1
|
Poorter H, Knopf O, Wright IJ, Temme AA, Hogewoning SW, Graf A, Cernusak LA, Pons TL. A meta-analysis of responses of C 3 plants to atmospheric CO 2 : dose-response curves for 85 traits ranging from the molecular to the whole-plant level. THE NEW PHYTOLOGIST 2022; 233:1560-1596. [PMID: 34657301 DOI: 10.1111/nph.17802] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/03/2021] [Indexed: 05/20/2023]
Abstract
Generalised dose-response curves are essential to understand how plants acclimate to atmospheric CO2 . We carried out a meta-analysis of 630 experiments in which C3 plants were experimentally grown at different [CO2 ] under relatively benign conditions, and derived dose-response curves for 85 phenotypic traits. These curves were characterised by form, plasticity, consistency and reliability. Considered over a range of 200-1200 µmol mol-1 CO2 , some traits more than doubled (e.g. area-based photosynthesis; intrinsic water-use efficiency), whereas others more than halved (area-based transpiration). At current atmospheric [CO2 ], 64% of the total stimulation in biomass over the 200-1200 µmol mol-1 range has already been realised. We also mapped the trait responses of plants to [CO2 ] against those we have quantified before for light intensity. For most traits, CO2 and light responses were of similar direction. However, some traits (such as reproductive effort) only responded to light, others (such as plant height) only to [CO2 ], and some traits (such as area-based transpiration) responded in opposite directions. This synthesis provides a comprehensive picture of plant responses to [CO2 ] at different integration levels and offers the quantitative dose-response curves that can be used to improve global change simulation models.
Collapse
Affiliation(s)
- Hendrik Poorter
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Oliver Knopf
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
| | - Ian J Wright
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Andries A Temme
- Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt Universität zu Berlin, 14195, Berlin, Germany
| | | | - Alexander Graf
- Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
| | - Lucas A Cernusak
- College of Science and Engineering, James Cook University, Cairns, Qld, 4879, Australia
| | - Thijs L Pons
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3512 PN, Utrecht, the Netherlands
| |
Collapse
|
2
|
Yu L, Dong H, Huang Z, Korpelainen H, Li C. Elevated CO2 causes different growth stimulation, water- and nitrogen-use efficiencies, and leaf ultrastructure responses in two conifer species under intra- and interspecific competition. TREE PHYSIOLOGY 2021; 41:2082-2095. [PMID: 33891044 DOI: 10.1093/treephys/tpab054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
The continuously increasing atmospheric carbon dioxide concentration ([CO2]) has substantial effects on plant growth, and on the composition and structure of forests. However, how plants respond to elevated [CO2] (e[CO2]) under intra- and interspecific competition has been largely overlooked. In this study, we employed Abies faxoniana Rehder & Wilson and Picea purpurea Mast. seedlings to explore the effects of e[CO2] (700 p.p.m.) and plant-plant competition on plant growth, physiological and morphological traits, and leaf ultrastructure. We found that e[CO2] stimulated plant growth, photosynthesis and nonstructural carbohydrates (NSC), affected morphological traits and leaf ultrastructure, and enhanced water- and nitrogen (N)- use efficiencies in A. faxoniana and P. purpurea. Under interspecific competition and e[CO2], P. purpurea showed a higher biomass accumulation, photosynthetic capacity and rate of ectomycorrhizal infection, and higher water- and N-use efficiencies compared with A. faxoniana. However, under intraspecific competition and e[CO2], the two conifers showed no differences in biomass accumulation, photosynthetic capacity, and water- and N-use efficiencies. In addition, under interspecific competition and e[CO2], A. faxoniana exhibited higher NSC levels in leaves as well as more frequent and greater starch granules, which may indicate carbohydrate limitation. Consequently, we concluded that under interspecific competition, P. purpurea possesses a positive growth and adjustment strategy (e.g. a higher photosynthetic capacity and rate of ectomycorrhizal infection, and higher water- and N-use efficiencies), while A. faxoniana likely suffers from carbohydrate limitation to cope with rising [CO2]. Our study highlights that plant-plant competition should be taken into consideration when assessing the impact of rising [CO2] on the plant growth and physiological performance.
