioning.
Collapse
Affiliation(s)
- Grégoire T Freschet
- Station d'Ecologie Théorique et Expérimentale, CNRS, 2 route du CNRS, Moulis, 09200, France
- Centre d'Ecologie Fonctionnelle et Evolutive, Université de Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, 34293, France
| | - Catherine Roumet
- Centre d'Ecologie Fonctionnelle et Evolutive, Université de Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, 34293, France
| | - Louise H Comas
- USDA-ARS Water Management and Systems Research Unit, 2150 Centre Avenue, Bldg D, Suite 320, Fort Collins, CO, 80526, USA
| | - Monique Weemstra
- Centre d'Ecologie Fonctionnelle et Evolutive, Université de Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, 34293, France
| | - A Glyn Bengough
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- School of Science and Engineering, University of Dundee, Dundee, DD1 4HN, UK
| | - Boris Rewald
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna, 1190, Austria
| | - Richard D Bardgett
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Gerlinde B De Deyn
- Soil Biology Group, Wageningen University, Wageningen, 6700 AA, the Netherlands
| | - David Johnson
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Jitka Klimešová
- Department of Functional Ecology, Institute of Botany CAS, Dukelska 135, Trebon, 37901, Czech Republic
| | - Martin Lukac
- School of Agriculture, Policy and Development, University of Reading, Reading, RG6 6EU, UK
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, 165 00, Czech Republic
| | - M Luke McCormack
- Center for Tree Science, Morton Arboretum, 4100 Illinois Rt. 53, Lisle, IL, 60532, USA
| | - Ina C Meier
- Plant Ecology, University of Goettingen, Untere Karspüle 2, Göttingen, 37073, Germany
- Functional Forest Ecology, University of Hamburg, Haidkrugsweg 1, Barsbüttel, 22885, Germany
| | - Loïc Pagès
- UR 1115 PSH, Centre PACA, site Agroparc, INRAE, Avignon Cedex 9, 84914, France
| | - Hendrik Poorter
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, D-52425, Germany
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Iván Prieto
- Departamento de Conservación de Suelos y Agua, Centro de Edafología y Biología Aplicada del Segura - Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Murcia, 30100, Spain
| | - Nina Wurzburger
- Odum School of Ecology, University of Georgia, 140 E. Green Street, Athens, GA, 30602, USA
| | - Marcin Zadworny
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, Kórnik, 62-035, Poland
| | - Agnieszka Bagniewska-Zadworna
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznań, 61-614, Poland
| | - Elison B Blancaflor
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Ivano Brunner
- Forest Soils and Biogeochemistry, Swiss Federal Research Institute WSL, Zürcherstr. 111, Birmensdorf, 8903, Switzerland
| | - Arthur Gessler
- Forest Dynamics, Swiss Federal Research Institute WSL, Zürcherstr. 111, Birmensdorf, 8903, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, 8092, Switzerland
| | - Sarah E Hobbie
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN, 55108, USA
| | - Colleen M Iversen
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Liesje Mommer
- Plant Ecology and Nature Conservation Group, Department of Environmental Sciences, Wageningen University and Research, PO box 47, Wageningen, 6700 AA, the Netherlands
| | | | - Johannes A Postma
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, D-52425, Germany
| | - Laura Rose
- Station d'Ecologie Théorique et Expérimentale, CNRS, 2 route du CNRS, Moulis, 09200, France
| | - Peter Ryser
- Laurentian University, 935 Ramsey Lake Road, Sudbury, ON, P3E 2C6, Canada
| | | | - Nadejda A Soudzilovskaia
- Environmental Biology Department, Institute of Environmental Sciences, CML, Leiden University, Leiden, 2333 CC, the Netherlands
| | - Tao Sun
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Oscar J Valverde-Barrantes
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - Alexandra Weigelt
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Johannisallee 21-23, Leipzig, 04103, Germany
| | - Larry M York
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Alexia Stokes
- INRA, AMAP, CIRAD, IRD, CNRS, University of Montpellier, Montpellier, 34000, France
| |
Collapse
|
7
|
Functional Trait Plasticity but Not Coordination Differs in Absorptive and Transport Fine Roots in Response to Soil Depth. FORESTS 2019. [DOI: 10.3390/f11010042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Absorptive and transport fine roots (diameter ≤ 2 mm) differ greatly in anatomy, morphology, and physiology, as well as their responses to environmental changes. However, it is still not well understood how their functional traits and biomass repartition respond to resource variability associated with increasing soil depth. Herein, we sampled the first five order roots of three hardwoods, i.e., Juglans mandshurica Maxim., Fraxinus mandshurica Rupr., and Phellodendron amurense Rupr. at surface (0–10 cm) and subsurface (20–30 cm) soil layers, respectively, and measured root biomass, anatomy, morphology, chemistry, and physiology at the branch-order level. Based on the anatomical characteristics, absorptive and transport fine roots were identified within each order, and their amounts and functional trait plasticity to soil depth were examined. The results showed that across soil layers, the first three order roots were mainly absorptive roots, while the fourth- and fifth-order roots were transport ones. From surface to subsurface soil layers, both the number and biomass proportion of absorptive fine roots decreased but those of transport fine roots increased. Transport fine root traits were more plastic to soil depth than absorptive ones, especially for the conduit-related traits. Absorptive fine roots in surface soil generally had stronger potential for resource acquisition than those in deeper soil, as indicated by their longer specific root length and greater root branching density. In comparison, transport fine roots in deeper soil were generally enhanced in their transportation function, with wider stele and higher hydraulic conductivity. Our findings suggest that functional specialization via multi-trait plasticity and coordination in both absorptive and transport fine roots along the soil depth would benefit the efficient soil resource exploitation of trees in forest ecosystems.