Collapse
Affiliation(s)
- Lei Yu
- Department of Ecology, College of Life and Environmental Sciences, Hangzhou Normal University, Yuhangtang Road 2318, Hangzhou 311121, China
| | - Haojie Dong
- Department of Ecology, College of Life and Environmental Sciences, Hangzhou Normal University, Yuhangtang Road 2318, Hangzhou 311121, China
| | - Zongdi Huang
- Department of Ecology, College of Life and Environmental Sciences, Hangzhou Normal University, Yuhangtang Road 2318, Hangzhou 311121, China
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Latokartanonkaari 5 FI-00014, Helsinki, Finland
| | - Chunyang Li
- Department of Ecology, College of Life and Environmental Sciences, Hangzhou Normal University, Yuhangtang Road 2318, Hangzhou 311121, China
| |
Collapse
|
3
|
Smith NG, Keenan TF. Mechanisms underlying leaf photosynthetic acclimation to warming and elevated CO 2 as inferred from least-cost optimality theory. GLOBAL CHANGE BIOLOGY 2020; 26:5202-5216. [PMID: 32525621 DOI: 10.1111/gcb.15212] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/01/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
The mechanisms responsible for photosynthetic acclimation are not well understood, effectively limiting predictability under future conditions. Least-cost optimality theory can be used to predict the acclimation of photosynthetic capacity based on the assumption that plants maximize carbon uptake while minimizing the associated costs. Here, we use this theory as a null model in combination with multiple datasets of C3 plant photosynthetic traits to elucidate the mechanisms underlying photosynthetic acclimation to elevated temperature and carbon dioxide (CO2 ). The model-data comparison showed that leaves decrease the ratio of the maximum rate of electron transport to the maximum rate of Rubisco carboxylation (Jmax /Vcmax ) under higher temperatures. The comparison also indicated that resources used for Rubisco and electron transport are reduced under both elevated temperature and CO2 . Finally, our analysis suggested that plants underinvest in electron transport relative to carboxylation under elevated CO2 , limiting potential leaf-level photosynthesis under future CO2 concentrations. Altogether, our results show that acclimation to temperature and CO2 is primarily related to resource conservation at the leaf level. Under future, warmer, high CO2 conditions, plants are therefore likely to use less nutrients for leaf-level photosynthesis, which may impact whole-plant to ecosystem functioning.
Collapse
Affiliation(s)
- Nicholas G Smith
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
- Climate and Ecosystem Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Trevor F Keenan
- Climate and Ecosystem Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Environmental Science, Policy and Management, UC Berkeley, Berkeley, CA, USA
| |
Collapse
|
4
|
Vahl de Paula B, Squizani Arruda W, Etienne Parent L, Frank de Araujo E, Brunetto G. Nutrient Diagnosis of Eucalyptus at the Factor-Specific Level Using Machine Learning and Compositional Methods. PLANTS 2020; 9:plants9081049. [PMID: 32824810 PMCID: PMC7464882 DOI: 10.3390/plants9081049] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/21/2022]
Abstract
Brazil is home to 30% of the world’s Eucalyptus trees. The seedlings are fertilized at plantation to support biomass production until canopy closure. Thereafter, fertilization is guided by state standards that may not apply at the local scale where myriads of growth factors interact. Our objective was to customize the nutrient diagnosis of young Eucalyptus trees down to factor-specific levels. We collected 1861 observations across eight clones, 48 soil types, and 148 locations in southern Brazil. Cutoff diameter between low- and high-yielding specimens at breast height was set at 4.3 cm. The random forest classification model returned a relatively uninformative area under the curve (AUC) of 0.63 using tissue compositions only, and an informative AUC of 0.78 after adding local features. Compared to nutrient levels from quartile compatibility intervals of nutritionally balanced specimens at high-yield level, state guidelines appeared to be too high for Mg, B, Mn, and Fe and too low for Cu and Zn. Moreover, diagnosis using concentration ranges collapsed in the multivariate Euclidean hyper-space by denying nutrient interactions. Factor-specific diagnosis detected nutrient imbalance by computing the Euclidean distance between centered log-ratio transformed compositions of defective and successful neighbors at a local scale. Downscaling regional nutrient standards may thus fail to account for factor interactions at a local scale. Documenting factors at a local scale requires large datasets through close collaboration between stakeholders.
Collapse
Affiliation(s)
- Betania Vahl de Paula
- Departemento dos Solos, Universidade Federal de Santa Maria, Av. Roraima, 1000-Camobi, Santa Maria-RS 97105-900, Brazil; (W.S.A.); (L.E.P.); (G.B.)
- Correspondence: ; Tel.: +55-5532177117
| | - Wagner Squizani Arruda
- Departemento dos Solos, Universidade Federal de Santa Maria, Av. Roraima, 1000-Camobi, Santa Maria-RS 97105-900, Brazil; (W.S.A.); (L.E.P.); (G.B.)
| | - Léon Etienne Parent
- Departemento dos Solos, Universidade Federal de Santa Maria, Av. Roraima, 1000-Camobi, Santa Maria-RS 97105-900, Brazil; (W.S.A.); (L.E.P.); (G.B.)
- Department of Soils and Agrifood Engineering, Laval University, Quebec, QC G1V 0A6, Canada
| | - Elias Frank de Araujo
- Soil and Management Researcher of CMPC-Cellulose Rio Grandense, Rua São Geraldo 1680-Guaíba–RS, Brazil;
| | - Gustavo Brunetto
- Departemento dos Solos, Universidade Federal de Santa Maria, Av. Roraima, 1000-Camobi, Santa Maria-RS 97105-900, Brazil; (W.S.A.); (L.E.P.); (G.B.)
| |
Collapse
|
5
|
Asao S, Hayes L, Aspinwall MJ, Rymer PD, Blackman C, Bryant CJ, Cullerne D, Egerton JJG, Fan Y, Innes P, Millar AH, Tucker J, Shah S, Wright IJ, Yvon-Durocher G, Tissue D, Atkin OK. Leaf trait variation is similar among genotypes of Eucalyptus camaldulensis from differing climates and arises in plastic responses to the seasons rather than water availability. THE NEW PHYTOLOGIST 2020; 227:780-793. [PMID: 32255508 DOI: 10.1111/nph.16579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
We used a widely distributed tree Eucalyptus camaldulensis subsp. camaldulensis to partition intraspecific variation in leaf functional traits to genotypic variation and phenotypic plasticity. We examined if genotypic variation is related to the climate of genotype provenance and whether phenotypic plasticity maintains performance in a changing environment. Ten genotypes from different climates were grown in a common garden under watering treatments reproducing the wettest and driest edges of the subspecies' distribution. We measured functional traits reflecting leaf metabolism and associated with growth (respiration rate, nitrogen and phosphorus concentrations, and leaf mass per area) and performance proxies (aboveground biomass and growth rate) each season over a year. Genotypic variation contributed substantially to the variation in aboveground biomass but much less in growth rate and leaf traits. Phenotypic plasticity was a large source of the variation in leaf traits and performance proxies and was greater among sampling dates than between watering treatments. The variation in leaf traits was weakly correlated to performance proxies, and both were unrelated to the climate of genotype provenance. Intraspecific variation in leaf traits arises similarly among genotypes in response to seasonal environmental variation, instead of long-term water availability or climate of genotype provenance.