Collapse
|
8
|
Robin A, Pradier C, Sanguin H, Mahé F, Lambais GR, de Araujo Pereira AP, Germon A, Santana MC, Tisseyre P, Pablo AL, Heuillard P, Sauvadet M, Bouillet JP, Andreote FD, Plassard C, de Moraes Gonçalves JL, Cardoso EJBN, Laclau JP, Hinsinger P, Jourdan C. How deep can ectomycorrhizas go? A case study on Pisolithus down to 4 meters in a Brazilian eucalypt plantation. MYCORRHIZA 2019; 29:637-648. [PMID: 31732817 DOI: 10.1007/s00572-019-00917-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
Despite the strong ecological importance of ectomycorrhizal (ECM) fungi, their vertical distribution remains poorly understood. To our knowledge, ECM structures associated with trees have never been reported in depths below 2 meters. In this study, fine roots and ECM root tips were sampled down to 4-m depth during the digging of two independent pits differing by their water availability. A meta-barcoding approach based on Illumina sequencing of internal transcribed spacers (ITS1 and ITS2) was carried out on DNA extracted from root samples (fine roots and ECM root tips separately). ECM fungi dominated the root-associated fungal community, with more than 90% of sequences assigned to the genus Pisolithus. The morphological and barcoding results demonstrated, for the first time, the presence of ECM symbiosis down to 4-m. The molecular diversity of Pisolithus spp. was strongly dependent on depth, with soil pH and soil water content as primary drivers of the Pisolithus spp. structure. Altogether, our results highlight the importance to consider the ECM symbiosis in deep soil layers to improve our understanding of fine roots functioning in tropical soils.
Collapse
Affiliation(s)
- Agnès Robin
- CIRAD, UMR Eco&Sols, Piracicaba, SP, 13418-900, Brazil.
- Eco&Sols, Univ Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, Montpellier, France.
- ESALQ, University São Paulo, Piracicaba, SP, 13418-900, Brazil.
| | - Céline Pradier
- Eco&Sols, Univ Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, Montpellier, France
- CIRAD, UMR Eco&Sols, F-34398, Montpellier, France
| | - Hervé Sanguin
- CIRAD, UMR BGPI, F-34398, Montpellier, France
- BGPI, Univ Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, Montpellier, France
| | - Frédéric Mahé
- CIRAD, UMR BGPI, F-34398, Montpellier, France
- BGPI, Univ Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, Montpellier, France
| | | | | | - Amandine Germon
- UNESP, University São Paulo, Botucatu, SP, 18610-300, Brazil
| | | | - Pierre Tisseyre
- LSTM, Univ Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, Montpellier, France
| | - Anne-Laure Pablo
- Eco&Sols, Univ Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, Montpellier, France
| | - Pauline Heuillard
- INRA, US 1426, GeT-PlaGe, Genotoul, F-31320, Castanet-Tolosan, France
| | - Marie Sauvadet
- Eco&Sols, Univ Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, Montpellier, France
| | - Jean-Pierre Bouillet
- CIRAD, UMR Eco&Sols, Piracicaba, SP, 13418-900, Brazil
- Eco&Sols, Univ Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, Montpellier, France
| | | | - Claude Plassard
- Eco&Sols, Univ Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, Montpellier, France
| | | | | | - Jean-Paul Laclau
- Eco&Sols, Univ Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, Montpellier, France
- CIRAD, UMR Eco&Sols, F-34398, Montpellier, France
| | - Philippe Hinsinger
- Eco&Sols, Univ Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, Montpellier, France
| | - Christophe Jourdan
- Eco&Sols, Univ Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, Montpellier, France
- CIRAD, UMR Eco&Sols, F-34398, Montpellier, France
| |
Collapse
|