Collapse
Affiliation(s)
- Shinichi Asao
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| | - Lucy Hayes
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| | - Michael J Aspinwall
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- Department of Biology, University of North Florida, 1 UNF Drive, Jacksonville, FL, 32224, USA
| | - Paul D Rymer
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Chris Blackman
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Callum J Bryant
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| | - Darren Cullerne
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| | - John J G Egerton
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| | - Yuzhen Fan
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| | - Peter Innes
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Josephine Tucker
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| | - Shahen Shah
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
- The University of Agriculture Peshawar, Khyber Pakhtunkhwa, 25130, Pakistan
| | - Ian J Wright
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Gabriel Yvon-Durocher
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9EZ, UK
| | - David Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Owen K Atkin
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| |
Collapse
|
6
|
Vega FE, Ziska LH, Simpkins A, Infante F, Davis AP, Rivera JA, Barnaby JY, Wolf J. Early growth phase and caffeine content response to recent and projected increases in atmospheric carbon dioxide in coffee (Coffea arabica and C. canephora). Sci Rep 2020; 10:5875. [PMID: 32246092 PMCID: PMC7125137 DOI: 10.1038/s41598-020-62818-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 03/16/2020] [Indexed: 11/27/2022] Open
Abstract
While [CO2] effects on growth and secondary chemistry are well characterized for annual plant species, little is known about perennials. Among perennials, production of Coffea arabica and C. canephora (robusta) have enormous economic importance worldwide. Three Arabica cultivars (Bourbon, Catimor, Typica) and robusta coffee were grown from germination to ca. 12 months at four CO2 concentrations: 300, 400, 500 or 600 ppm. There were significant increases in all leaf area and biomass markers in response to [CO2] with significant [CO2] by taxa differences beginning at 122-124 days after sowing (DAS). At 366-368 DAS, CO2 by cultivar variation in growth and biomass response among Arabica cultivars was not significant; however, significant trends in leaf area, branch number and total above-ground biomass were observed between Arabica and robusta. For caffeine concentration, there were significant differences in [CO2] response between Arabica and robusta. A reduction in caffeine in coffee leaves and seeds might result in decreased ability against deterrence, and consequently, an increase in pest pressure. We suggest that the interspecific differences observed (robusta vs. Arabica) may be due to differences in ploidy level (2n = 22 vs. 2n = 4x = 44). Differential quantitative and qualitative responses during early growth and development of Arabica and robusta may have already occurred with recent [CO2] increases, and such differences may be exacerbated, with production and quality consequences, as [CO2] continues to increase.
Collapse
Affiliation(s)
- Fernando E Vega
- Sustainable Perennial Crops Laboratory, U. S. Department of Agriculture, Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Lewis H Ziska
- Adaptive Cropping Systems Laboratory, U. S. Department of Agriculture, Agricultural Research Service, Beltsville, MD, 20705, USA
- Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Ann Simpkins
- Sustainable Perennial Crops Laboratory, U. S. Department of Agriculture, Agricultural Research Service, Beltsville, MD, 20705, USA
| | | | | | | | - Jinyoung Y Barnaby
- Dale Bumpers National Rice Research Center, U. S. Department of Agriculture, Agricultural Research Service, Stuttgart, AR, 72160, USA
| | - Julie Wolf
- Adaptive Cropping Systems Laboratory, U. S. Department of Agriculture, Agricultural Research Service, Beltsville, MD, 20705, USA
| |
Collapse
|
7
|
Aranda I, Cadahía E, Fernández de Simón B. Leaf ecophysiological and metabolic response in Quercus pyrenaica Willd seedlings to moderate drought under enriched CO 2 atmosphere. JOURNAL OF PLANT PHYSIOLOGY 2020; 244:153083. [PMID: 31812028 DOI: 10.1016/j.jplph.2019.153083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 07/01/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
Impact of drought under enriched CO2 atmosphere on ecophysiological and leaf metabolic response of the sub-mediterranean Q. pyrenaica oak was studied. Seedlings growing in climate chamber were submitted to moderate drought (WS) and well-watered (WW) under ambient ([CO2]amb =400 ppm) or CO2 enriched atmosphere ([CO2]enr =800 ppm). The moderate drought endured by seedlings brought about a decrease in leaf gas exchange. However, net photosynthesis (Anet) was highly stimulated for plants at [CO2]enr. There was a decrease of the stomatal conductance to water vapour (gwv) in response to drought, and a subtle trend to be lower under [CO2]enr. The consequence of these changes was an important increase in the intrinsic leaf water use efficiency (WUEi). The electron transport rate (ETR) was almost a 20 percent higher in plants at [CO2]enr regardless drought endured by seedlings. The ETR/Anet was lower under [CO2]enr, pointing to a high capacity to maintain sinks for the uptake of extra carbon in the atmosphere. Impact of drought on the leaf metabolome, as a whole, was more evident than that from [CO2] enrichment of the atmosphere. Changes in pool of non-structural carbohydrates were observed mainly as a consequence of water deficit including increases of fructose, glucose, and proto-quercitol. Most of the metabolites affected by drought back up to levels of non-stressed seedlings after rewetting (recovery phase). It can be concluded that carbon uptake was stimulated by [CO2]enr, even under the stomatal closure that accompanied moderate drought. In the last, there was a positive effect in intrinsic water use efficiency (WUEi), which was much more improved under [CO2]enr. Leaf metabolome was little responsible and some few metabolites changed mainly in response to drought, with little differences between [CO2] growth conditions.
Collapse
Affiliation(s)
- Ismael Aranda
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, O.A., M.P. (INIA), Centro de Investigación Forestal, Carretera de A Coruña Km 7.5, 28040, Madrid, Spain; Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Palma de Mallorca, Islas Baleares, Spain.
| | - Estrella Cadahía
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, O.A., M.P. (INIA), Centro de Investigación Forestal, Carretera de A Coruña Km 7.5, 28040, Madrid, Spain
| | - Brígida Fernández de Simón
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, O.A., M.P. (INIA), Centro de Investigación Forestal, Carretera de A Coruña Km 7.5, 28040, Madrid, Spain
| |
Collapse
|
8
|
Duan H, Ontedhu J, Milham P, Lewis JD, Tissue DT. Effects of elevated carbon dioxide and elevated temperature on morphological, physiological and anatomical responses of Eucalyptus tereticornis along a soil phosphorus gradient. TREE PHYSIOLOGY 2019; 39:1821-1837. [PMID: 31728540 DOI: 10.1093/treephys/tpz094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/21/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
Eucalypts are likely to play a critical role in the response of Australian forests to rising atmospheric CO2 concentration ([CO2]) and temperature. Although eucalypts are frequently phosphorus (P) limited in native soils, few studies have examined the main and interactive effects of P availability, [CO2] and temperature on eucalypt morphology, physiology and anatomy. To address this issue, we grew seedlings of Eucalyptus tereticornis Smith across its P-responsive range (6-500 mg kg-1) for 120 days under two [CO2] (ambient: 400 μmol mol-1 (Ca) and elevated: 640 μmol mol-1 (Ce)) and two temperature (ambient: 24/16 °C (Ta) and elevated: 28/20 °C (Te) day/night) treatments in a sunlit glasshouse. Seedlings were well-watered and supplied with otherwise non-limiting macro- and micro-nutrients. Increasing soil P supply increased growth responses to Ce and Te. At the highest P supplies, Ce increased total dry mass, leaf number and total leaf area by ~50%, and Te increased leaf number by ~40%. By contrast, Ce and Te had limited effects on seedling growth at the lowest P supply. Soil P supply did not consistently modify photosynthetic responses to Ce or Te. Overall, effects of Ce and Te on growth, physiological and anatomical responses of E. tereticornis seedlings were generally neutral or negative at low soil P supply, suggesting that native tree responses to future climates may be relatively small in native low-P soils in Australian forests.
Collapse
Affiliation(s)
- Honglang Duan
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW2751, Australia
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang 330099, China
| | - Josephine Ontedhu
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW2751, Australia
| | - Paul Milham
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW2751, Australia
| | - James D Lewis
- Louis Calder Center - Biological Field Station and Department of Biological Sciences, Fordham University, Armonk, NY 10504, USA
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW2751, Australia
| |
Collapse
|